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ABSTRACT

The ability for wearable devices to collect high-fidelity biosignals continuously over weeks and months at a time has become an increasingly
sought-after characteristic to provide advanced diagnostic and therapeutic capabilities. Wearable devices for this purpose face a multitude of
challenges such as formfactors with long-term user acceptance and power supplies that enable continuous operation without requiring exten-
sive user interaction. This review summarizes design considerations associated with these attributes and summarizes recent advances toward
continuous operation with high-fidelity biosignal recording abilities. The review also provides insight into systematic barriers for these device
archetypes and outlines most promising technological approaches to expand capabilities. We conclude with a summary of current develop-
ments of hardware and approaches for embedded artificial intelligence in this wearable device class, which is pivotal for next generation
autonomous diagnostic, therapeutic, and assistive health tools.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
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CRITERIA FOR LONG-TERM WEARABLE DEVICES

Wearable devices have seen an acute increase in popularity over
the last 10 years.1–7 As the rate of proliferation of wearable systems
and technological advances increases, understanding end user behav-
iors and factors that influence a user’s decision to utilize wearable devi-
ces is an important factor to consider in the development of new
device archetypes, specifically when the technologies are used as diag-
nostic tools. To understand the multifaceted decision process, several
models have been developed to understand technology acceptance and
long-term compliance. The two most popular models are the technol-
ogy acceptance model8 and the unified theory of acceptance and use of
the technology model9 with other works focused on expanding and
refining these models.10–23 Key outcomes from these models are
detailed in Fig. 1(a), which shows the primary factors of wearable tech-
nology systems that influence device acceptance and adoption. Among
these factors, there are three primary categories, which include the
following: intrinsic device hardware properties such as comfort, safety,
and data relevancy and user-centered subjective factors such as
perceived ease of use, perceived value, and social acceptance. When

engaging in fundamental research and device design, these factors play
a large role in the acceptance and adoption of new devices and, thus,
must be considered early in the design process to enable impact.

The US market for wearable devices reached $24.57 billion in
2018 with a projected growth rate of 24.7% annually to $139.35 billion
by 202624 with nearly 30% of the population reporting using a wear-
able device, of which 47% using devices every day.25 A graph showing
survey data from a sample population of 4551 participants is shown in
Fig. 1(b). From this study, it was found that younger age demographics
contribute more to the ownership and adoption of wearable sensing
systems, whereas older users are less likely to adopt these devices
(odds ratio 0.46–0.57). Additionally, it was shown that respondents
who reported a high level of technological affinity were more likely to
adopt wearable devices than those who were less familiar (odds ratio
1.33).25 These statistics demonstrate that, in general, younger and
health-conscious users who are interested in fitness optimization and
older populations who are focused on overall health improvement
are driving market expansion, particularly accentuated during the
COVID-19 pandemic.26
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Despite widespread adoption among several subpopulations,
conventional wearable devices do not meet many standards set out by
acceptance models, as many devices fail to drive long-term user
engagement. Figure 1(c) summarizes user engagement with wearable
systems over a 2 year period.27 In this study, it was reported that a
third of users who owned a modern activity tracking device stopped
using it within 6months of receiving it. While temporal decreases in
user compliance are widely studied and depend on the formfactor of
the device, users may choose to discontinue interaction with a wear-
able system because of perceived complication of use, a failure to

integrate with existing infrastructure, discomfort, and lack of perceived
value of the insight collected from wearing the device.28–30 These
aspects of human behavior are key for long-term compliance with
wearable systems, where software approaches to promote habit
formation, social motivation, and goal reinforcement are important to
maintain perceived value and usefulness.31 A barrier in practical appli-
cations is a safe and reliable biological interface. Biocompatibility and
soft mechanics can reduce the risk of irritation at interfaces whereas
suitable encapsulation can eliminate the risk of harmful interaction
with the skin.32

FIG. 1. Introduction into current wearable systems: (a) illustration showing key aspects for chronic user compliance with wearable medical devices. (b) Graph showing metrics
of user retention for fitness wearables.25 Reproduced with permission from Chandrasekaran et al., J. Med. Internet Res. 22, e22443 (2020). Copyright 2020 Authors, licensed
under a Creative commons Attribution (CC BY) license. (c) Graph showing user compliance with wearable monitors over a 2-year period ledger.27 Reproduced with permission
from D. Ledger and McCaffrey, Endeavour Partners 200, 1 (2014). Copyright 2014 Authors, licensed under a Creative commons Attribution (CC BY) license. (d) Illustrations
outlining wireless power transfer techniques’ battery-free or chronic wearable devices. (e) Summary of power harvesting techniques used for autonomous wearable devices.
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In addition to these factors, there are additional engineering
design challenges, including communication security and privacy,
power consumption, and transmission reliability (including loss of real
time information),7,33 that must be overcome to enable truly long-
term, sustainable wearable devices that provide less burden to the
wearer and result in higher compliance with longer wear time, all criti-
cal aspects to enable powerful health diagnostic devices.7,32,33

Wearable systems for noninvasive monitoring of physiological
processes and biomarkers for disease detection, coupled with advances
in electronic systems, materials science,34,35 and sensor technology5,32

seek to overcome these challenges. The device class is defined by wire-
less and battery-free operation, soft mechanics, and high-fidelity sens-
ing capabilities to increase both user compliance and expand sensing
functionality of wearable systems.36 Key aspects of this device class are
strategies for wireless power transfer and energy harvesting, which are
considered a bottleneck that drives device composition while power
availability prescribes functional limitations. Commercially available
devices generally utilize a form of rechargeable lithium-ion or lithium-
polymer battery. Batteries impose device sizing constraints due to their
large formfactor (>1 � 1 cm2) but are available with a wide range
of capacities that can handle continuous device operation of 8–10h.
In an effort to render battery powered systems more mechanically
compliant, development of stretchable cells that are able to deform
and integrate seamlessly into textiles37–39 has proliferated; however,
mechanical compliance comes at the expense of energy density
resulting in larger device footprints. Wireless powering modalities for
wearable systems can be categorized into two subgroups, namely,
power transfer approaches that capture energy cast by external infra-
structure and energy harvesting approaches that utilize existing forms
of energy to power the sensor systems.40 Figure 1(d) details external
power transfer techniques that are commonly implemented in chronic
wearable device systems.

WIRELESS POWER TRANSFER TECHNIQUES
FOR BATTERY-FREE WEARABLE DEVICES

Radio frequency (RF) power transfer, which is a popular modal-
ity for wearable systems with functional operation distances of 60 cm
and low tissue absorption (<20 mW/kg), makes it appealing for wear-
able applications directly on the skin.41–43 The most popular of these
RF transfer modalities is near-field magnetic resonance coupling
(MRC)40 that relies on a primary transmission coil and a resonantly
coupled secondary coil that is able to provide up to 500 mW.42

Because of relatively robust electromagnetic makeup, technology can
be united with mechanical concepts such as rigid island and stretch-
able interconnects to enable skin-like mechanical feel with robust
operation even under large deformations,44 making it a popular
approach for epidermal electronics. Most recent methods increase
the functional distance through strategies such as near-field enabled
textiles;45,46 MRC is generally confined to less than 1 m (Ref. 42) with
high-powered transmitters and elaborate antenna schemes or sub-
10 cm range with smart phones and, therefore, requires applications
that either rely on sporadic readings or operation in close proximity to
transmission hardware. While infrastructure is ubiquitous through
near field communication (NFC) enabled phones, this solution is diffi-
cult to implement for continuous chronic operation due to the prox-
imity requirement to the transmitter, which requires a high level of
user interaction with the devices. Another method of RF power

transfer focuses on the far-field regime to extend the operational dis-
tances of devices beyond 1 m and generally uses higher frequencies to
sufficiently miniaturize the receiver antenna systems resulting in a har-
vested power of 1–100 mW depending on the distance, orientation,
dielectric environment, power, and antenna gain of the transmitter
and receiver.47–49 This allows for continuous communication strate-
gies but requires on-body antenna structures and proximity (0.5–3 m)
to power transfer hardware.47 Tissue adsorption (0.1–6W/kg) and leg-
islative limits of far field power transmission are considered the bottle
neck for this technology. Strategies to improve antenna performance
on the skin include implementation of 3D structures to reduce loss
associated with the skin while maintaining mechanical performance.40

The power transfer scheme is suitable for chronic applications, and
examples with operational times over weeks are demonstrated.47

Another power transfer technique uses photovoltaic cells (PVCs)
for converting optical energy into electrical power.50 The PVCs in
combination with near infrared and visible light sources can also be
used as a power transfer scheme and are able to generate power densi-
ties of up to an estimated 1.05 mWcm�2 with dedicated light sources
and 14.6lWcm�2 from ambient light sources.51–53 Systems can be
embedded into textiles50,54–57 to provide power for wearable sensor
devices able to detect cardiac signals.53 Fabrication of inorganic PVCs
using processes with the ability to create ultra-small rigid island and
flexible interconnect schemes to provide harvesting capabilities with-
out compromising device mechanics. Demonstrations with this tech-
nology have shown harvesting capabilities for low-powered electronic
systems; however, the current energy density of PVCs renders their
wearable application limited.53

Energy harvesting used in wearable systems has become increas-
ingly popular, as they do not require external power transfer infra-
structure for operation. A technological overview of these power
harvesting modalities is summarized in Fig. 1(e). Piezoelectric and tri-
boelectric generators convert various mechanical energies into electri-
cal power58 with power densities of 0.01–1.32 mW cm�2 (Refs. 59–61)
and conversion efficiencies of 50%–85% (Refs. 62–64) suitable for low
power wearable applications (<5 mW). While current efficiencies and
power densities require large surface areas for adequate power harvest-
ing, integration of these generators into textile components61 enables
low sampling rate continuous applications. One downside of these
modalities is the requirement for humanmotion for power, which ren-
ders the system ineffective during periods of sleep or rest.

Biofuel cells aimed at powering wearable devices using sweat as
electrochemical power source are suitable for short term usage in
epidermal electronic applications.65–67 Devices demonstrate a power
density of 1–3.5 mWcm�2, sufficient to power sensing modalities and
BLE SoC modules for data aggregation and communication for up to
5h. These biofuel cells can maintain a low mechanical profile, enabling
integration of soft, flexible sensor systems; however, they may suffer
inconsistent performance due to difference in physiology from user to
user based on differences in sweat rates and ion concentrations and have
a fundamental time limit of operation associated with materials used.

Thermoelectric generators that convert difference of body tem-
perature and ambient temperature into electrical energy to power
wearable devices68–71 are based on the Seebeck effect72 that has the
advantage of omission of rectification circuits; however, they only offer
modest power densities and can only power applications with ultra-
low power requirements (<1 mW). Devices with average power
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densities between 5 and 15lWcm�2 (Refs. 73 and 74) have been
demonstrated requiring either large device size or ultra-low power
operation limiting utility of this modality to measure very slow biosig-
nals and require specialized data transmission schemes. The advantage
of this harvesting method is that most of the time there is a tempera-
ture gradient that can power devices continuously.

CONTINUOUS SENSING SYSTEMS
Biophysical sensors

Epidermal sensors, specifically thin, battery-free solutions
increase signal fidelity because of the reduction of interfacial challenges
such as motion artefacts36,75,76 and offer access to biomarkers in bio-
fluids (sweat and interstitial fluid), and many physiological indicators
that if monitored in real time with high-fidelity expand capabilities in
diagnostics and therapeutics.40,77 Because of the small form factor and
mechanical compliance with the skin, this device class has the prospect
of increasing user compliance by reducing device interaction and dis-
comfort and increasing signal fidelity through intimate sensor interfa-
ces resulting in a higher value of the captured biosignals78,79 and
increasing the likelihood of long-term adoption.

Lin et al.80 demonstrated a multimodal system based on skin-
mounted wireless sensors powered by near-field-enabled clothing.
Figure 2(a) shows the system in which the wireless sensors are
attached directly onto the skin to continuously collect physiological
and gait parameters. Lightweight and flexible negative temperature
coefficient (NTC)-thermistor based temperature sensors and strain
gauge sensors are combined with a commercial NFC chipset. These
sensors are wirelessly connected to near-field-enabled clothing, which
are compatible with NFC-enabled devices (such as smart phones)
serving as the power supply and readout device for the distributed sen-
sors on the body [Fig. 2(b)]. To improve the conventional NFC range
of operation (<4 cm for mobile devices), near field relays were
designed, which allow operation up to a meter distance. Relying on
multiple inductor patterns, the authors demonstrated the ability to
power up to six sensor nodes. Power transfer efficiency to each of the
six sensor nodes is measured to be about 3%, which is suitable to
maintain stable communication. In one experiment, a temperature
sensor placed under the armpit and a strain sensor placed on the knee
are used to continuously monitor axillary temperature and running
gait, respectively, during exercise [Fig. 2(c)]. Because sensor nodes are
readout with a device that is always carried with the user (smart-
phone), the likelihood of discontinuation of use because of frequent
recharging of multiple gadgets is eliminated and the possibility to place
devices and physiologically relevant locations increases data relevancy
and fidelity offering the opportunity to increase the perceived value.

Multimodal wireless and battery-free devices for vital sign analy-
sis based on epidermal sensors are described in Refs. 81 and 82. They
are capable of measuring heart rate (HR), oxygen saturation (SpO2),
and respiratory rate (RR) along with central-skin and peripheral-skin
temperature to monitor patients in the neonatal intensive care (NICU)
and pediatric intensive care unit [Fig. 2(d)]. The devices also include
inertial measurement units (IMUs) to track motion and body orienta-
tion and voice biomarkers related to intonation and temporal aspects
of crying, serving as a good proxy for systolic blood pressure. Battery-
free operation is achieved with MRC [Fig. 2(e)]. The NICU bed is
equipped with a 13.56MHz antenna system to power the device with-
out any direct physical contact to the newborns. A Bluetooth low

energy (BLE) system-on-a-chip (SoC) enables robust wireless data
transmission and real-time display of the collected data within an
operational range of 10 m. Soft mechanics are engineered through an
elastomeric enclosure with an inner silicone-gel liner decoupling strain
from electronics and provide a soft interface to sensitive skins and
highly curved anatomical features of newborns. The system was tested
during and after a typical kangaroo care study, which features frequent
skin-to-skin contact with parents. Figure 2(f) presents the HR, SpO2,
skin-temperature, and the accelerometry data. The system demon-
strates reliable and accurate measurements, comparable with the gold
standard, hard-wired techniques, for continuous monitoring periods
of up to 24 h. Motion artifacts that occur during clinical treatment,
feeding, and medical imaging are reduced in scale and prevalence
because of the wireless operation, mechanical stability, and wearability
of the device increasing recording fidelity. The core benefit of this
embodiment is the extended wearability and chronic operation with-
out the need of device interaction that can have substantial effects on
preterm infants due to very fragile skin where instruments can leave
lifelong scars and the ability to improve clinical outcomes with addi-
tional skin to skin interaction with parents, which are otherwise inter-
rupted or reduced by wired connections.84

Figure 2(g) presents a demonstration of epidermal electronic
devices that feature a wireless thermal actuator and sensor (eWTS)
with MRC and NFC for power and data transmission for thermal con-
ductivity measurements.83 When placed on the skin surface, low-
power thermal actuation (2 mW) is applied through a low thermal
mass thin film heater in epidermal contact with the skin resulting in
confined heating. Temperature measurements with the actuator that
also functions as a sensing element produces time-dependent data
[DT(t)], which is evaluated to calculate the thermal conductivity (k)
and thermal diffusivity. Such measurements can provide valuable
information on blood flow, skin hydration, and wound healing.83

Figure 2(h) shows readout from the eWTS placed on the forearm with
a smartphone using NFC. The battery-free, lightweight design of these
sensors enable continuous monitoring of skin temperature, skin
hydration, and thermal conductivity for up to one week without inter-
fering with daily routines such as exercising, bathing, and sleeping
[Fig. 2(i)]. These characteristics serve as a demonstration for the
implementation of systems that can record chronically for an extended
period of time, providing valuable information about the progression
of diseases and the effectiveness of the treatments. An example is the
diagnosis of cerebral shunt function failure, which requires continous
monitoring to provide lifesaving feedback on the implant state with
location (neck) not accessible to current wearable tech.85

Biochemical sensors

In addition to expanding sensing capabilities and broadening the
use case as well as user compliance of biophysical sensor systems, epi-
dermal form factors of wireless and battery-free devices enable nonin-
vasive investigation into biochemical makers, such as lactate,86–89

pH,65,86,90,91 and glucose,86,87,89,92,93 without the need for transdermal
device penetration, substantially reducing the barrier of device usage,
expanding analysis, screening, and testing schemes.

Figure 3(a) shows an illustration of such a device, enabling con-
tinuous sweat analysis61 and utilizing human motion through a free
standing triboelectric nanogenerator (FTENG) [shown in Fig. 3(b)],
which can convert the mechanical energy of human motion into
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electrical energy to power sensing and communication electron-
ics.58,95–97 The sensing component of the device features a biosensor
array with on-body, laser-patterned microfluidics channel for sweat-
based pH and sodium concentration detection. This biosensor array

features a dynamic range of pH (4–8) and sodium concentrations
(12.5–200mM). System performance for this study was evaluated
during 30-minute durations of the exercise against a battery-powered
system with high compliance between the two devices. [Data are

FIG. 2. Wireless battery-free biophysical sensors. (a) Schematic illustration of wireless, battery-free multimodal wireless skin-mounted sensors powered by near-field-enabled
clothing.80 Reproduced with permission from Lin et al., Nat. Commun. 11, 1–10 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY)
license. (b) Illustration of conductive thread to relay power and data transfer for operation of the skin mounted sensors.80 Reproduced with permission from Lin et al., Nat.
Commun. 11, 1–10 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) license. (c) Graph showing continuous monitoring of axillary tem-
perature and running gait during exercise using epidermal sensors, compared with the gold standard wired system.80 Reproduced with permission from Lin et al., Nat.
Commun. 11, 1–10 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) license. (d) Photographic image of the electrocardiogram (ECG)
device capable of measuring HR, SpO2, and RR along with central-skin and peripheral-skin temperature to monitor neonatal intensive care (NICU). Reproduced with permis-
sion from Chung et al., Nat. Med. 26, 418–429 (2020). Copyright 2020 Springer Nature. (e) Photographic image showing the preterm infant in NICU bed equipped with the
NFC antenna system to power the battery-free ECG and photophlethysmographgy (PPG) sensors placed on the chest and the foot of a newborn, respectively.82 Reproduced
with permission from Chung et al., Science 363, eaau0780 (2019). Copyright 2019 Authors, licensed under a Creative Commons Attribution (CC BY) license. (f) Graph showing
in vivo data collection including HR, SpO2, Temp, and acceleration. Reproduced with permission from Chung et al., Nat. Med. 26, 418–429 (2020). Copyright Springer Nature.
(g) Photographic image of an epidermal wireless thermal sensor (eWTS) for thermal conductivity measurements.83 Reproduced with permission from Krishnan et al., Small 14,
1–13 (2018). Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (h) Optical image showing readout from the eWTS placed on the forearm using a smart-
phone.83 Reproduced with permission from Krishnan et al., Small 14, 1–13 (2018). Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (i) Graph of thermal con-
ductivity measured continuously using the eWTS for 1 week and compared to the gold standard electromagnetic method evaluating skin hydration.83 Reproduced with
permission from Krishnan et al., Small 14, 1–13 (2018). Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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FIG. 3. Wearable biochemical sensing devices: (a) graphical illustration showing device function and motion harvested by triboelectric nanogenerator (TENG) to power electro-
lyte sweat analysis.61 Reproduced with permission from Yu et al., Sci. Adv. 6, eaay9842 (2021). Copyright 2021 Authors, licensed under a Creative Commons Attribution (CC
BY) license. (b) Image showing device applied to the subject’s torso.61 Reproduced with permission from Yu et al., Sci. Adv. 6, eaay9842 (2021). Copyright 2021 Authors,
licensed under a Creative Commons Attribution (CC BY) license. (c) Real time pH and sodium concentrations measured with the FWS3 device compared to the system
charged with the lithium battery.61 Reproduced with permission from Yu et al., Sci. Adv. 6, eaay9842 (2021). Copyright 2021 Authors, licensed under a Creative Commons
Attribution (CC BY) license. (d) Image of multimodal performance biomarker sweat analysis device interfacing with a smartphone for analysis readout.86 Reproduced with per-
mission from Bandodkar et al., Sci. Adv. 5, eaav3294 (2019). Copyright 2019 Authors, licensed under a Creative Commons Attribution (CC BY) license. (e) Images showing
device operation during perspiration.86 Reproduced with permission from Bandodkar et al., Sci. Adv. 5, eaav3294 (2019). Copyright 2019 Authors, licensed under a Creative
Commons Attribution (CC BY) license. (f) Data correlation between seat-based glucose and lactate readings and measured values from blood level measurements.86

Reproduced with permission from Bandodkar et al., Sci. Adv. 5, eaav3294 (2019). Copyright 2019 Authors, licensed under a Creative Commons Attribution (CC BY) license.
(g) Schematic illustration showing the electrical device operation principle of contact lens based electrochemical sensing of tear fluid.94 Reproduced with permission from Ku
et al., Sci. Adv. 6, eabb2891 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) license. (h) Illustration displaying device and sensor
composition integrated in contact.94 Reproduced with permission from Ku et al., Sci. Adv. 6, eabb2891 (2020). Copyright 2020 Authors, licensed under a Creative Commons
Attribution (CC BY) license. (I) In vivo cortisol concentrations collected simultaneously from both eyes of a subject.94 Reproduced with permission from Ku et al., Sci. Adv. 6,
eabb2891 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) license. (j) Illustration of biofuel-powered energy harvesting from perspira-
tion to power electrochemical analysis of sweat. Reproduced with permission from Yu et al., Sci. Robot. 5, 1–14 (2020). Copyright 2020 AAAS. (k) Image of the device located
on the subject’s arm. Reproduced with permission from Yu et al., Sci. Robot. 5, 1–14 (2020). Copyright 2020 AAAS. (l) Real-time data collection of urea and NH4

þ concentra-
tions from a forehead mounted device. Reproduced with permission from Yu et al., Sci. Robot. 5, 1–14 (2020). Copyright 2020 AAAS.
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presented in Fig. 3(c).] For applications with slow physiological pro-
cesses such as changes in sweat composition, a high sampling rate is
not necessary, making the FTENG powered system a viable alternative
to electrochemical power supplies and providing adequate power sup-
ply for device function during exercise.

Among other metabolites of interest, metabolic byproducts, such
as glucose and lactate, are important biomarkers in many disease para-
digms and human performance analysis and are essential in under-
standing underlying metabolic processes. While many of these
biomarkers are present in biofluids such as blood, they traditionally
require transdermal probing for accurate recording, increasing the bar-
rier of usage significantly and making noninvasive alternatives com-
pelling to develop. One device that provides exemplary monitoring
capabilities with multimodal sensing capabilities is featured in Fig.
3(d).86 The device presented in this work utilizes adhesive application
to the epidermis to collect sweat via epifluidics, a soft microfluidic
wearable designed to capture sweat and route it to analysis chambers
that house colorimetric, volumetric, and electrochemical analytes. The
device utilizes a multimodal approach for its sensing functionality: a
disposable patch for collection and colorimetric analysis of sweat, and
a reusable electronics module for electrochemical detection of sweat-
based glucose and lactate. The device, shown in Fig. 3(e), utilizes mag-
nets to attach the components together. NFC is used to enable digital
and continuous readout of the biofuel cell-based glucose and lactate
sensors. This allows the user to utilize a smartphone device for readout
while launching an app to trigger photographic colorimetric readout
of ion concentrations and sweat rate. Figure 3(f) shows a comparison
between the sensor output of sweat-based lactate and glucose concen-
trations to blood measurements over a 2-day period. In this study,
measurements were taken during periods of fasting, right after a meal,
and in the evening. In the plots, spikes in glucose concentrations after
meals are observed in both the blood and sweat measurements, while
trends in lactate concentrations were consistent throughout the trial.
The reusable, low-cost nature of these devices provides a favorable
alternative to currently invasive monitoring.

Integration of battery-free electronics into contact lenses offers
direct access to tear fluid, which is rich in biomarkers that can be har-
nessed for diagnostic purposes.92,94,98,99 Device can also be made
chronically wearable because there is little cell turnover. One such
device is outlined in Fig. 3(g) and operates using NFC powering and
communication for the readout of tear-based cortisol concentrations.94

Cortisol is a biomarker for endocrine disorders such as Cushing syn-
drome, as well as an early precursor for neurological disorders such as
stress and Alzheimer’s disease.100–103 Cortisol levels can vary widely
from patient to patient and change continuously, making continuous
monitoring important in identifying changes in physiology that may
indicate the disease state. The device shown in Fig. 3(h) features a
graphene-based sensor that is functionalized with cortisol monoclonal
antibodies (C-Mab), which act as a transducer to convert interaction
between cortisol and C-Mab into changes in resistance that can be
detected by the analog front end of the NFC chip. The sensor features
a limit of detection of 10 pg/ml, well below the cortisol concentration
in tears (1–40ng/ml) with a sensitivity of 1.84 ng/ml. Results from
in vivo testing is shown in Fig. 3(i) from both the right and left eye of a
subject at 5-min intervals during a 30-min collection period. Both
devices provide similar readouts for cortisol concentrations, indicating
little sensor to sensor variance.

NFC-based communication and powering for wearable systems,
while having robust pre-existing infrastructure and development, are
unfavorable for many long-term wearable systems as they require close
proximity to a transmission device for powering and data readout.104

Utilization of biofuel cells to convert sweat to usable electronic energy
provides a potential avenue for applications that require operation out-
side of existing infrastructure. The device illustrated in Fig. 3(j) shows
one such system66 capable of measuring key metabolic biomarkers.
The device shown in Fig. 3(k) is comprised of a biofuel cell array with
an energy density of 3.6 mWcm�2 in untreated human sweat samples
and good long-term stability over 2000 cycles. Collection of urea and
NH4

þ concentrations were carried out using electrochemical patches
based on ion-selective electrodes with enzymatic layers and can mea-
sure concentrations of 2.5–40mM for both metabolites. Validation of
device operation was carried out during a stationary biking exercise
with data presented in Fig. 3(l). As expected, a decrease in urea and
NH4

þ concentrations is observed during the exercise period, which
then stabilized after conclusion of cycling.

Wireless and battery-free biochemical sensors highlight an area
of development with potentially high impact if device architectures
allow for chronic recording capability that would otherwise require
blood draw and laboratory testing, which is often a barrier to preventa-
tive measures that results in late diagnosis105 and limited metrics for
continuous disease management and care.106,107

CURRENT LIMITATIONS OF WEARABLE DEVICES

The devices discussed in this review feature advances in materials
science,5,32,44,108,117 electronics,7,109–114 and wireless power trans-
fer115–121 to enable wireless and battery-free device formfactors with
enhanced sensing capabilities to extract high fidelity biosignals. The
goal of these devices is often to expand sensing functionality while
improving user comfort and compliance with the hope to increase
device acceptance. While for some applications such as screening and
some diagnostic applications operating times are well below 1week,
where current schemes offer significant advantages over contemporary
approaches, chronic operation (greater than 2weeks at a time) has yet
to be achieved. The significance of this chronic operation is progres-
sion toward the goal of continuous multimodal monitoring to enable
digital medicine,122,123 namely, early automated diagnosis,124–128 per-
sonalized therapeutics,129–131 and individualized chronic care
approaches.132

Battery-powered wearable systems, such as smartwatches or fit-
ness trackers, offer a low barrier of entry to the consumer market,
however, they incur penalties in sensing quality, useability, and user
compliance.133,134 These issues are illustrated in Fig. 4(a). During nor-
mal device operation, there are frequent periods of biosignal interrup-
tion due to motion artifacts associated with the mass of the battery
and formfactors that result in lack of conformality to the sensing tar-
get. Often, sensors are housed in large, rigid containers with masses
ranging from 30 to 350 g, where rapid movement can disrupt the sens-
ing interface.135 Utilization of a finite batteries requires the need for
daily charging periods where devices must be removed, resulting in
prolonged periods of data loss and increased chances of user noncom-
pliance. This is compounded by device removal during certain activi-
ties such as sleep or hot weather due to user discomfort associated
with the large device formfactor. Additionally, sensing regions are con-
strained to a small surface, typically on a peripheral appendage, which
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limits the sensor functionality and fidelity while decreasing physiologi-
cal relavancy.136,137 Combined with other subjective requirements for
user acceptance, such as discreet wearability and perceived value, result
in underperforming user compliance, even despite initial acceptance
success. These disruptions result in unrecorded biosignals that may
hold key insight into underlying changes in subtle physiological
parameters.

Current behavioral research suggests that ease of use, among
other factors, played a role in low user acceptance of wearable systems
over time.19,31,138 Studies also found large portions of daily data are
low fidelity, which limits the scope and data aggregation capabilities
restricting wholistic view of physiological phenomena.

Epidermal devices that provide skin-like mechanics, low dimen-
sional profiles, and wireless power transfer functionalities enable high-
fidelity biosignal acquisition by removal of weight associated with large
battery-powered supplies with the ability to be deployed virtually any-
where on the body. Devices of these form factors, however, are insuffi-
cient to meet the demands of chronic data recording due to their
inconsistency of power delivery to the system and their use of
adhesive-based application for epidermal contact. The shortcomings
of these devices are summarized in Fig. 4(b). Epidermal turnover,
characterized by the cell renewal of the stratum corneum, is a barrier
to longevity of such a device, as it frustrates the sensing interface and
renders the adhesive bond to the skin nonfunctional, prohibiting
recording or stimulation beyond 7–14 days depending on the skin
renewal rate and location of the device.139

This physiology confines the use of adhesive based devices to
acute applications or requires frequent renewal of the adhesive, which,
for example, in a hospital setting is completely acceptable; however,

it is less appealing for at-home diagnostic applications. Additionally in
some cases, the utilization of strong adhesives may bar users from uti-
lizing the device due to skin sensitivity,140 while the requirement for
periodic replacement adds further burden to the user, which may
affect long-term compliance and interrupt period of data collection.

OPPORTUNITIES FOR LONG-TERM WEARABLE
DEVICES

To overcome user compliance challenges while providing long-
term uninterrupted streams of high-fidelity data, a new class of wear-
able systems is needed. These devices must provide a robust platform
that features body-like mechanical properties with high-fidelity sens-
ing capabilities, long-range power transfer capabilities that enable reli-
able device operation without constraints of short-distance power
transfer techniques, and miniaturized electronics that provide the
uncompromised system function with low-profile and small footprint,
in a package that enhances the user experience to the point that per-
ceived value from the data far outweighs the burden of wearing a
device. An example of such a device class called a biosymbiotic device
is featured in Fig. 5(a).47 Devices are designed utilizing 3D scanning
techniques141–145 to collect the users’ topological data to tailor device
mechanics and sensing capabilities directly to applications and need of
the individual user. The device is fabricated using a 3D printed ther-
moplastic polyurethane (TPU) material that is digitally manufactured
tailored to the users unique physiology.47 Embedded in the mesh are
electronic systems [see Fig. 5(b)], which provide multimodal function
while maintaining a low mechanical profile. Topological control
offered by 3D printing allows for tuning of discrete and bulk mechan-
ics, which enables epidermis like device mechanics and facilitates

FIG. 4. Limitations of current wearable devices for biosensing applications. (a) Illustration showing conventional wrist worn wearable systems during operation. (b) Illustration
of wearables utilizing adhesive interfaces during operation with key limitations in epidermal turnover.
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design of electromagnetics to optimize energy harvesting capabilities.
A block diagram detailing the device operation principle is shown in
Fig. 5(c). The device utilizes RF power transfer at 915MHz to recharge
the system wirelessly. Power harvested from the on-body antenna is
directed to a power management system, which stores excess energy in
a supercapacitor or miniaturized battery. The stored energy is used to
power a BLE SoC, which collects information from peripheral sensors
and digitally communicates data to a user interface for data analysis
and storage.

The conformality and mechanical profile of the device enables
multimodal sensing capabilities matching or exceeding and expanding
the current gold standard in battery-powered wearable systems. This
has been demonstrated with several sensing capabilities including

sub-millikelvin thermography, muscular deformation, and high-
precision inertial measurements. Figure 5(d) shows the sub millikelvin
resolution temperature sensor realized in a 2.5mm node (shown in
the inset, balanced on finger). The low thermal mass of the device ena-
bles fast response to small changes in the surface body temperature
that enables detection of physiological changes, such as the difference
in sitting and moderately paced walking, with axilla skin temperature
change of less than 1 �C per event. Fidelity shown with this device class
can provide valuable insight into acute or subtle variations indicating
onset of disease.91,146–152

The circumferential fit and use of 3D printing also enables
unique sensing capabilities that are currently not possible with conven-
tional devices. One such modality is presented in Fig. 5(e), where a 3D

FIG. 5. Long-term wearable sensing devices: (a) image showing biosymbiotic device for the biceps with inset illustrating the personalized digital design and fabrication process.
(b) Layered schematic of biosymbiotic devices. (c) Functional diagram of the operating principle. (d) Realtime recording of body temperature collected from the axilla region
during sitting (white) and walking (red). (e) Graph showing cyclic response of the 3D printed strain gauge during 16 N of applied stress (red) and corresponding change in resis-
tance (black). (f) Graph showing lower leg acceleration of the biosymbiotic device (black) and gold standard (red) during a stationary jump. (g) Continuous data and sample
global positioning system (GPS) mapping from a 7-day recording of body temperature and muscular strain captured by a biosymbiotic device worn on the proximal bicep.
Adapted from Tucker et al., Sci. Adv. 7, eabj3269 (2021). Copyright 2021 Authors, licensed under a Creative Commons Attribution (CC BY) license.47
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printed, conductive TPU is used as a strain gauge to measure muscular
deformation during activity. User specific placement and design can
also increase signal fidelity. The graph in Fig. 5(e) shows the cyclic
response of the strain gauge compared to input strain suitable for
quantification of muscular deformation. The imperceptible weight
(<500mg) of the device also allows for highly accurate inertial mea-
surements [see Fig. 5(f)]. A high-performance (IMU) realized in a
4mm diameter node is compared to the gold standard, battery-
powered system that is used for in-clinic assessment. The graph shows
a subject performing a jump, in which the gold standard device shows
motion artifacts due to device bulk inertia while the conformal system
shows no motion artifacts. Removal of motion artifacts both increase
data relevancy and reduce gaps in usable data, yielding accurate, long-
term data collection capabilities.153,154

Advances of biosymbiotic electronics enable continuous streams
of high-fidelity biosignals due to the ability for the system to wirelessly
recharge without user interaction with charging infrastructure. This
allows for previously untapped insight into several physiological pro-
cesses that require continuous examination over extended periods
demonstrated in Fig. 5(g). In the experiment, wireless power transmit-
ters are set up in locations with high temporal occupancy to facilitate
wireless power transfer. The plots demonstrate continuous acquisition
of bicep deformation and core body temperature over a week-long
study. Clear peaks of muscular deformation frequency and circadian
rhythm can be observed correlating with logged activity and periods of
rest. Data collected in this method will provide users with insight that
is unattainable with the current standard in wearable technology
sensing.

OPPORTUNITIES FOR ARTIFICIAL INTELLIGENCE
AS MEANS OF ON-SENSOR AUTOMATED DATA
PROCESSING

Wearable sensors can provide continuous, noninvasive, real-time
monitoring of a wide range of physiological parameters. However,
most of the available sensors are considered data collectors and/or
alerting units with limited processing capabilities. Artificial intelligence
(AI) offers a new path to turn biosensors into smart computational
units, capable of making autonomous decisions and on-site detection/
diagnosis, which is especially relevant to continuously recording devi-
ces such as biosymbiotic electronics. Local computation presents
many opportunities in terms of data safety, latency,155,156 power con-
sumption,157,158 personalized treatments, and data privacy and secu-
rity155,156 [Fig. 6(a)]. Currently, wearable sensors are typically
connected to another master device, usually a smartphone, for analytic
purposes. This increases the risk compromised data safety and confi-
dentiality because raw data are sent over the air. Processing the col-
lected data on-device reduces privacy concerns and other
cybersecurity threats. Additionally, sending data to the smartphone/
cloud causes undesired delay and generally is inefficient due to rela-
tively large power consumption of wireless radios. Conducting on-
device machine learning (ML) and real-time execution reduces the
data transmission rate, data latencies, and has the potential to reduce
power consumption, especially for chronic recording with high sam-
pling rates.

A wearable AI system usually consists of wearable sensors, analog
front-end circuit responsible for amplifying, filtering, and signal condi-
tioning the collected raw data from the sensors and a microcontroller

FIG. 6. Embedded artificial intelligence. (a) Advantages of embedded AI biosensors. (b) Block diagram of functional components of wearable devices with embedded AI. (c)
Workflow for training and testing Machine learning models. (d) Graph showing the motor recovery trajectory using wearable smart biosensors.159 Reproduced with permission
from Adans-Dester et al., npj Digital Med. 3, 1–10 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) license.
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used as the central processor, as shown in Fig. 6(b). With the emer-
gence of on chip ML hardware in small packages156 and with low
power consumption (TinyML paradigm), the AI algorithm can be exe-
cuted on the system on a chip where event detection, feature extrac-
tion, and prediction can be computed. The regression/classification
results can be sent wirelessly to a computer or smartphone for notifica-
tion, offering tremendous opportunity for the device classes discussed
in this review.

To train and test the regression/classification model, the following
workflow, shown in Fig. 6(c), must be implemented for each sensor.
Preprocessing of raw sensor data is usually required. Data compression,
baseline drift removal, normalization, transformations, and other
system-specific preprocessing methods are included. The processed data
are then divided into training (approximately 60%), validation (20%),
and testing (20%) sets.160 The training set is used to create the model
and define the best algorithm hyperparameters. The validation set is
used to tune these hyperparameters, and the testing set is utilized to eval-
uate the performance of the model. Prior to creating a model, feature
extraction techniques are utilized to minimize the number of input varia-
bles. The reduction of the number of input variable results in reducing
the computational cost of modeling and, in some situations, enhancing
the model’s performance.160 For wearable systems that are limited in
computational resources, the model training is performed off-line first.
The trained model is then embedded inside the microcontroller. On the
microcontroller, the model is used to perform inference, making the
wearable system a platform capable of making autonomous decisions.

Observing, classifying, and assessing human gestures/movements,161–163

predicting species or concentration of analytes, detecting arrhythmias,164

and enabling precision rehabilitation interventions are enabled with AI.
An example of these capabilities is given by Dester et al.159 that use
wearable accelerometer sensors placed on the arm, forearm, and fingers
to assess the upper-limb motor function recovery after traumatic brain
injury (TBI) or stroke. The data were collected from 37 patients (16
stroke survivor and 21 TBI survivor) during the performance of func-
tional motor tasks. The data are then processed using ML techniques to
estimate clinical scores measuring motor impairments and movement
quality [e.g., the upper limb Fugl-Meyer assessment and the Functional
Ability Scale]. Figure 6(d) shows the data collected from a patient during
36-week intervention. After 18weeks, clinical scores are estimated using
a ML algorithm. These scores characterize the motor recovery trajectory
seen in response to the intervention during these 18weeks [orange
circles in Fig. 6(d)]. To predict the patient response to this intervention
for the upcoming 18weeks [green circles in Fig. 6(d)], the estimated
clinical scores are used in conjunction with the clinical phenotype as
inputs to the Gaussian process regression model (ML algorithm).
Rehabilitation professionals can utilize these data to see if the patient is
responding appropriately to the current intervention or if the interven-
tion plan needs to be adjusted, hence providing patient-specific thera-
pies highlighting the potential of AI in aiding diagnosis and therapy. It
is important to note that the AI analysis was performed offline and not
on the device; however, with suitable wearable and remote platforms,
completely autonomous operation is viable with the latest generation of
SoC.

DISCUSSION

Wearable medical devices for the extraction of high-fidelity bio-
signals are pivotal to the realization of digital medicine, where

technology integrates with the human body and utilizes continuous
data collection and advances in AI for treatment, diagnosis, and ulti-
mately prevention of disease. Requirements for this paradigm include
wearable devices that can be worn continuously to provide uninter-
rupted steams of clinical grade biosignals, while AI is deployed to iden-
tify trends and markers, which may indicate disease onset or changes
in underlying physiology. The development of AI has greatly outpaced
wearable technology for the realization of this goal. Current wrist band
type wearable devices are inadequate due to their low-fidelity sensing
capabilities and challenges for long-term wearability, which include
both aspects of formfactors and issues with long-term user acceptance
and compliance.

The emergence of chronically wearable wireless and battery-free
devices provides an appealing alternative to standard wearable devices,
as they have improved sensing fidelity and expand capabilities towards
biosignals that previously required clinic-based wired setups.
Additionally, materials and concepts used for this device class improve
long-term wearability through reduction of bulk and introduction of
overall soft mechanics. Despite this, many demonstrations have been
limited to short-term and specific applications with day long duration
due to natural physiological processes such as epidermal turnover.
Further work geared toward demonstrations of chronically wearable
devices in dynamic settings with high-fidelity sensing capabilities is
needed. Successful implementation of on-board AI capabilities on
these devices will unlock the full potential with broad applications
among various disease archetypes. Specifically, these capabilities can
improve diagnosis and monitoring of chronic diseases such as aging
related frailty,165 chronic obstructive pulmonary disease,166 and mental
health disorders.167,168 The development of these devices must also
keep user acceptance models in mind to ensure successful translation
and deployment in a large population cross section.
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