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Patterns of collective motion in bird flocks, fish schools and human crowds
are believed to emerge from local interactions between individuals. Most
‘flocking’ models attribute these local interactions to hypothetical rules or
metaphorical forces and assume an omniscient third-person view of the pos-
itions and velocities of all individuals in space. We develop a visual model of
collective motion in human crowds based on the visual coupling that gov-
erns pedestrian interactions from a first-person embedded viewpoint.
Specifically, humans control their walking speed and direction by cancelling
the average angular velocity and optical expansion/contraction of their
neighbours, weighted by visibility (1− occlusion). We test the model by
simulating data from experiments with virtual crowds and real human
‘swarms’. The visual model outperforms our previous omniscient model
and explains basic properties of interaction: ‘repulsion’ forces reduce to can-
celling optical expansion, ‘attraction’ forces to cancelling optical contraction
and ‘alignment’ to cancelling the combination of expansion/contraction and
angular velocity. Moreover, the neighbourhood of interaction follows from
Euclid’s Law of perspective and the geometry of occlusion. We conclude
that the local interactions underlying human flocking are a natural conse-
quence of the laws of optics. Similar perceptual principles may apply to
collective motion in other species.
1. Background
Human crowds exhibit patterns of collective motion inmany public settings, from
train stations and shopping plazas to—sometimes catastrophically—mass events
[1,2]. Similar patterns of coordinated motion are observed in bird flocks, fish
schools and animal herds, suggesting that diverse systems obey common prin-
ciples of self-organization [3,4]. It is generally believed that these global
‘flocking’ patterns emerge from local interactions between individuals [3–5]. The
crux of the problem thus lies in understanding the nature of the local interactions.

Most models of collective motion ascribe these interactions to hypothetical
rules or metaphorical forces, often inspired by physical systems, and assume
a third-person view of the positions and velocities of all individuals in space
[6,7]. Such phenomenological omniscient models—including our own [8]—
describe relationships between individuals without offering an underlying
mechanism. But humans and animals are embedded within collectives and
coupled to their neighbours by perceptual information. Here, we develop a
visual model of collective motion that explains local interactions in terms of
the visual coupling, based on optical variables. Not only does the visual
model outperform our previous omniscient model, but basic properties of
interaction follow from the laws of optics.

Understanding local interactions involves, first, identifying the rules of
engagement that govern how an individual responds to a neighbour, and
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Figure 1. Omniscient and visual models of collective motion. (a) Omniscient model: a pedestrian (bottom) matches the average heading direction and speed of all
neighbours in a 180° neighbourhood. Neighbour weights (grey level) decay exponentially with distance di and go to zero at a fixed radius (dotted curve). (b) Visual
model: a pedestrian (bottom) cancels the average angular velocity and optical expansion of all visible neighbours. Neighbour influence decreases with distance owing
to Euclid’s Law (grey level) and is proportional to neighbour visibility (shaded areas = occluded regions). (Online version in colour.)
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second, characterizing the neighbourhood of interaction over
which the rules operate and the influences of multiple neigh-
bours are combined. Classical ‘zonal’ models [9–11] posit
three local rules or forces in concentric zones: (i) repulsion
from neighbours in a near zone to avoid collisions, (ii) align-
ment with the velocity of neighbours in an intermediate zone
to generate common motion, and (iii) attraction to neighbours
in a far zone to ensure group cohesion. Influences are com-
bined by averaging neighbours within a zone, sometimes
weighted by their distance [12,13]. An alignment rule by
itself is theoretically sufficient to generate collective motion
[14], as is the combination of attraction and repulsion [15].
In humans, the prominent social force model [16,17] assumes
attraction and repulsion, successfully simulates key crowd
scenarios [18,19], and can generate collective motion under
certain boundary conditions [20,21]. However, it does not
produce realistic individual trajectories [22] or generalize
between situations without re-parameterization [17,23].

The strength of such physics-inspired models is that they
capture generic properties of collective motion, yet the same
global patterns can be generated by different sets of local
rules [5,24]. To decipher the actual rules, researchers have
turned to behavioural experiments on local interactions
[25–28]. We believe that such a ‘bottom-up’ approach
should be grounded in the perceptual coupling that actually
governs these interactions. The coupling incorporates limits
on the field of view and sensory range [10,29] as well as
the visibility of individual neighbours [30,31]. Moreover,
local interactions strongly depend on the optical information
that controls locomotion [32,33]. This insight has inspired
recent ‘vision-based’ models [34–36], but the effective visual
coupling remains to be determined.

We take a bottom-up, experiment-driven approach called
‘behavioural dynamics’ [27,37]. Our initial experiments on
following in pedestrian dyads [38,39] suggested that humans
obey an alignment rule: the follower tends tomatch thewalking
direction (heading) and speed of the leader. To infer the neigh-
bourhood of interaction, we immersed walking participants
in a virtual crowd and manipulated the motions of the avatars;
we also analysed observational data on human ‘swarms’ [8].
The results showed that pedestrians follow a crowd by aver-
aging the heading directions and speeds of neighbours within
a 180° field of view, with weights that decay exponentially
with distance to zero around 4 m. The findings led to an
omniscient model of collective motion [8] based on the
weighted average of neighbour headings and speeds
(figure 1a; see the electronic supplementary material, equations
S1–S4). The model successfully predicts individual trajectories
in both virtual crowd experiments and real crowd data [8,40],
and the ‘soft metric’ neighbourhood generates robust collective
motion in simulation [13,41].

Like its predecessors, however, our omniscient model relied
on metaphorical forces, assumed physical variables as input,
and did not account for the form of the neighbourhood of
interaction. In this article, we report new experiments that
lead to an embedded visual model (figure 1b), predicated on
the optical variables that control pedestrian following [42,43].
This new model explains the rules of engagement and the
form of the neighbourhood as natural consequences of the
laws of optics.
2. Experimental methods
(a) Human subjects
Twelve subjects (seven female, five male) participated in exper-
iment 1, and 10 different subjects (six female, four male) in
experiment 2. A power analysis determined that a sample size
of eight per experiment was sufficient to achieve a power of
0.85with α = 0.05 and an effect size of 0.5 (η2 = 0.2) [44]. All par-
ticipants gave informed consent and were compensated for
their time. The research protocol was approved by Brown Uni-
versity’s Institutional Review Board in accordance with the
principles expressed in the Declaration of Helsinki.

(b) Equipment
Participants walked freely in a 12 × 14 m tracking area while
viewing a virtual environment in a wireless, stereoscopic
head-mounted display (HMD, Oculus Rift DK1, 90°H× 65°V
field of view, 640 × 800 pixels per eye, 60 Hz refresh rate).
Head position and orientation were recorded with an inertial/
ultrasonic tracking system (Intersense IS-900; 60 Hz sampling
rate) and used to update the displaywith a latency of 50–67 ms.

(c) Displays
The virtual environment (WorldViz software) consisted of a
green start pole and a grey orientation pole placed 12.73 m
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Figure 2. Experiment 1: range of interaction, testing the decay with distance to fully visible neighbours. (a) Schematic of virtual crowd, illustrating a rightward
heading perturbation. (b) Results: mean final heading as a function of crowd distance, for each crowd size (curves). Error bars represent ± s.e.m. (Online version in
colour.)
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apart on a granite-textured ground plane, with a blue sky.
The virtual crowd consisted of animated three-dimensional
human models (WorldViz Complete Characters). These vir-
tual humans were initially positioned on arcs with the start
pole at the centre, at randomly assigned eccentricities (±6°,
±19°, ±32°, ±45°) about the direction to the orientation pole,
and then randomly jittered.

(d) Procedure
To elicit collective motion responses, participants were
instructed to ‘walk with the group of virtual humans’ and
‘treat them as if they were real people’. On each trial, the par-
ticipant walked to the start pole and faced the orientation
pole. The virtual crowd appeared with their backs to the par-
ticipant, ‘Begin’ was played over headphones, and the crowd
began walking forwards (1.0 m s−1). After 5 s, the walking
direction of some or all virtual humans was perturbed by
±10° (right or left); the display continued for another 7 s
and then ‘End’ was played. Test trials were preceded by
two practice trials to familiarize the participant with walking
in a virtual environment.

(e) Data processing
The time series of head position in the horizontal (X–Y ) plane
were low-pass filtered (Matlab) to reduce tracker error and
oscillations owing to the gait cycle and then time series of
heading direction and walking speed were computed. Left
and right perturbation trials were collapsed by multiplying
the heading on left-turn trials by −1. The dependent measure
was final heading, the average heading direction during the
last 2 s of each trial. Statistical analyses were performed in
Microsoft EXCEL and JASP. (See the electronic supplementary
material for detailed methods.)
3. Experiment 1: range of interaction
Based on crowd data, the omniscient model holds that neigh-
bour influence decays to zero at a fixed radius of about 4 m
[8]. However, it seems likely that interactions with visible
neighbours can occur at greater distances. To test the range
of interaction, we manipulated the initial distance (1.8, 3.0,
4.0, 6.0 or 8.0 m) of a single row of virtual humans (crowd
size 2, 4 or 8), with no occlusion (figure 2a). On each trial,
their headings were all perturbed in same direction (±10°),
and participants were asked to walk with the group.

(a) Results
We observed a gradual decay in neighbour influence over a
much longer distance (figure 2b). Final heading decreased
from a maximum at 1.8 m (mean M = 9.55°) to just half that
value at 8 m (M = 5.16°) (F4,44 = 14.93, p < 0.001, h2

G ¼ 0.290).
Simple linear extrapolation suggests an interaction range of
at least 15 m (y=−0.722x+ 10.8, r14=−0.95). Consistent with
averaging of neighbours, there was no effect of crowd size on
final heading (F2,22 = 0.77, p= 0.476, h2

G ¼ 0.010) and no
distance × size interaction (F8,88 = 0.83 p=0.575, h2

G ¼ 0.033).
These results clearly show that the neighbourhood of

interaction does not have a fixed radius of 4 m, for ped-
estrians may be influenced by neighbours at three times
that distance—if they are fully visible. This finding suggests
that there may be two decay processes at work: a gradual
decay to visible neighbours, and a more rapid decay within
a partially occluded crowd.
4. Experiment 2: the double-decay hypothesis
The second experiment tested this ‘double-decay’ hypothesis,
specifically that there are two decay processes which depend
on distance. We manipulated a virtual crowd of 12 neigh-
bours, randomly positioned in three rows spaced 2 m apart
(figure 3a). To check the decay rate to fully visible neigh-
bours, we varied the distance of the near row (2, 4 or 6 m).
To probe the decay rate within the crowd, we selectively
perturbed the near, middle or far row, so all neighbours in
one row turned in the same direction (±10°). Farther neigh-
bours were thus dynamically occluded by nearer neighbours.

(a) Results
Final heading is plotted as a function of distance to the per-
turbed row in figure 3b, where each curve represents a crowd
distance (i.e. to the near row). Two decay rates are immediately
apparent. First, the heading response decreases with the
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distance of the crowd (F2,18 = 26.68, p < 0.001, h2
G ¼ 0.229).

In particular, the response to perturbations of the near row
(diamonds) decays gradually with distance (simple effect
test, F2,18 = 48.46, p < 0.001), replicating experiment 1. Linear
extrapolation suggests an interaction range of at least 9 m
(y =−0.81x + 7.33, r2 =−0.99). The decay rate (slope) is slightly
steeper, and responses are weaker (intercept), than in exper-
iment 1, owing to the presence of unperturbed neighbours,
yielding a shorter interaction range.

Second, for each curve, the heading response decreases
more rapidly within the crowd (F2,18 = 86.98, p < 0.001,
h2
G ¼ 0.760). It drops steeply from the near row to the middle

row (t9 = 10.82, p < 0.001, Cohen’s d = 3.42) and the far row
(t9 = 11.95, p < 0.001, Cohen’s d = 3.77). This finding implies
that dynamic occlusion by near neighbours weakened
responses to themiddle and far rows, almost to the floor of zero.

The evidence thus reveals that the neighbourhood of
interaction results from two decay processes. We propose,
first, that the gradual decay to visible neighbours follows
from Euclid’s Law of perspective, which states that the
visual angle subtended by an object (or motion) with frontal
extent x diminishes with distance z as tan−1(x/z). Note that
this predicts a larger range of interaction than simple linear
extrapolation. Second, the more rapid decay within the
crowd is owing to the additional effect of occlusion. These
findings led us to formulate a new visual model.
5. Visual model
To build a visual model of collective motion from the bottom
up, we begin with the visual coupling between a pedestrian
and a single neighbour [38,42,43].

(a) Heading control
Consider a pedestrian following a neighbour who turns left
(figure 4, top row). If the neighbour is directly ahead
(eccentricity of β = 0°,with positive angles to the right and nega-
tive angles to the left), this generates a leftward angular velocity
(negative _c) in the pedestrian’s field of view (figure 4a).
Cancelling _c would cause the pedestrian to steer left and
approximately match the neighbour’s heading. On the other
hand, if the neighbour is to the pedestrian’s right (β = 90°), a
left turn generates an optical expansion (_u) in the field of view
(figure 4b). In this case, cancelling _uwould cause the pedestrian
to steer left and match the neighbour’s heading. Critically,
optical velocities ( _c, _u) decrease with neighbour distance in
accordance with Euclid’s Law.

These two optical variables thus trade off as a function of
the neighbour’s eccentricity (figure 4c). For a left turn, angu-
lar velocity _c (blue curve) is a cosine function of eccentricity
with a minimum (leftward motion) at β = 90°, whereas expan-
sion rate _u (red curve) is a sine function with a minimum
(contraction) at β =−90° and a maximum (expansion) at
β = 90°. For a right turn, these functions flip about the
horizontal axis.

The visual coupling for controlling heading (ϕ) can thus
be formalized as a second-order control law,

€fp ¼ � c1(cosbi) _ci þ c2(sinbi) _ui, ð5:1Þ

in which pedestrian p steers (angular acceleration €f) so as to
cancel the combined angular velocity ( _c) and expansion rate
(_u) of neighbour i. Their dependence on β acts as a filter so
that steering is influenced by combinations of variables that
correspond to a turning neighbour at that eccentricity. The
free parameters (c1 = 14.38, c2 = 59.71) were fitted to our pre-
vious data on pedestrian following [39,42] and held constant.

(b) Speed control
The control of walking speed is complementary to the control
of heading (figure 4, bottom row). If a neighbour directly
ahead (β = 0°) slows down, this generates an optical expan-
sion (_u) in the pedestrian’s field of view (figure 4d ).
Cancelling the expansion would cause the pedestrian to
decelerate and approximately match the neighbour’s speed.
However, if a neighbour to the pedestrian’s right (β = 90°)
slows down, this generates a rightward angular velocity
(positive _c) in the field of view (figure 4e); cancelling it
would also lead the pedestrian to decelerate to the
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neighbour’s speed. These two optical variables again trade
off as a function of eccentricity, but with the opposite sine
and cosine functions (figure 4f ). If the neighbour speeds
up, the curves flip about the horizontal axis.

The visual coupling for control of radial speed (_r) is thus
based on the same two optical variables as in equation (5.1),
but the sine and cosine functions are reversed:

€rp ¼ � c3(sinbi) _ci � c4(cosbi) _ui: ð5:2Þ
Pedestrian p thus linearly accelerates or decelerates (€r) so as
to cancel the combined angular velocity ( _c) and expansion
rate (_u) of neighbour i. But now p’s speed is influenced by
combinations of variables that correspond to a neighbour
changing speed at a given eccentricity. The free parameters
(c3 = 0.18, c4 = 0.72) were fitted to our data on pedestrian fol-
lowing [39,42] and held fixed. To normalize for variation in
neighbour size, the relative rate of expansion (_u=u) can be
substituted for expansion rate (_u) [43].
(c) Collective motion
To formulate a model of collective motion, we substitute
the visual control laws for local interactions (equations (5.1)
and (5.2)) into a neighbourhood function that averages
the influences of multiple neighbours (refer to the electronic
supplementary material, equation S1):

€fp ¼
1
n

Xn

i¼1

vi[� c1(cosbi) _ci þ c2(sinbi) _ui] ð5:3Þ

and

€rp ¼ 1
n

Xn

i¼1

vi[� c3(sinbi) _ci � c4(cosbi) _ui]: ð5:4Þ
Pedestrian p’s heading and speed are thus controlled by
cancelling the mean angular velocity ( _ci) and rate of expan-
sion (_ui) of all visible neighbours (i = 1… n), depending on
their eccentricities (βi). The field of view is centred on the
heading direction, as people tend to face in the direction
they are walking [45].

Partial occlusion is incorporated by weighting each neigh-
bour in proportion to their visibility, vi, which ranges from 0
(fully occluded) to 1 (fully visible). If the visibility falls below
a threshold value (vt= 0.15), vi is set to 0; thus, n is the number
of visible neighbours above threshold. Importantly, the occluded
region behind a neighbour grows with distance, so the visibility
of far neighbours tends todecreasewith their separation indepth
from near neighbours (figure 1b). Consequently, the range of
interaction depends on the crowd’s opacity [46] and is limited
by the complete occlusion of far neighbours.

Basic properties of physics-inspired models fall out
naturally from the visual model. First, cancelling optical
expansion yields collision avoidance without an explicit
‘repulsion’ force. Second, cancelling optical contraction main-
tains group cohesion without an explicit ‘attraction’ force.
Third, cancelling the combined angular velocity and expan-
sion/contraction generates collective motion without an
explicit ‘alignment’ rule. Finally, the laws of optics account
for the form of the neighbourhood without an explicit
decay function: Euclid’s Law explains the gradual decay of
influence to visible neighbours, and the added effect of
occlusion explains the more rapid decay within a crowd.
6. Model simulations
We tested the visual model (equations (5.3)–(5.4)) by
predicting human trajectories in virtual crowd experiments
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and real crowd data and compared the results to our
previous omniscient model [8]. We find that the visual
model outperforms the omniscient model (and a model
based on optical motion without occlusion, see the
electronic supplementary material) and generalizes to real
crowds.

To simulate each experimental trial, the models were
initialized with the participant’s position, heading and
speed 2 s before the perturbation. For the omniscient
model, the input on each time step was the position, head-
ing and speed of all virtual neighbours in the HMD’s 90°
field of view on that trial. For the visual model, the input
was the angular velocity, expansion rate, eccentricity and
visibility of the same neighbours, calculated from their pos-
itions on each time step. The output of both models was the
position, heading and speed of the simulated agent on the
next time step, represented as time series for each trial. As a
measure of model performance, we computed the mean
position error (ME) or root mean squared error (RMSE) in
heading and speed between each participant’s mean time
series in each condition and the corresponding mean time
series for the model.
(a) Simulating experiment 2
First, we simulated the double-decay experiment. For the
omniscient model, we added a gradual exponential term to
the decay function (electronic supplementary material,
equation S4), estimated from the data. Because crowd speed
was not manipulated in this experiment, we used the partici-
pant’s recorded walking speed as input to the omniscient
model. Mean final heading for the two models is plotted in
figure 3b, together with the human results. Although both
models are close to the 95% confidence intervals (CIs) for
the human data (shaded regions), the visual model (dotted
curves) lies entirely within them.

Over the whole time series, the mean heading error for
the visual model (RMSEV= 2.47°) was significantly smaller
than that for the omniscient model (RMSEO= 3.45°) (t9 =
14.48, p < 0.001, Cohen’s d = 1.460); a Bayes factor (BF) indi-
cated decisive evidence for the alternative hypothesis
(BF10≫ 100). The mean position error for the visual model
(MEV= 0.241 m) was also smaller than that for the omniscient
model (MEO= 0.309 m) (t9 = 8.46, p < .001, Cohen’s d = 0.294),
decisive evidence (BF10≫ 100).

In summary, the visual model predicted the range of
interaction better than the omniscient model because the
decay rate is not a constant function of distance but depends
on the amount of occlusion. The visual model thus accounts
for the form of the neighbourhood without an explicit
decay function.
(b) Re-simulating Rio et al. [8]
As a further test of the models, we re-simulated Rio et al.’s [8]
experiment 2, which perturbed heading or speed and
manipulated the number and distance of perturbed neigh-
bours (figure 5a). The virtual crowd contained five
neighbours in the near row (1.5 m) and seven in the far row
(3.5 m). On each trial, a subset of neighbours, predominantly
in one row, either turned ±10° or changed speed by ±0.3 m s−1

(from 1.0 m s−1). Mean final heading and mean final speed
appear in figure 5b,c (solid curves). Responses were larger
when near neighbours were perturbed (top curve) than when
far neighbours were perturbed (bottom curve), reflecting the
decay of influence with distance.

Simulations of the visual model (dotted curves) and the
original omniscient model (dashed curves; electronic sup-
plementary material, equations S1–S3) appear in figure 5b,c.
Both are close to the human data (solid curves), falling
within the 95% CIs in nearly all conditions. Over time, the
mean heading error was significantly smaller for the visual
model (RMSEV= 1.97°, RMSEO= 2.08°), (t9 = 6.94, p < 0.001,
Cohen’s d = 0.871, BF10 > 100), although there was no differ-
ence in the mean speed error (RMSEV= 0.0627 m s−1,
RMSEO= 0.0640 m s−1) (t9 = 1.15, p = 0.281, Cohen’s d =
0.208; BF01= 1.91, anecdotal evidence for the null hypothesis)
or the mean position error (MEV= 0.193 m, MEO= 0.199 m)
(t9 = 1.112, p = 0.295, Cohen’s d = 0.082; BF01= 1.96, anecdo-
tal). Both models thus capture the human data quite well,
although the visual model performs better on heading.

The comparatively good performance of the omniscient
model in this experiment stems from the fact that the decay
function was originally fitted to human swarms that had
nearest-neighbour distances (1–3 m) and densities similar
to those of the virtual crowd. However, this empirical
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decay term did not generalize to larger distances in the
double-decay experiment, whereas the visual model did so.

In summary, the visual model accounts for Rio et al.’s [8]
experiment as well or better than the omniscient model.
Whereas the latter assumes physical variables as input, the
former is based on optical variables available to an
embedded pedestrian: far neighbours exert less influence
because they have lower optical velocities and are partially
occluded by near neighbours.
(c) Human swarm simulations
To test whether our findings for virtual crowds apply to real
crowds, we simulated walking trajectories in previously
recorded data on human ‘swarms’ [8]. We attempted to pre-
dict the trajectory of an individual pedestrian from the
movements of their neighbours using both models.

Three different groups of participants (n = 10, 16 and 20)
were instructed to walk about a large tracking area (14 ×
20 m), veering left and right while staying together as a
group, for a total of twelve 2 min trials. Head-mounted mar-
kers were recorded with 16 motion-capture cameras
(Qualisys) at 60 Hz, and time series of head position, head-
ing and speed were computed as before. We identified
thirty 10 s segments of data in which ≥75% of the partici-
pants were continuously tracked. For each segment, we
simulated a focal participant at the back of the group and
treated the tracked neighbours as input. For the visual
model, we computed optical variables from neighbour pos-
itions and velocities. The omniscient model used the
original decay function (electronic supplemenatry material,
equation S3).

Two segments of simulated swarm data appear in
figure 6. The heading time series (column (b)) for the focal
participant (solid curve) is more closely captured by the
visual model (dots) than the omniscient model (dashes) in
both segments, whereas the speed time series (column (c))
is better approximated by the omniscient model in segment
1 (top) and the visual model in segment 10 (bottom).
Over all 30 segments, the mean heading error was signifi-
cantly lower for the visual model (RMSEV= 15.0°) than the
omniscient model (RMSEO= 22.9°) (t29 = 4.48, p < 0.001,
Cohen’s d = 0.806; BF10> 100, decisive evidence), as was the
mean position error (MEV= 0.60 m, MEO= 0.80 m) (t29 =
2.21, p < 0.05, Cohen’s d = 0.338; BF10= 1.60 anecdotal evi-
dence). On the other hand, the mean speed error was
significantly lower for the omniscient model (RMSEV=
0.224 m s−1, RMSEO= 0.146 m s−1) (t29 = 6.83 p < 0.001,
Cohen’s d = 1.198; BF10≫ 100, decisive evidence); we
consider this result in §7.

The visual model thus accounts for individual heading and
position in real crowd data better than the omniscient model,
even though the latter’s decay term was fitted to a sample of
the same data. We attribute this advantage largely to the



royalsoc

8
effect of occlusion. Whereas the omniscient model approxi-
mates the decay with distance using a fixed exponential
function, the visual model incorporates dynamic occlusion
and is thus sensitive to changes in visibility over time.
ietypublishing.org/journal/rspb
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7. Discussion
Nearly all microscopic models of collective motion in humans
and animals attribute local interactions to hypothetical rules
or forces and assume physical variables as input. In this
article, we developed a visual model of human ‘flocking’
grounded in the visual coupling with optical variables as
input. In contrast to previous phenomenological models,
the visual model explains basic properties of interaction as
natural consequences of the laws of optics.

First, social forces and rules of engagement are reduced
to optical variables that control an individual’s heading
and speed. In place of explicit ‘repulsion’ and ‘attraction’
forces, collision avoidance results from cancelling optical
expansion, and group cohesion is maintained by cancelling
optical contraction. Instead of an explicit ‘alignment’ rule, col-
lective motion emerges from cancelling the combined
expansion/contraction and angular velocity of neighbours.
The visual coupling thus acts functionally like a force or
’optical push’ [47].

Second, the neighbourhood of interaction is explained by the
laws of optics, without an explicit distance term. The gradual
decay to visible neighbours in the field of view follows from
Euclid’s Law, the diminution of optical velocity with distance.
The more rapid decay within a crowd follows from the added
effect of visual occlusion, which grows with the separation in
depth between near and far neighbours. Consequently, the
neighbourhood range and number of neighbours n are not
determined by a fixed distance but vary with crowd opacity.

The visual model thus predicts that the effective neigh-
bourhood depends on crowd density, which we confirmed
in related experiments [48]. In dense human crowds (1–2 m
apart), complete opacity can occur by a range of 5 m. Star-
lings appear to adjust flock density to maintain ‘marginal
opacity’ such that individual birds can see through the
entire flock [46]. The range of interaction might also be lim-
ited by a visual detection threshold for optical motion.
However, adding a motion threshold in our simulations did
not improve the fit to the data, perhaps because it was
superseded by occlusion.

Nearly all physics-inspired models assume the principle
of superposition, according to which the response to a
group is the linear combination of independent responses to
each neighbour. But, superposition is invalidated by the
facts of visual occlusion: because the influence of far neigh-
bours depends on the positions of near neighbours, the
response to the former is not independent of the latter.
While this may be computationally inconvenient, visual
occlusion has large effects on local interactions and should
be incorporated into future models [30,31].

Note that Euclid’s Law predicts an asymmetry in the ped-
estrian’s response. Given a neighbour an initial distance ahead,
if they slow down, their distance decreases, whereas if they
speed up, their distance increases. Consequently, the rate of
expansion is greater than the rate of contraction for the same
speed change. This effect explains an asymmetric speed response
we previously observed in pedestrian following [38,43].
The visual model generally outperforms the omniscient
model, although they were quite similar in our re-simulation
of Rio et al.’s [8] experiment. That result is attributable to the
fact that the omniscient model approximates the decay with
distance using an exponential function that was fitted to
human swarms with a similar distance and density to the vir-
tual crowd. However, this fixed decay term did not generalize
to other crowd distances in experiment 2, whereas the visual
model did so. The visual model thus not only explains the
form of the neighbourhood but generalizes to new conditions
without re-parameterization.

We noted a limitation of the current visual model when
we were simulating the human swarm data. In five additional
segments, the front of the crowd executed a 180° hairpin turn
and walked back towards the focal participant, generating
rapid expansion in the field of view. Human participants
kept walking forwards, but the visual model responded by
slowing down and backing up to cancel the optical expan-
sion. Similar but less extreme responses to U-turns may
explain the larger speed error for the visual model reported
above. Clearly, the model needs to distinguish neighbours
that should be followed from obstacles that should be
avoided, which may be as straightforward as discriminating
the front and back of other pedestrians.

Our findings suggest that characteristic patterns of collec-
tive motion in different species might result from a reliance
on different sensory variables. Humans cancel optical vel-
ocities, which yields collective motion despite variation in
neighbour distance, density and size. By contrast, holding
the visual angles of near neighbours at a particular value
would yield fish schools with a preferred spatial scale,
whereas maintaining neighbours in particular visual direc-
tions would yield bird flocks with a preferred spatial
structure.

In summary, we conclude that the local interactions
underlying collective motion have a lawful basis in the
visual coupling between neighbours. In recent multi-agent
simulations, we have also shown that the visual model gener-
ates emergent collective motion, and a report is in
preparation.
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