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Extracellular vesicles are lipid bilayer-delimited particles carrying proteins, lipids, and small
RNAs. Previous studies have demonstrated that they had regulatory functions both
physiologically and pathologically. However, information remains inadequate on
extracellular vesicles from the anterior pituitary, a key endocrine organ in animals and
humans. In this study, we separated and identified extracellular vesicles from the anterior
pituitary of the Duroc swine model. Total RNA was extracted and RNA-seq was
performed, followed by a comprehensive analysis of miRNAs, lncRNAs, and circRNAs.
Resultantly, we obtained 416 miRNAs, 16,232 lncRNAs, and 495 circRNAs. Furthermore,
GO and KEGG enrichment analysis showed that the ncRNAs in extracellular vesicles may
participate in regulating intracellular signal transduction, cellular component organization or
biogenesis, small molecule binding, and transferase activity. The cross-talk between them
also suggested that they may play an important role in the signaling process and biological
regulation. This is the first report of ncRNA data in the anterior pituitary extracellular vesicles
from the duroc swine breed, which is a fundamental resource for exploring detailed
functions of extracellular vesicles from the anterior pituitary.
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INTRODUCTION

The pituitary gland is often regarded as the “master gland”, coordinating the complex functions of
multiple endocrine glands along with the hypothalamus (Barkhoudarian 2017). The anterior
glandular lobe of the pituitary, namely, the anterior pituitary, is a very important organ of the
endocrine system that regulates several physiological processes including cell generation cycle, stress
response, growth, reproduction, bone metabolism, and lactation (Schally et al., 1977; Weiss et al.,
1978; Lin et al., 1983; Rocha et al., 2003; Takeuchi, 2009). It accounts for 80% of the entire pituitary
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gland and secretes six major hormones, including growth
hormone (GH), prolactin (PRL), adrenocorticotropin hormone
(ACTH), thyroid-stimulating hormone (TSH), luteinizing
hormone (LH), and follicle-stimulating hormone (FSH), which
are crucial to our physiological wellbeing (Nelson 2005; Le Tissier
et al., 2012). These hormones target the adrenal gland, liver, bone,
thyroid, breast, ovary, and testes, which are themselves regulated
by the negative feedback of the hypothalamus and these target
organs (Schally et al., 1977; Lin et al., 1983; Barkhoudarian, 2017).

Extracellular vesicles (EVs) are a type of nano-scale vesicles
that can be secreted by most eukaryotic cells (van Niel et al., 2018;
Jiang et al., 2021). EVs usually have cup- or round-shaped
phospholipid bilayers under transmission electron microscopy,
and are mainly spherical in body fluids. They are present in
various tissues and biological fluids including blood, dendritic
cells, lymphocytes, epithelial cells, red blood cells, stem cells,
hepatocytes, and various tumor cells (Raposo et al., 1996; Zitvogel
et al., 1998;Wolfers et al., 2001; Blanchard et al., 2002; Keller et al.,
2006; Cabili et al., 2011; Regev-Rudzki et al., 2013; Han et al.,
2016; Ibrahim et al., 2016), carrying a cargo of biological
molecules of their origin, including proteins, lipids, mRNAs,
microRNAs (miRNAs), long non-coding RNAs (lncRNAs),
and circular RNAs (circRNAs) (Zitvogel et al., 1998; Thery
et al., 2002; Keller et al., 2006; Koppers-Lalic et al., 2014).
Latest data from Exocarta database show that 9,769 proteins,
3,408 mRNAs, and 2,838 miRNAs have been identified in EVs of
different cellular origin (http://www.Exocarta.org). EVs were
previously considered to be a waste of protein produced
during cell metabolism (Johnston, 1992) until researchers
found in the 1990s that they have immunoregulatory functions
and can be an important cell regulatory factor (Raposo et al.,
1996). More and more evidence showed that EVs have multiple
functions in intercellular communication, which can be involved
in the material transfer, signal transduction, and immune
response regulation (Natasha et al., 2014; Pan et al., 2017;
Raghu, 2016; Gang et al., 2018). Recently, Zhang et al.
reported that pituitary tumor EVs inhibit the growth of
pituitary adenoma by transmitting lncRNA H19 (Zhang et al.,
2019).

Non-coding RNA (ncRNA) is a variety of functional RNA
molecules that would not be translated into proteins. MiRNA is a
type of small ncRNA and can negatively regulate the expression of
its target gene expression at the post-transcriptional level (Bartel,
2018; Bartel, 2004; Doench et al., 2004). MiRNAs can participate
in regulating the development of the pituitary gland (Calin et al.,
2002; Bottoni et al., 2005; Amaral et al., 2009; Mao et al., 2010;
Zhang et al., 2010; Nemoto et al., 2012; Schneeberger et al., 2012;
Choi et al., 2013; Nemoto et al., 2013; Ye et al., 2013; Zhang et al.,
2013a; Lannes et al., 2015). LncRNA is another type of ncRNA,
defined as transcripts with longer than 200 nucleotides (Esteller,
2011). Researches indicated that lncRNAs play an important part
in various biological processes (Li et al., 2015a; Mattick and Rinn
2015) and function in pituitary adenomas and normal anterior
pituitary (Chunharojrith et al., 2015; Li et al., 2015b; Han et al.,
2017; Fu et al., 2018). CircRNA is a class of single-stranded RNA
that forms a covalently closed continuous loop. They were
categorized as ncRNA, but more recently, they have been

shown to code for proteins and could serve as miRNA
sponges and compete with miRNAs to bind target mRNAs
(Hansen et al., 2013; Memczak et al., 2013; Pamudurti et al.,
2017). Many studies characterize circular RNAs by sorting
through vast collections of RNA sequencing data (Salzman
et al., 2012; Jeck et al., 2013; Memczak et al., 2013; Boeckel
et al., 2015). Recently, Li et al. identified 6,113 circRNAs from the
muscle of prenatal and postnatal sheep through RNA-seq (Li
et al., 2017b), and some other studies have reported about
circRNAs in pituitary adenomas (Liu et al., 2009; Wang et al.,
2018).

As an important endocrine organ, there were very limited
information about the secretion of EVs in the anterior pituitary
gland. In this study, we extracted and identified EVs from the
anterior pituitary of Duroc swine breed for the first time, and we
also explored its ncRNAs. This study will provide a basis for
further exploration of the functions of pituitary EVs.

MATERIALS AND METHODS

Sample Collection and EV Isolation
This study used three healthy male swine (Duroc) at 60 days of
age, which were purchased from the Jintuan farm of JIADA
GROUP (Zhaoqing, Guangdong, China). An endotracheal tube
(30 cm length, 8 mm ID) was used to anesthetize the pigs with
isoflurane (4.5% of tidal volume by mask) (Jantzen et al., 2011).
Then, the pigs were euthanized by exsanguination under a
surgical plane of the isoflurane anesthesia (Laber et al., 2016).
The pituitary glands were removed, and the anterior lobe was
immediately dissected under sterile conditions, rinsed in
phosphate-buffered saline (PBS), and transferred to Hanks’
balanced salt solution. The anterior pituitary tissue was cut up
into 1 mm3 pieces and cultured in serum-free Dulbecco’s
modified Eagle’s medium/nutrient mixture F12 (DMEM/F12)
(Gibco, US) supplemented with 100 U/ml penicillin and 100 μg/
ml streptomycin (Gibco, US). Forty-eight hours later, the
conditioned media (CM) was harvested and centrifuged at
300×g for 10 min to pellet debris and cells. The supernatant
was transferred to a fresh tube, and EVs were isolated using an
Exoquick EV Isolation Kit (SBI System Biosciences, CA,
United States) according to the manufacturer’s instructions as
described previously (Chugh et al., 2013; Umezu et al., 2013; Li
et al., 2016; Raoof et al., 2018; Tara et al., 2018; Junling et al., 2019;
Li et al., 2019; Ling et al., 2019), and the samples were stored at
−80°C for use.

Electron Microscopic Analysis of EVs
A drop of EV suspension (about 10 µL) was fixed on a formvar-
coated copper grid for 2 min, washed briefly in ultrapure water,
negatively stained with 1% uranyl acetate, and observed by
transmission electron microscopy (TEM; JEM-2000EX; Jeol,
Tokyo, Japan) at an acceleration voltage of 80 kV.

Nanoparticle Trafficking Analysis
The size distribution of EVs was analyzed by tracking particles
and sized automatically based on Brownian motion and the
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diffusion coefficient using Zetasizer (Malvern Panalytical,
Malvern, United Kingdom) at 25°C.

BCA Protein Assay, SDS-PAGE, and
Western Blot Analyses
Total protein content was assayed using the Pierce BCA Protein
Assay Kit (ThermoScientific, Waltham, MA) according to the
manufacturer’s instructions. The proteins were measured using a
FluorChemMFluorescent Imaging System (ProteinSimple, Santa
Clara, CA), separated by SDS-PAGE (10%), and transferred to a
polyvinylidene difluoride membrane (Millipore, Billerica, MA).
We used three positive markers (CD9, CD63, and TSG101) for
Western blots. After blocking with 5% skim milk for 2 h, the
membranes were incubated overnight at 4°C with specific
antibodies against CD9, CD63 (1:1,000; Sangon Biotech,
China), and TSG101 (1:1,000; Zen Biotech, China). We
applied horseradish peroxidase–conjugated goat anti-rabbit
IgG (H + L; 1:50,000; Jackson ImmunoResearch, West Grove,
PA) as a secondary antibody for 1 h at room temperature.

Total RNA Extraction, RNA-Seq Library
Preparation, and Sequencing
We extracted total RNA from EV suspension samples using Trizol
reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s
instruction. RNA quantity and quality were assessed using an RNA
6000 Nano Lab-Chip Kit and Agilent 2,100 Bioanalyzer (Agilent
Technologies, Inc., Santa Clara, CA) with RNA integrity number
>7.0. A total amount of 3 μg total RNA per sample was used as input
material for the small RNA library. Sequencing libraries were
generated using NEBNext® Multiplex Small RNA Library Prep
Set for Illumina® (NEB, United States). After cluster generation,
the library preparations were sequenced on an Illumina Hiseq 2,500/
2000 platform and 50 bp single-end reads were generated at the
Novogene Bioinformatics Institute (Beijing, China). A total amount
of 2 μg RNA per sample was used as input material for the Library
preparation for lncRNA sequencing. The libraries were sequenced
on an Illumina Hiseq 2,500 platform, and 125 bp paired-end reads
were generated. The circRNA in the whole transcriptome project
was analyzed in lncRNA sequencing, and no separate library
was built.

qRT-PCR
RNA was extracted from EVs using Trizol reagent, and RNA
concentration was detected by a spectrophotometer (Nanodrop
2000; Thermo Fisher). Total RNA (1 µg) was reverse-transcribed
into cDNA using the PrimeScript™ RT reagent Kit with gDNA
Eraser (Takara). U6 was used as control. The 2-ΔΔCT method
was applied to determine relative miRNA expression levels.

Sequence Data Analysis
For small RNA sequencing, the workflow is shown in additional
Figure 1A. Raw reads in fastq format were filtered through custom
perl and python scripts at first. Clean reads were obtained by
removing reads with poly-N, 5′ adapter contaminants, poly A or
T or G or C, those without 3’ adapter or the insert tag, and low-
quality reads from raw data. Q20, Q30, and GC (Q20 and Q30 are
Phred scores, which represent sequencing quality, andGC represents
the percentage of bases G and C in the sequencing) content of the
clean data were calculated at the same time. High-quality data were
used for subsequent analyses. The small RNA tags were mapped to
reference sequence by Bowtie (Langmead et al., 2009) without
mismatch to analyze their expression and distribution on the
reference. Mapped small RNA tags were used for searching
known miRNA. Mirbase20.0 was used as reference, and modified
software mirdeep2 (Friedlander et al., 2012) and srna-tools-cli
(http://srna-tools.cmp.uea.ac.uk/) were used to obtain the
potential miRNA and draw secondary structures. The
characteristics of the hairpin structure of miRNA precursor can
be used to predict novel miRNA. The available software miREvo
(Wen et al., 2012) and mirdeep2 (Friedlander et al., 2012) were
collaboratively used to predict novel miRNA by analyzing the
secondary structure, the Dicer cleavage site, and the minimum
free energy of the small RNA tags unannotated in the former steps.

For lncRNA sequencing, the workflow is shown in additional
Figure 1B. Raw reads in fastq format were firstly processed
through in-house perl scripts. Then, we obtained clean reads
by removing low-quality reads and those containing adapters and
poly-N from the raw data. At the same time, Q20, Q30, and GC
content of the clean data were calculated. Index of the reference
genome was built using bowtie2 v2.2.8 and paired-end clean reads
were aligned to the reference genome using HISAT2 v2.0.4
(Langmead and Salzberg, 2012). The mapped reads of each
sample were assembled by StringTie (v1.3.3) in a reference-

FIGURE 1 | Isolation and identification of EVs from anterior pituitary of Duroc swine. (A) Transmission electron microscopy analysis. Wide-field (left) and close-up
(right). (B) Size distribution analysis of EVs. (C) EVs confirmed by Western blot with three positive markers CD9, CD63, and TSG101.
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FIGURE 2 |Overview and analysis of small RNA deep sequencing data in EVs. (A) Identification of candidate miRNAs. (B)Gene ontology (GO) annotation analysis.
(C)Kyoto Encyclopedia of Genes andGenomes (KEGG) pathway analysis enrichment analysis of miRNA’s target genes. BP, biological process; CC, cellular component;
MF, molecular function.
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based approach (Pertea et al., 2016). After evaluating the quality of
original data produced, we set up a series of strict screening
conditions according to its structural and functional
characteristics based on the results of transcriptome splicing.
Through the five steps screening of exon number, transcript
length, known transcript annotations, transcript expression, and
coding potential. The screened lncRNAs were regarded as the final
candidate lncRNA set for subsequent analysis. Then, we use three
types of coding potential analysis software, CNCI (Sun et al., 2013),
CPC2 (Kang et al., 2017), and Pfam-scan (Punta et al., 2012), to
distinguish lncRNA from mRNA. The intersecting results of each
software were defined, and those that were determined to be
noncoding were designated as candidate lncRNA. We used
Cufflink (v2.1.1) to calculate fragments per kilobase million
(FPKM) for both lncRNA and coding genes (Trapnell et al.,
2010). The transcript expression levels (FPKM value) were
expressed as fragments per kilobase of transcript per million
mapped reads values. For circRNA sequencing, the workflow is
also shown in additional Figure 1B. Quality control was carried out
with the same procedures at first. Reference genome and genemodel
annotation files were downloaded from the genome website (NCBI
Datasets) directly. Index of the reference genome was built using
bowtie2 v2.2.8, and paired-end clean reads were aligned to the
reference genome using Bowtie (Langmead et al., 2009). The
circRNAs were detected and identified using find_circ (Memczak
et al., 2013) and CIRI2 (Gao et al., 2018). Circos software was used to
construct the circos figure, and the raw counts were normalized
using TPM (Zhou and Zhang, 2010). We used KOBAS (Mao et al.,
2005) software to test the statistical enrichment of the target gene
candidates in Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. On the other hand, usingmiRanda, we performed ceRNA
analysis, screened miRNAs and selected mRNAs, lncRNAs, and
circRNAs that potentially target the miRNA and have negative
expression correlations. Cytoscape software was used to construct
the lncRNA-miRNA-gene and circRNA-miRNA-gene networks.

RESULTS

Isolation and Identification of EVs From
Anterior Pituitary of Duroc Swine
EVs were isolated fromDuroc swine anterior pituitary (additional
Figure 2). We detected the purified vesicles using transmission
electronmicroscopy which showed that their size and cup-shaped
morphology (Figure 1A) are typical characteristics of EVs. Then,
we used Zetasizer to analyze their size distribution and found that
the vesicles’ average size was about 92 nm (Figure 1B). EVs were
further confirmed byWestern blot with positive common surface
markers CD9, CD63, and TSG101 (Figure 1C).

Overview and analysis of small RNA deep
sequencing data in EVs
In order to explore the ncRNA expression profiles of the EVs, we
used RNA-seq analyses to characterize the ncRNA from normal
anterior of three 60-day-old Duroc swine. We obtained 12778982
(EV_1), 15668033 (EV_2), and 15353011 (EV_3) clean reads that

were screened from small RNA (sRNA) for subsequent analysis
after quality evaluation (additional file 1: Supplementary Table
S1). Meanwhile, the length distribution of the obtained total
sRNA fragments were analyzed (additional Figure 3). In general,
sRNAs ranged from 18 to 35 nt in length and the majority of the
miRNA reads were about 22 nt. A total of 416 miRNAs were
obtained from samples, 343 of which are known miRNAs and 73
are newly predicted miRNAs (additional file 2: Supplementary
Table S2). Of these known miRNAs, 61 miRNAs were highly
expressed (1,000 < average signals ≤ 10,000), and, in particular, 46
miRNAs were extremely highly expressed in EVs (average signals
≥10,000). We randomly selected a few candidate highly expressed
miRNAs, and their relative expression levels were consistent with
the sequencing results (Figure 2A). To further characterize the
regulatory roles of miRNAs in the anterior pituitary EVs, miRNA
target prediction, Gene Ontology (GO), and Kyoto Encyclopedia
of Genes and Genomes (KEGG) annotation analyses were
performed. A total of 25,516 target genes for the 416 miRNAs
were predicted. Our GO annotation indicated that these predicted
target genes were significantly enriched in intracellular signal
transduction, phosphorylation, catabolic process, developmental
process, the component of cytoskeletal part, binding, protein
binding, and nucleotide-binding (Figure 2B). The KEGG
pathway analysis results revealed that the genes were
associated with several pathways, including NF-kappa B
signaling pathway, Calcium signaling pathway and B cell
receptor signaling pathway (Figure 2C). These findings
suggest that miRNA in anterior pituitary EVs may be involved
in regulating intracellular signal transduction and immune
metabolism.

Overview and bioinformatics analysis of
lncRNA deep sequencing data in EVs
LncRNA is a class of RNA molecules with transcript lengths over
200 nt and does not encode proteins. We set the filter criteria
according to its characteristics and counted the number of
transcripts screened per step (additional Figure 4A). For
lncRNA prediction, CPC and CNCI were used for potential
coding ability detection, and PFAM, a protein database, was
used for protein annotation information analysis and potential
coding ability detection (additional Figure 4B). Resultantly,
15,545 novel lncRNAs and 687 annotated lncRNAs (additional
file 3: Supplementary Table S3) were identified respectively. We
classified different types of lncRNA (lincRNA, anti-
sense_lncRNA, and intronic_lncRNA), and results showed that
the percentage of intronic_lncRNA was the highest (Figure 3A).
The structure and sequence conservation of lncRNAs and
mRNAs were also compared and analyzed. We found that
lncRNAs were shorter in length in the transcript (additional
Figure 4C) and their genes tended to contain fewer exons
(Figure 3B). Most of the mRNAs had longer open reading
frames than lncRNAs (additional Figure 4D). The transcript
expression levels of lncRNAs were higher than that of mRNAs
(additional Figure 4E), and we also got the same perception by
comparing the FPKM of EVs from the different samples
(additional Figure 4F). We investigated the possible functions

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7727535

Xiong et al. EVs from Swine Anterior Pituitary

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 3 |Overview and bioinformatics analysis of lncRNA deep sequencing data in EVs. (A) LncRNA type distribution map. (B)Number density map of LncRNA
and mRNA exons. (C) lncRNA-mRNA co-expression (green and yellow represent genes and lncRNAs respectively). (D) GO annotation analysis. (E) KEGG pathway
analysis enrichment analysis. BP, biological process; CC, cellular component; MF, molecular function.
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FIGURE 4 |Overview and bioinformatics analysis of circRNA deep sequencing data in EVs. (A) The length distribution of circRNAs for all samples. (B) The source of
circRNAs for all samples, showing the numbers of exonic, intronic and intergenic circRNAs of each sample. (C) TPM density map, showing consistency between
samples. (D) The network of circRNA-miRNA co-expression (red and yellow represent miRNA and circRNA respectively). (E)GO annotation analysis (F) KEGG pathway
analysis enrichment analysis. BP, biological process; CC, cellular component; MF, molecular function.
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of the lncRNAs by searching for protein-coding genes 100 kb
upstream and downstream of all identified lncRNAs to predict
the potential cis-regulatory targets of lncRNAs (Bao et al., 2018).
A total of 16,439 protein-coding genes were predicted for 9,524
lncRNAs. A number of lncRNAs were found to co-express with
pituitary-specific genes including growth hormone 1 (GH1),
growth hormone-releasing hormone receptor (GHRHR),
prolactin-releasing hormone receptor (PRLHR), follicle-
stimulating hormone subunit beta (FSHB), and luteinizing
hormone subunit beta (LHB) (Figure 3C). Some other
lncRNAs co-expressed with genes involved in EVs’ marker
protein, protein transport, and docking such as CD63, CD81,
TSG101, Rab27A, Rab27B, and UBL3. GO annotation indicated
that the predicted target genes of lncRNAs were significantly
enriched in cellular component biogenesis, organelle
organization, RNA biosynthetic process, the cellular
component of nucleus and organelle part, organic cyclic
compound binding, nucleotide binding, and small molecule
binding (Figure 3D). KEGG pathway analysis revealed that
these genes were associated with Systemic lupus
erythematosus, alcoholism, apoptosis, cell cycle, and NF-kappa
B signaling pathway (Figure 3E). These data indicated that
lncRNAs in EVs of the anterior pituitary could participate in
the immune regulation and growth process of organisms.

Overview and bioinformatics analysis of
circRNA deep sequencing data in EVs
After evaluating the data output quality, we obtained 495 novel
circRNAs (additional file 4: Supplementary Table S4) and then
counted the length distribution and the source of the circRNAs
for all samples (Figure 4A). It showed that the length of the
circRNAs is mostly scattered in a range of less than 10000 nt and
the sources of the circRNAs mostly from the intergenic area
compared with the exon and intron area (Figure 4B). The
expression levels of all circRNAs were statistically analyzed
and normalized by TPM (Figure 4C). TPM density
distribution allows overall inspection of gene expression
patterns in samples, and the results showed large overlap areas
which meant a consistency between samples (Zhou et al., 2010).
We then constructed a circRNA-miRNA co-expression network
based on the RNA-seq results. CircRNA could inhibit the
function of miRNA by combining it with miRNA (Hansen
et al., 2013). Therefore, the analysis of miRNA binding sites
on the identified circRNAs helps to further study the function of
circRNAs. Then, we used miRanda to predict the miRNA binding
sites of cleaved circRNAs and eventually focused on those
circRNAs that combined with highly expressed miRNAs in the
pituitary and EVs from the anterior pituitary. A networkmap was
constructed containing 39 circRNAs, 8 miRNAs, and 49
relationships (Figure 4D). In order to explore the potential
functions of the circRNAs in EVs from the anterior pituitary,
we performed GO and KEGG pathway enrichment analysis. The
results showed that the enriched GO terms were mainly
associated with metabolic process, cellular biosynthetic
process, binding, and transferase activity (Figure 4E) and the
KEGG pathways were mainly enriched in Phagosome, gap

junction, the Wnt signaling pathway, regulation of actin
cytoskeleton, and protein processing in endoplasmic reticulum
(Figure 4F). These findings indicated that circRNAs in EVs of the
anterior pituitary could regulate the cellular metabolic and
biosynthetic process.

Analysis of crosstalk in lncRNA-miRNA-
mRNA relationship in EVs
Recent studies suggested that lncRNAs could function as
endogenous miRNA sponges to prevent miRNA from binding
to reduce the regulatory effect of miRNAs on their target mRNA
(Cai and Cullen, 2007; Wang et al., 2010; Tay et al., 2014). To
further analyze the crosstalk between lncRNA, miRNA, and
mRNA, we predicted their interaction and further focused on
the competitive endogenous RNAs (ceRNAs) relative with
pituitary function. A network was drawn with 97 lncRNAs
that could sponge 11 miRNAs to regulate 10 pituitary-specific
genes including GH1, GHRHR, PRLHR, FSHB, LHB,
proopiomelanocortin (POMC), growth hormone receptor
(GHR), prolactin receptor (PRLR), gonadotropin-releasing
hormone receptor (GNRHR), and POU class 1 homeobox 1
(POU1F1) (Figure 5A). We also performed GO enrichment
analysis, which revealed 273 significantly enriched terms in the
categories of biological process, molecular function, and cellular
components, and we showed a part of terms with lots of gene
numbers (Figure 5B). Its annotation indicated that they
participated in intracellular signal transduction, cellular
component organization or biogenesis, RNA metabolic
process, localization, regulation of the metabolic process,
binding, and regulation of catalytic activity which suggested
that they were involved in the body’s basic biological regulation.

Analysis of crosstalk in circRNA-miRNA-
mRNA relationship in EVs
The current studies have proved that circRNAs could act as
ceRNAs to compete for miRNA-binding sites to affect the
function of miRNAs (Hansen et al., 2013; Thomas and
Saetrom, 2014). Therefore, the analysis of interactions between
miRNAs and circRNAs is helpful for further study. Similarly, we
mainly concerned the ceRNAs relative to pituitary function in the
constructed potential circRNA–miRNA–mRNA associations.
The resultant network was comprised of 188 edges among 11
miRNAs, 58 circRNAs, and 10 pituitary-specific genes including
GH1, POMC, GHR, GHRHR, PRLR, LHB, PRLHR, FSHB,
GNRHR, and POU1F1 (Figure 6A). For the potential
functions of the associated ncRNAs in EVs from the anterior
pituitary, we conducted GO enrichment analysis which revealed
265 significantly enriched terms. Some terms enriched a high
number of genes (Figure 6B). Our GO annotation indicated that
they were involved in intracellular signal transduction, cellular
component organization or biogenesis, transport, protein
binding, hydrolase activity, and phosphotransferase activity.
These findings suggested that the network in circRNA-
miRNA-mRNA relationship in EVs played an important role
in the process of biosynthetic and information transmission.
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DISCUSSION

EVs contain plentiful cargoes including proteins, lipids, and
nucleic acids which are specifically sorted and packaged, and
contents packed are cell type-specific (Hessvik and Llorente,
2018). More and more evidence indicated that EVs can
transfer important cargoes such as miRNA, mRNA, and
proteins from cell to cell via membrane vesicle delivery,

thereby being a new approach of intracellular or organ-to
organ communication (Théry et al., 2002; Mathivanan et al.,
2010; Tan et al., 2013; Javeed and Mukhopadhyay, 2017). Studies
have reported that EVs can mediate the transmission of
information between endothelial cells, smooth muscle cells,
cardiomyocytes, stem cells, and fibroblasts (Hergenreider et al.,
2012; Bang et al., 2014; Wang et al., 2014). Hepatocyte-derived
EVs could act as potential biomarkers of liver disease and

FIGURE 5 | Analysis of crosstalk in lncRNA-miRNA-mRNA relationship in EVs. (A) The ceRNA network of lncRNA, miRNA and pituitary-specific genes. (B) GO
annotation analysis. GO analysis show significantly enriched terms (p < 0.05) in the categories of biological process, cellular components, and molecular function. BP,
biological process; CC, cellular components; MF, molecular function.
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promote cell proliferation and liver regeneration (Bala et al., 2012;
Nojima et al., 2015). EVs secreted by skeletal muscle contain
proteins and miRNAs that can be transferred to adjacent muscle
cells (Pedersen and Febbraio, 2012). EVs from the adipose tissue
could mediate activation of macrophage-induced insulin
resistance and are regarded as the main immune regulator
secreted by insulin resistance factors (Deng et al., 2009;
Kranendonk et al., 2014). As an important endocrine gland,
whether the pituitary gland produces EVs and its cargos
remains unclear up to date.

Firstly, considering that the pig pituitary is small and difficult
to obtain, we used the Exoquick Isolation Kit to isolate the EVs,
then identified them using transmission electron microscopy and
western blot detection of CD9, CD63, TSG101, and Calnexin,
followed by RNA extraction and sequencing. The Venn diagrams
of miRNAs, lncRNAs, and circRNAs were drawn through
analysis to show the distributions of numbers among three
samples (additional Figure 5). A total of 416 miRNAs were
obtained from samples, 343 of which are known miRNAs and
73 are newly predicted miRNAs. Our research group has revealed

FIGURE 6 | Analysis of crosstalk in circRNA-miRNA-mRNA relationship in EVs. (A) The ceRNA network of circRNA, miRNA, and pituitary-specific genes. (B) GO
annotation analysis, showing significantly enriched terms (p < 0.05) in the categories of biological process, cellular components, and molecular function. BP � biological
process; CC � cellular components; MF � molecular function.
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the expression of miRNAs in porcine anterior pituitary cells and
found that miRNAs could regulate the hormone secretion from the
anterior pituitary (Qi et al., 2015, Ye, et al., Ye et al., 2013).
Interestingly, we found most of the top 20 miRNAs such as miR-
7, miR-375, let-7a, let-7c, miR-26a, miR-30a, let-7g, miR-30days,
miR-127, miR-151, miR-21, miR-149, miR-99a, andmiR-143 in EVs
are also highly expressed in the porcine pituitary (Yuan et al., 2015).
Various studies also revealed several of their enrichment in
metabolisms and functions. MiR-7 is abundant in the pituitary of
mice (Bak et al., 2008) and pigs (Ye et al., 2015; He et al., 2018).
Research showed that miR-7 might play an important role in the
hypothalamic–pituitary–gonadal (HPG) axis and be involved in
body growth by acting on the pituitary GHRHR in pigs (Zhang
et al., 2013a; He et al., 2018). MiR-375 could regulate pituitary pro-
opiomelanocortin (POMC) expression (Zhang et al., 2013b). Let-7f-
5p was a highly expressed miRNA of the let-7 family in the pituitary
(Wu et al., 2017).Mir-26a plays an important role in cell cycle control
by modulating protein kinase C delta (Erica et al., 2013). MiR-200b
could stimulate luteinizing hormone (LH) levels by targeting ZEB1
(Hasuwa et al., 2013). KEGG and GO analysis suggest that miRNAs
in EVs of the anterior pituitary could regulate intracellular signal
transduction, phosphorylation, catabolism, and development.

CeRNAs regulate gene expression by competitively binding to
microRNAs (Salmena et al., 2011). Recent studies have shown that
the interaction of the miRNA seed region with mRNA is not
unidirectional, but that the pool of mRNAs, lncRNA (Cesana et al.,
2011), and circRNA (Hansen, et al., Memczak, et al.) competes for
the same library of miRNA to regulate miRNA activity (Tay et al.,
2011). These ceRNAs act asmolecular sponges formiRNA through
their miRNA binding sites to inhibit target genes of the respective
miRNA family. Unlike miRNAs, the function of lncRNAs and
circRNAs is poorly understood in pig pituitary.

There are a large number of studies that have identified the
role of lncRNA in pituitary function. Researches have shown that
the anterior pituitary lncRNA of rats plays an important role in
hormone and reproduction development and regulation (Han
et al., 2017). MIR205HG enabled to regulate the secretion of GH
and PRL in anterior pituitary (Du et al., 2019). LncRNA C5orf66-
AS1 suppressed the development and invasion of pituitary null
cell adenomas (Yu et al., 2017). LncRNA RPSAP52 was verified to
act as miRNA sponge to promote cell growth (D’Angelo et al.,
2019). In our study, some lncRNAs could co-express with
pituitary-specific genes like GH1, GHRHR, PRLHR, FSHB, and
LHB. Some other lncRNAs could co-express with genes involved
in EVs’ marker protein, protein transport, and docking such as
CD63, CD81, TSG101, Rab27A, Rab27B, and UBL3. On the other
hand, the signal of a two-circRNA was found to be able to predict
tumor recurrence in clinically non-functioning pituitary
adenoma (Guo et al., 2019). Another study reported that
thousands of sheep genes could express circRNAs in the
pituitary gland (Li et al., 2017a). Regarding circRNA, in this
article, we determined numerous circRNAs that interact with
highly expressed miRNAs both in EVs and the pituitary,
participating in the biologic functions of the pituitary gland.
Our results suggests that ceRNAs in EVs from the anterior
pituitary may take part in the cellular metabolic and
biosynthetic process and the cross-talk between mRNA,

miRNA, lncRNA, and circRNA may be involved in the
regulation of pituitary endocrine functions and signaling
process. Since EVs are composed of complicated groups with
different size and contents, methods for extraction and
purification of them are still in development. The extraction
kit used in this study is well accepted nowadays, though it has
potential limitations and we will further verify and explore the
function of obtained ncRNAs in subsequent research.

On the whole, our study is the first exploration of the expression
of ncRNAs in EVs delivered by the anterior pituitary in Duroc
swine model. MiRNAs, lncRNAs, and circRNAs of EVs from the
anterior pituitary may act as novel regulators of pituitary
development and endocrine regulation. These findings provided
an insight into EVs derived from the anterior pituitary and are
helpful to explore the potential functions of EV cargoes.
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