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Abstract

Adverse events in childhood and adolescence, such as social neglect or drug abuse, are known to 

lead to behavioral changes in young adulthood. This is particularly true for the subset of people 

who are intrinsically more vulnerable to stressful conditions. Yet the underlying mechanisms for 

such developmental trajectory from early life insult to aberrant adult behavior remains elusive. 

Adolescence is a period of dynamic physiological, psychological, and behavioral changes, 

encompassing a distinct neurodevelopmental stage called the ‘critical period’. During adolescence, 

the brain is uniquely susceptible to stress. Stress mediators may lead to disturbances to biological 

processes that can cause permanent alterations in the adult stage, even as severe as the onset of 

mental illness when paired with genetic risk and environmental factors. Understanding the 

molecular factors governing the critical period and how stress can disturb the maturation processes 

will allow for better treatment and prevention of late adolescent/young adult onset psychiatric 

disorders.
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1. Introduction

In the past, many scientists have addressed the question of how early life events may 

contribute to the shaping of adult behavior. These investigators include psychologists like 

Erikson and Piaget who stated that during the long-term trajectory there are several specific 

stages that contribute to the proper development towards adult behavior. For example, 

Erikson’s theory of psychosocial development suggests there are eight stages of 

psychosocial conflicts in ego growth from infancy to adulthood.1 Piaget’s four stages of 

cognitive development takes into consideration how biological maturation and 

environmental factors facilitate cognitive development throughout the lifespan.1
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Consistent with such a conceptual framework of psychological development, recent clinical 

and epidemiological evidence has indicated that any early life disturbances, such as abuse or 

neglect, may lead to aberrant behaviors in adulthood, and potentially enhance the risk for a 

wide range of psychiatric conditions.2–6 For example, aberrant use of drugs, such as 

marijuana, in adolescence has been correlated to a heightened risk of psychosis.7

In rodent models, early life stress also reportedly impairs mood, cognition, memory, and 

learning in adulthood.3,5 Many of these studies have found that early stress elicits several 

molecular and structural changes in the brain, which accompany the behavioral deficits in 

adulthood.8 Thus, rodent models may be useful in studying mechanisms of how adverse 

events in early life may underlie adult behavior during the developmental trajectory.

Major psychiatric conditions, such as schizophrenia or severe cases of bipolar disorder, 

emerge in late adolescence and young adulthood, and most display a chronic deteriorating 

course after onset. Thus, there are two major mechanistic questions: the first being why 

these disorders often emerge after puberty, although the initial risk events may occur years 

earlier, sometimes even during prenatal stages; and the second being why the emerged 

deficits frequently become sustained throughout adulthood.

2. Dynamic changes in the adolescent brain

During adolescence, the brain, including the cerebral cortex, changes and matures drastically 

(Fig. 1). For example, in the first half of adolescence, massive elimination of synapses 

occurs, specifically among glutamatergic neurons.9 This event occurs not only in a cell 

autonomous mechanism, but is also influenced by non-neuronal cells such as microglia and 

astrocytes.10 In the cerebral cortex, dopaminergic projections from the midbrain region 

undergo alterations, accompanied by increases in dopamine levels until late adolescence.
11,12 Response to γ-aminobutyric acid (GABA)-ergic neurons also critically changes during 

adolescence.13 An increase in myelination is prominent in late adolescence to young 

adulthood as well, which is associated with overall changes to molecular expression profiles.
14,15

At the physiological level, the dynamics of neuronal activity changes during adolescence as 

cortical regions are formed into functional networks. There is also increased synchrony at 

multiple brain wave frequencies as well as changes in the balance between excitatory and 

inhibitory synapses (E/I balance).16 Neuronal oscillations, particularly at gamma-band 

frequencies, may play an important role in cognitive and behavioral responses, such as 

perceptual grouping, attention-dependent stimulus selection, working memory, and 

consciousness.17

3. Critical periods

The classic concepts in neuropsychology that describe multiple developmental stages can be 

applied to the concepts of critical periods in neuroscience. The notion of the critical period 

originated from the observation by Wiesel and Hubel that monocular light deprivation 

during the neonatal stage resulted in blindness that could not be recovered by light exposure 

later in life, despite no prior intrinsic anatomical or biological abnormalities.18 Recent 

Lockhart et al. Page 2

J Pharmacol Sci. Author manuscript; available in PMC 2021 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies in molecular neuroscience have indicated that there are indeed critical developmental 

windows governed by several concrete molecular factors: molecules associated with GABA 

neurotransmission and some immune-related molecules have been underscored.19,20

Experimental validation of critical periods has encouraged investigators to extend this 

approach to understand how stress during the critical period may even create vulnerability 

and resilience to psychopathology, and affect behaviors in later stages. Adolescents show an 

attenuated fear memory and extinction, suggesting that adolescence is indeed a sensitive 

period to stress that differs from other developmental and adult stages.21 One study found 

that adolescents with anxiety disorders show a decreased responsiveness to cognitive 

behavioral therapy (CBT) compared to children and adults.21 This susceptibility is 

associated with age-specific changes in neuroplasticity in the prefrontal cortex. Alterations 

to the neural regulation of fear and anxiety in adolescence, when paired with early life stress, 

can lead to a heightened “vulnerability to pathogenic experiences”.21 Yet, the unique 

molecular expression profiles and limited temporal window of adolescence allows clinicians 

to develop personalized treatment based on the patient’s genetic profile and age.

As we described above, dopaminergic projections, particularly mesocortical projections, 

mature during adolescence. Disturbance of this maturation by adverse events during 

adolescence is experimentally proven to be causal for aberrant animal behavior, such as 

deficits in information processing, mood control, and psychostimulant hypersensitivity.22 

Investigators have elucidated that excess stress hormones, such as glucocorticoids, mediate 

this disturbance in adolescence.22 By altering the timing of blockade against the activated 

glucocorticoid receptor signaling, we can determine how the critical period links 

hypothalamic-pituitary-adrenal (HPA) axis-associated dopaminergic disturbance and 

aberrant behavior in adulthood.23 In addition, maturation of cortical myelination occurs in 

adolescence, and disturbances to this maturation process may also underlie abnormal 

behaviors in adulthood. Among rodents, it has been shown that the two weeks post-weaning 

may play a crucial role in proper myelination and adult behavior.24

4. Pathological trajectory: from pathogenesis to pathophysiology and 

final manifestation

Any disease trajectory can be defined as a course from the initial etiology (pathogenesis) to 

the final clinical manifestation via pathophysiology, in which critical mediators account for 

the phenotypes25,26 (Fig. 2). In humans, in which every individual is heterogeneous because 

of genetic variability, the process of pathogenesis is tightly associated with genetic 

vulnerability and environmental insult in early development. It is possible to postulate that 

the critical period described above may underlie between the pathogenesis and 

pathophysiology, in which the biological events of the brain may directly account for the 

phenotypes.

We then ask how disturbances to brain maturation during the critical period can lead to 

chronic dysfunction. If the critical period is restricted to a specific developmental time frame 

for the manifestation of a devastating phenotype, then why does biological influence during 

the critical period produce sustained behavioral changes later in life, and what is the 
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mechanism underlying the disease trajectory from the biological changes during the critical 

period to the persistent symptomatic manifestations? One possible answer may be that such 

a devastating event in this short time frame may fundamentally alter the developmental 

program. Nevertheless, its underlying molecular mechanism is unclear. However, new 

experimental evidence has indicated that biological influence during the critical period may 

affect the epigenetic landscape on the chromosome, which may result in the irreparable and 

long-lasting changes. For example, dysregulation of the HPA axis during the critical period 

affects dopaminergic neurons long-term through alterations to the epigenetic hallmarks on 

genes such as tyrosine hydrolase (Th), brain-derived neurotrophic factor (Bdnf), and FK506 
binding protein 5 (Fkbp5).23

5. Future prospective: potential application of preclinically defined critical 

period to clinical settings

As described above, many preclinical studies have recently evidenced that there are critical 

periods in adolescence, and that disturbance to biological processes during these sensitive 

developmental time frames may account for abnormal adult behaviors. At least in part, 

epigenetic mechanisms during the critical period may underlie such late adolescent/young 

adult onset and long-lasting behavioral abnormalities.27 How can we utilize this knowledge 

from preclinical studies to better the treatment and prevention of patients with late 

adolescent/young adult onset psychiatric disorders?

Interventions with aberrant epigenetic processes are currently one of the leading topics in 

translational neuroscience. For example, experimental drugs such as histone deacetylase 

(HDAC) inhibitors have been tested using animal models for Alzheimer’s, in which 

epigenetic implications have been suggested for the memory disturbances.28 Nevertheless, in 

general, epigenetic intervention as a clinical application is challenging, because we still do 

not know of a way to intervene the epigenetic change for a specific subset of genes without 

interfering with entire genes. One noteworthy idea is to utilize the Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system to target an exact set of 

epigenetic changes, but this is only currently utilized at the animal level.29 Therefore, a more 

realistic way to address the critical period and its devastating effect on adult behavior may be 

to take a prophylactic approach. If we can define the critical period for certain types of adult 

phenotypes associated with adverse events in early life, we may define certain groups of 

patients who may possibly have a higher vulnerability to such stressors. As a result, we can 

guide them to avoid such stressors prior to the critical period, circumventing the 

deteriorating event altogether and protecting them from the long-lasting brain dysfunction 

and behavioral deficits. By focusing on the intersection of environment, biology, and 

lifestyle, we need personalized prevention, treatment, and care for all of us.
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Fig. 1. 
Cortical maturation and behavioral patterns in developmental trajectory of major mental 

illnesses. The upper panel shows the developmental trajectory of brain maturation. Brain 

maturation, including maturation of interneurons and dopaminergic projections, pruning of 

glutamatergic synapses, and increased myelination, occurs from birth to young adulthood, 

most dynamically during adolescence. Stress mediators regulated by genetic and 

environmental factors affect this maturation processes during this critical period. Aberrant 

brain maturation induced by stress mediators might be an essential mechanism underlying 

the disease. The lower panel shows the course of abnormal behavioral patterns related to 

major mental illnesses. Disturbance of brain maturation caused by stress mediators during 

the critical period may increase vulnerability to major mental illnesses, for which the 

devastating behavioral phenotype (over the threshold) will begin to emerge in late 

adolescence and early adulthood. Adapted from Jaaro-Peled and colleagues, with permission 

from Elsevier.30
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Fig. 2. 
Stress-associated common pathways (pathophysiology) converging from many genetic and 

environmental factors (pathogeneses). For any disease, there is a trajectory from the initial 

etiological factors (pathogeneses), including genetic (white circles) and environmental (blue 

circles) insults, to the clinical manifestations of the disease (symptoms) via common stress-

associated pathways (pathophysiology). One of pathways is heavily mediated by the HPA 

axis, in which its dysregulation can lead to disturbance of brain maturation and subsequent 

behaviors in young adulthood. These common pathways may be considerd as potential 

targets for therapeutic intervention and prevention. Adapted from Srivastava and colleagues, 

with permission from Elsevier.26
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