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Abstract
Circulating human IgM expressing memory B cells have been incompletely characterized.

Here, we compared the phenotype and in vitro functional response (capacity to proliferate

and differentiate to antibody secreting cells) in response to CpG and a cytokine cocktail

(IL-2, IL-6, and IL-10) of sorted naïve B cells, IgM memory B cells and isotype-switched

circulating memory B cells. Compared to naïve B cells, IgM memory B cells had lower inte-

grated mean fluorescence intensity (iMFI) of BAFF-R, CD38, CD73, and IL-21R, but

higher iMFI of CD95, CD11c, TLR9, PD-1, and CD122. Compared to switched memory B

cells, IgM memory B cells had higher iMFI of BAFF-R, PD-1, IL-21R, TLR9, and CD122,

but lower iMFI of CD38, CD95, and CD73. Four days after receiving the CpG/cytokine

cocktail, higher frequencies of IgM than switched memory B cells—and these in turn

greater than naïve cells—proliferated and differentiated to antibody secreting cells. At this

time point, a small percentage (median of 7.6%) of stimulated IgM memory B cells

changed isotype to IgG. Thus, among the heterogeneous population of human circulating

IgM memory B cells a subset is capable of a rapid functional response to a CpG/cytokine

stimulus in vitro.

Introduction
B cells (Bc) and the antibodies they produce after becoming antibody secreting cells (ASC)
are critical for protecting the individual from pathogens and maintaining tissue homeostasis
[1, 2]. Instrumental to the function of Bc is their capacity to differentiate from naïve (non-
antigen experienced) to antigen experienced memory Bc (mBc) [1]. This process renders
mBc capable of promptly responding to a second encounter with a pathogen and is reflected
by their propensity to rapidly proliferate and differentiate in vitro, in an antigen independent
fashion, to T cell dependent (CD40L) and independent stimuli [3, 4]. As an example of the
latter, it has been shown that naïve cells depend on Bc receptor signaling, while mBc are acti-
vated by CpG and cytokines, without need for Bc receptor stimulation [5]. In mice, mBc can
be derived independently of a germinal center (GC-, mostly IgM with low frequency of
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mutations) or dependently on the germinal center (GC+, mostly isotype-switched with high
frequency of mutations) [6–9]. It is unclear if an equivalent population of GC- exists among
human mBc [1]. In addition to naïve Bc and different subsets of mBc, Bc with innate function
(non-antigen experienced) has been described in the blood and spleen of mice and humans
[2, 10–12]. In the murine spleen marginal zone Bc have unmutated BCR and are capable of
rapidly responding to bloodborne T cell—independent antigens [12]. Recently, in humans, it
has been shown that both spleen and circulating IgM mBc contain a populations of cells that
differentiates to marginal zone-like Bc, as its mouse counterpart, through a NOTCH2 signal-
ing pathway [10].

Being able to discriminate all subsets of human Bc by their phenotype has been a challeng-
ing enterprise since the discovery of CD27 as a marker of mBc [13]. This marker is not an abso-
lute marker of mBc [14] and, to date, at least six mBc subsets have been defined, based on their
differential expression of CD27 and IgH isotypes [15]. These diverse subtypes of mBc were
characterized for their differential replication history and Ig gene repertoire and somatic muta-
tions in the Ig genes [15]. However, at present, it is uncertain how to phenotypically discrimi-
nate human innate Bc [10, 16] from “true” antigen experienced IgM mBc that may share key
features (expression of both IgM and IgD and low number of mutations in their Ig genes) [1,
11].

We and others have previously shown that rotavirus specific mBc (detected by flow cytome-
try with a labeled rotavirus antigen) are enriched in the CD27+ IgM+ mBc and CD27- mBc
[17–20]. Moreover, we have shown that Total (non-antigen specific) and rotavirus -IgM mBc
detected with a seven day limiting dilution assay—in which Bc are stimulated to produce anti-
bodies with CpG, a cocktail of cytokines (IL–2, IL–6, and IL–10) and murine fibroblasts (as
feeder cells)—are differentially capable of switching in vitro to secrete IgG [18]. Notably, this
stimulus was optimized to preferentially activate mBc over naïve Bc and to induce the former
to differentiate to ASC [17, 18, 21]. In these assays, the median cloning efficiencies of Total
IgM+ and rotavirus -IgM+ mBc were lower than those of the corresponding switched mBc. The
functional importance of IgM mBc was evidenced by experiments in which purified IgM mBC
transferred to immunodeficient mice infected with rotavirus were capable of switching isotype
and of controlling antigenemia and viremia [18].

A comprehensive functional study of mBc subsets must include Bc from different tissues, as
exemplified by experiments in which mBc with the same phenotype, but originating from
blood or tonsils, respond differently in vitro to T cell independent (CpG) and T cell dependent
(CD40L) based stimuli [22]. However, a functional comparison of blood mBc subsets to mBc
from other organs is hampered by their low numbers in blood. To date, few studies have con-
trasted the function of IgM and switched circulating mBc [5, 23–25].

Here, we compared the phenotype and in vitro functional response of sort purified circulat-
ing naïve Bc and IgM and switched mBc in response to CpG and a cocktail of cytokines (IL–2,
IL–6, and IL–10) previously described [18]. Compared to naïve B cells, IgM mBc had lower
iMIF of BAFF-R, CD38, CD73, and IL-21R, but higher iMIF of CD95, CD11c, TLR9, PD–1,
CD122, and CD45RO. Compared to switched mBc, IgM mBc had higher iMFI of BAFF-R,
PD–1, IL-21R, TLR9, and CD122, but lower iMFI of CD38, CD95, and CD73. Higher frequen-
cies of IgM mBc than switched mBc—and these in turn greater than naïve cells—proliferated
and differentiated to ASC four days after receiving the CpG/cytokine cocktail. At this time
point after the stimulus a small percentage (7.6%) of IgMmBc changed isotype to IgG. We con-
clude that among the heterogeneous population of circulating IgM memory Bc, a subset is
capable of a rapid functional response in vitro to a CpG based polyclonal stimulus. These func-
tional studies may aid in discriminating IgM Bc subpopulations.

Rapid Proliferation and Differentiation of IgMmBc

PLOSONE | DOI:10.1371/journal.pone.0139718 October 6, 2015 2 / 14



Materials and Methods

Flow cytometry analyses
This project was approved by the ethics committee of the School of Medicine of Pontificia Uni-
versidad Javeriana FM-CIE-5166-10. Healthy adult volunteers signed informed consent forms
approved by the ethics committee of the School of Medicine of Pontificia Universidad Javeri-
ana. Ficoll gradient purified PBMCs, were suspended in 1X PBS with 0.5% bovine serum albu-
min (BSA, Sigma-Aldrich, St. Louis) and 0.02% sodium azide (Mallinckrodt Chemicals, Paris,
Ky) and stained with monoclonal antibodies (all from BD Bioscience U.S. unless otherwise
stated) against (labeled, clone): CD3 (V500, UCHT1), CD14 (V500, M5E2), CD19 (APC-H7,
SJ25C1), CD38 (PerCp-Cy5.5 or AF 700, hit2), CD27 (PE-CF594, M-T271), IgD (VB421, IA6-
2), IgM (PerCp-Cy5.5 or AF700, G20-127 and 145–8, respectively), CD40 (PeCy7, 5C3), IL-
2Rβ /CD122 (PE, Mik-β3), TLR9 (PE, eB72-1665), CD95 (PE, DX2), CD73 (PE, AD2), CD21
(PE, Bly–4), IL-21R (PE, 17A12), CD45RO (APC, uch1), CD11c (APC, S-HCL–3), BAFF-R
(APC, 11C1), CD43 (APC, eBio84-3C1) (eBioscience U.S. San Diego, CA), PD–1 (PE, J105)
(eBioscience U.S. San Diego, CA), and CX3CR1 (APC, 2A9-1) (Biolegend, U.S, San Diego,
CA), on ice for 30 min [for all the markers analyzed a FMO was include as a negative control
(S2 Fig)]. Samples were acquired on a LSR Fortessa (BD Biosciense) and analyzed using FlowJo
v.9.3.2. The data are represented as an integrated mean fluorescent intensity
(iMFI = percentage of positive cells × MFI), a metric measure that combines magnitude (per-
centage of cells expressing a marker) and quality (MFI of this same marker) and reflects the
total potential functional response of each cell subset [26, 27].

Sorting of Bc subpopulations
The Hemocentro Distrital, Bogotá, Colombia, provided buffy coats from de-identified healthy
donors that signed informed consent forms. From these buffy coats, an enriched suspension of
circulating B cells was obtained by negative selection by rosette formation (StemCell Biotech,
Vancouver, Canada), as previously described [18]. The enriched B cells were suspended in ster-
ile PBS and stained on ice with AQUA (Invitrogen Molecular Probes U.S. MA, Waltham) and
subsequently with antibodies (all from BD Bioscience) against (labeled): CD3/CD14 (V500),
CD19 (APC-H7), CD38 (PerCp-Cy5.5), CD27 (PE-CF594), IgD (VB421), IgG (APC G18-
145), and IgM (APC polyclonal) (Jackson Immunoresearch U.S. PA, West Grove) for 30 min-
utes on ice. Samples were sorted using a FACSAria IIu (BD Bioscience) and cell purities were
above 95%. Cells were recovered in RPMI supplemented with 2 mM L-glutamine, 100 U/ml
penicillin, 100 μg/ml streptomycin, 0.1 mM non essential amino acids, 1 mM sodium pyruvate,
0.05 mM β-mercaptoethanol and 20% Fetal bovine serum (FBS), from now on referred to as
complete medium.

Stimulation and analyses of sort purified Bc
B cells subpopulations were labeled with carboxyfluorescein succinimidyl ester (CFSE), as pre-
viously described [28], with minor modifications. Bc were washed twice with sterile PBS and
stained (0.4–1 x 106 cells/ml) with CFDA-SE (Cell-TraceTM CFSE Cell Proliferation Kit, Invi-
trogen Molecular Probes) for 5 min at room temp protected from light. After being washed
three times with 10ml of PBS 5%, FBS 5%, naïve Bc and IgMmBc and switched mBc were stim-
ulated, as previously described [18], adapting the limiting dilution assays conditions to stimula-
tion in a 48 well format: Bc were stimulated with 2.5 μg/ml of CpG (ODN 2006; InvivoGen,
San Diego, CA), 10 ng/ml human recombinant IL–2, 10 ng/ml human recombinant IL–6, 15
ng/ml IL–10 (all cytokines from PreproTech, Rocky Hill, New Jersey), and NIH 3T3 murine
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fibroblasts (ATCCManassas, VA, USA). The NIH 3T3 feeder cells were irradiated with 3,000
rads (Radiotherapy unit, Centro Javeriano de Oncología, Bogotá) and then used at a concentra-
tion of 5,000 cells/well. B cells (20,000 in 200 μl of complete medium with 10% FBS) were cul-
tured at 37°C with 5% CO2 in flat bottom 48 well plates for different periods of time. At the
end of the cultures, cells were washed twice with sterile PBS and stained on ice with AQUA
(Invitrogen Molecular probes) and subsequently with antibodies (all from BD Bioscience)
against (labeled): CD19 (APC-H7), CD38 (PerCp-Cy5.5), CD27 (PE-CF594). After washing,
cells were resuspended in 100 μl PBS, 0.5% BSA (Sigma-Aldrich) plus 250 μl of cytofix/cyto-
perm (BD Pharmingen) and incubated for 20 min at 4°C. After washing twice with perm/wash
(BD Pharmingen) cells were stained with antibodies against IgM APC (Jackson ImmunoRe-
search) or IgG APC (BD Bioscience) for 30 min on ice. Samples were acquired on a LSR For-
tessa (BD Bioscience) and analyzed using FlowJo v.9.3.2 (FlowJo, LLC, U.S. OR).

Statistical analyses
Since data was not normally distributed, non parametric tests were used for comparisons. Dif-
ferences among groups were determined using Kruskal-Wallis tests followed by a Wilcoxon
signed-rank test using GraphPad Prism software v.5.0a for Mac OS X, GraphPad Software (La
Jolla, CA). Significance was established if p<0.05. Data are shown as median and interquartile
range.

Results

Phenotypic differences of naïve Bc, IgM mBc, and switched mBc
Bc (CD19+) were separated into naïve (CD27- IgD+: the transitional Bc subset was not
excluded from the analysis), IgM mBc (CD27+ IgD+ IgM+: which included the IgM only but
not the IgD only subpopulations) and switched mBc (CD27+ IgD- IgM-), as described in Fig
1A and 1B and S1 Fig. For each of the three Bc subpopulations, we evaluated the expression of
12 markers and histograms for one of these (CD95) is shown in Fig 1C, as an example. The
selected markers evaluated were: CD40, BAFF-R, CD95, PD–1, IL-21R, CD73, CD43, CD11c,
CD21, CD38, TLR9, and CD122. A summary of the experiments is shown in Fig 2 were data is
represented as iMFI, a metric measure that combines magnitude and quality. Histograms for
each individual marker are shown in S2 Fig.

The iMFI of CD40 and CD21, a part of the Bc co-receptor [29] and considered a molecule
highly expressed on marginal zone Bc [30], were comparable among Bc subsets (Fig 2, first
row). BAFF-R iMFI was high among Bc and significantly higher in naïve Bc (Fig 2, first row).

The iMFI of CD38, CD73, and CD95 were intermediate to low in the three Bc subsets (Fig
2, second row). CD38 is an ADP-ribosyl cyclase and its iMFI was higher in naïve Bc than both
switched mBc and IgM mBc. In agreement with previous results, the iMFI of CD73 (an ecto-
enzyme that degrades extracellular nucleoside monophosphates to adenosine) of naïve Bc was
comparable to that of switched mBc, but higher than that of IgM mBc [31]. The expression of
CD95 is associated with caspase dependent apoptosis [32] and, as previously reported, CD95
iMFI of naïve Bc was comparatively very low [4, 32]. Also, CD95 iMFI of IgMmBc was signifi-
cantly lower than that of switched mBc.

The iMFI of CD11c a marker shown to be expressed by IgM mBc specific for bacteria in
mice [33], was intermediate and similar for IgM and switched mBc, but lower for naïve Bc (Fig
2, third row).

Similar low iMFI of CD43, a marker that has been proposed to identify B1 Bc in humans
[16] were identified in the three Bc subset studied (Fig 2, third row).

Rapid Proliferation and Differentiation of IgMmBc
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The iMFI of CD122, the beta chain of the IL–2 and IL–15 receptors, TLR9, the receptor for
CpG, and PD–1, which regulates activation and survival of Bc [34], were low for the three Bc
subsets, but significantly higher in IgM mBc than naïve Bc or switched mBc (Fig 2, third row
and fourth row, respectively). However, both IgM and switched mBc express more intracellular
TLR9 than naïve cells, but no differences were seen between IgM and switched mBc (S3 Fig).

Finally, in agreement with previous reports [35], higher iMFI of IL-21R, a key molecule crit-
ically implicated in Bc activation [36], was detected for naïve cells than switched mBc (Fig 2,
fourth row). We also compared the expression of CD45RO (data not shown), which resembled
the expression of CD43 (Fig 2).

A subset of IgMmBc rapidly proliferate and differentiate to ASCs in vitro
in response to CpG and cytokines
To compare the capacity to proliferate and differentiate to ASC (CD27hi CD38hi) of naïve Bc
and IgM and switched mBc, Bc were enriched from buffy coats of blood bank volunteers by
rosette formation and subsequently each subset was purified by the sorting strategy described
in Fig 3. Bc were then labeled with CFSE and stimulated with CpG, a cocktail of cytokines (IL–
2, IL–6, and IL–10) and murine fibroblasts (as feeder cells) for two, three, four, and five days.
The peak response for proliferation and differentiation to ASC (CD27hi CD38hi) was between
days three and four, for both types of mBc (S4 Fig). Four days after stimulation a higher

Fig 1. Flow cytometry analysis strategy.Representative dot plots (A) and the corresponding strategy (B)
to identify on a gate of circulating Bc (CD19+ CD3-/CD14-) that excludes CD38hi, CD27hi ASC the Bc
populations of interest: naïve (CD27- IgD+), IgMmBc (CD27+ IgD+ IgM+) and switched (Sw) mBc (CD27+ IgD-

IgM-). Different markers were studied for each Bc subset; shown are representative histograms for CD95.
Solid gray histogram represents fluorescence minus one (FMO) and the continuous solid line shows staining
with anti-CD95 (C).

doi:10.1371/journal.pone.0139718.g001
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Fig 2. Phenotypic profile of the three Bc subsets. A summary of the experiments to characterize the phenotype of circulating naïve Bc and IgM and
switched (Sw) mBc in PBMC from healthy adult volunteers is presented: CD40 (n = 18), BAFF-R (n = 16), CD21 (n = 6), CD38 (n = 15), CD73 (n = 6), CD95
(n = 7), CD11c (n = 6), CD43 (n = 5), CD122 (n = 6), TLR9 (n = 5), PD–1 (n = 5), and IL-21R (n = 10). Wilcoxon tests were used for evaluating differences
among groups and * denotes p<0.05. Individual results are shown (as iMFI) and lines and error bars denote the median and interquartile range, respectively.

doi:10.1371/journal.pone.0139718.g002

Rapid Proliferation and Differentiation of IgMmBc

PLOSONE | DOI:10.1371/journal.pone.0139718 October 6, 2015 6 / 14



frequency of IgM mBc proliferated (Fig 4A and 4B) and acquired the phenotype of ASC, com-
pared to switched mBc and naïve Bc (Fig 4D). It has been previously shown that, in general,
naïve Bc have undergone a lower number of divisions (two divisions) than IgM mBc (seven
divisions) and switched mBc (10 divisions) [15], and that the number of divisions a Bc has per-
formed limits the maximum additional divisions it can undertake [37]. In agreement with this,
we found that the MFI CFSE—which is inversely proportional to the number of divisions a Bc
has performed in vitro after stimulation—was lower in the IgM mBc vs. switched mBc (Fig
4C).

A subset of stimulated IgM mBc rapidly change isotype in vitro after
stimulation
Our group has previously shown that a median of 62% IgM mBc stimulated for seven days in a
limiting dilution assay, with the same stimulus as we have used here, switch to IgG [18]. To
determine if isotype switch occurred in IgM mBc under the present stimulation conditions
(four days), we stained Bc for intracellular IgM and IgG (Fig 5A). Coherent with our initial
results, we observed an isotype switch to IgG in a median of 7.6% (range 2–20%) of IgM mBc
four days after stimulation (Fig 5A and 5C). As expected, very low or no naïve Bc expressed
IgG and no, or very low, numbers of switched mBc expressed IgM. Of note the median IgG
expression on switched mBc was 34.4% because the subset was sorted as IgD-, IgM- cells that
include IgA an IgE cells. Intracellular IgG expression was not found on purified naïve Bc and
IgM mBc prior in vitro stimulation (S5 Fig).

Fig 3. Sorting strategy for purification of the three Bc subsets. Representative dot plots of a sorting
experiment to purify naïve Bc and IgM and switched (Sw) mBc. Dot plots of presort samples are shown in top
rows. Dot plots of naïve Bc and IgM and SwmBc are shown in the second, third, and fourth rows,
respectively. Cells were initially gated on CD19+ dump channel- (Aqua, CD3, CD14), first column. After
excluding CD38hi, CD27hi ASC (second column), naïve cells were gated as CD27- IgD+ (third column) and
the CD27+ subset was sorted as IgM+ or switched (IgM-) mBc (fourth column).

doi:10.1371/journal.pone.0139718.g003
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Fig 4. Proliferation and differentiation to ASC of the three Bc four days after in vitro stimulation.
Representative dot plots of proliferation (first column) and differentiation to ASC (CD38hi CD27hi) (second
column) of naïve Bc and IgM and switched mBc four days after stimulation with CpG, a cocktail of cytokines
(IL–2, IL–6, and IL–10), and murine fibroblasts (as feeder cells) (A). Summary of experiments for percentages
of CFSElow proliferating Bc (B), MFI of CFSElow cells (C), and frequencies of CD38hi CD27hi ASC (D) of each
of the Bc studied. Wilcoxon tests were used for evaluating differences among groups and * denotes p<0.05.
Individual results are shown and lines and error bars denote the median and interquartile range, respectively.

doi:10.1371/journal.pone.0139718.g004

Fig 5. Intracellular expression of IgM and IgG of the three Bc subsets four days after in vitro
stimulation. Representative dot plots of an experiment to evaluate intracellular IgM and IgG after stimulation
of naïve Bc and IgM and switched mBc (A). Summary of experiments for the percentages of cells expressing
IgM (B) and IgG (C) are shown. Wilcoxon tests were used for evaluating differences among groups and *
denotes p<0.05. Individual results are shown and lines and error bars denote the median and interquartile
range, respectively.

doi:10.1371/journal.pone.0139718.g005
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Discussion
Comparison of the functional capabilities of switched and IgM mBc may help in better dis-
criminating human Bc subsets. Here, we have shown that four days after stimulation with a
CpG/cytokine cocktail (IL–2, IL–6, and IL–10) (Fig 4), a higher frequency of circulating IgM
mBc proliferate and differentiate in vitro to ASC (CD38hi CD27hi) compared to switched mBc
and naïve Bc, and a subset of IgM mBc are already capable of switching to IgG (Fig 5). We have
also identified/corroborated phenotypic differences between the three Bc subpopulations,
which may help explain this functional behavior (Fig 2).

Antigen independent functional response to T cell dependent (CD40L) or independent
(CpG) stimuli (in the absence or presence of multiple cytokines) of human spleen naïve Bc and
IgM and switched mBc have been extensively compared [3, 4, 38, 39]. In general, these studies
have reported important differences between the naïve and mBc, but only minor or no dissimi-
larities between the two mBc subsets: higher frequencies of IgM and switched spleen mBc dif-
ferentiate to ASC in response to CD40L, compared to naïve Bc [40]. A greater proportion of
human spleen switched mBc than IgM mBc was induced to proliferate after stimulation with
CD40L, IL–2, IL–10, and IL–21 [3, 4, 38]. In contrast, and in agreement with our results with
blood Bc (Fig 4), when spleen IgM and switched mBc were stimulated with CpG a higher per-
centage of IgM mBc than switched mBc proliferated [4]. Also, the differentiation rates to ASC
of the two spleen mBc have been comparable or slightly different, depending on the cytokine
used for co-stimulation [40]. Extrapolation of these results to Bc from other organs has been
put in doubt by experiments showing that Bc from human tonsils differ functionally from Bc
subsets with the same phenotype isolated from blood [22]. Thus, a comprehensive analysis of B
cell subsets must include functional studies of B cells from different organs including blood,
like in the present study.

Studies that have compared blood naïve Bc and IgM and switched mBc are scarce: while (in
agreement with our results, Fig 4) higher frequencies of blood IgM mBc seem to proliferate in
response to CpG, switched mBc appear to better respond to an alloreactive T cell clone [5].
After stimulation with Staphylococcus aureus Cowan, IL–2, IL–10, and anti-CD40 for eight
days, a similar differentiation of CD27+ IgD+ mBc (most probably IgM mBc), and CD27+ IgD-

mBc (most probably switched mBc) to CD38+ ASC was observed [23]. More recently, it has
been shown that blood IgM mBc (excluding IgM only mBc) share a similar gene expression
pattern with switched mBc [25]. Notwithstanding, in response to a BCR stimulus, in the pres-
ence or absence of CD40L, IgM mBc up regulate markers that permit them to migrate to B-cell
follicles, whereas activated IgG+ mBc preferentially showed a plasma cell differentiation. In
this study it was also shown that T-independent stimulus, like terbutaline and CEACAM8,
preferentially stimulated IgM mBc, while CD40L (a T-dependent stimulus) preferentially stim-
ulates switched mBc [25]. This last study highlights the plasticity of IgM mBc that respond dif-
ferently depending on the stimulation protocol. For this reason it is important to note that our
results maybe be restricted to our stimulation procedure (based on CpG and cytokines), which
was previously standardized for the study of antigen specific mBc [17, 18, 21]. In our previous
experiments stimulating purified IgM and switched mBc, but in a limiting dilution assay for
seven days, we found a higher cloning efficiency in the latter, which was accompanied, at this
time point, by induction of higher frequencies of ASC identified by flow cytometry and ELI-
SPOT [18]. Altogether, these results and our new findings (Fig 4) suggest that IgM mBc prolif-
erate and differentiate more rapidly than switched mBc in response to CpG/cytokines, but that
with time a greater proportion of switched mBc can become functional [18]. Finally, in support
for a selective effect of CpG on IgM mBc, it has been shown that in blood CD27+ mBc CpG
induced increased IgM secretion, compared to CD40L [41].
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Our results showing that IgM mBc, but not naïve Bc, can change isotype to IgG by day four
(Fig 5A and 5B) are coherent with previous studies in which cells were stimulated with CD40L,
IL–2, and IL–10 for 10 days [24]. However, in the study that compared CD27+ IgD+ and
CD27+ IgD- mBc stimulated with CD40L and IL–2 or SAC plus IL–2 for eight days no isotype
switch was seen in the IgD+ CD27+ (mainly IgMmBc) [23]. Nonetheless, when IL–10 was
added to the Bc cultures, IgM mBc were shown to secrete IgG two to three days after stimula-
tion [23]. Altogether, these reports are in agreement with our findings (Fig 5), indicating that
IgM mBc can rapidly change isotype to a non BCR stimulus, but that this is dependent on the
presence of cytokines like IL–10, similar to what has been reported for spleen IgM mBc [40].

Naïve Bc and IgM and switched mBc were shown to have several phenotypic differences
(Fig 2). Compared to switched mBc, IgM mBc had higher iMFI of molecules involved in the
activation of Bc, such as TLR9 [5, 41, 42], IL-21-R [43], and CD122 [44] (Fig 2). Of these mark-
ers the expression of TLR9 and CD122 may partially explain the higher proliferative and capac-
ity to differentiate to ASC of IgM mBc compared to switch mBc in our assay (Fig 4). Activation
through TLR9 has been shown to selectively provoke proliferation of mBc and in particular of
IgM mBc [5, 41, 42]. In agreement with our results for surface protein (Fig 2), a tendency to
higher expression of TLR9 mRNA has been shown in IgM mBc than in naïve Bc and switch
mBc [45]. Although this difference may explain in part the functional differences of IgM and
switched mBc (Figs 3, 4 and 5), this interpretation must be taken with precaution because most
of this receptor is expressed intracellularly [4] and when we measured intracellular TLR9 no
differences were observed between IgM and switched mBc (S3 Fig). Since we included IL–2 in
the Bc cultures, higher expression of CD122 (the IL–2 receptor) on IgMmBc could also par-
tially explain the increased proliferation of these cells (Figs 3, 4 and 5). Because we also
included IL–10 and IL–6 in our cultures, higher expression of IL-10R but lower expression of
IL-6R mRNA by IgMmBc than in switched mBc [25] may also modulate the increased prolif-
eration/differentiation of the former. Compared to switched mBc lower frequencies of IgM
mBc express CD95 (Fig 2), which regulates Bc survival [32]. The expression of this marker on
mBc may also give them an in vitro survival advantage that could be reflected on their
increased proliferation frequencies (Fig 4).

The capacity of a cell to switch has been related to the presence of CD40 [46], BAFF-R [47],
CD73 [31], IL21R [43] and TLR9 [48]. Of these markers, CD73 seems like a good marker to
identify the subset of IgM mBc that switch in vitro in response to our stimulus (Fig 5). In favor
of this hypothesis, it was recently reported that the presence of CD73 correlated with the capac-
ity to switch isotype of IgM mBc [31]. Moreover, in mice, CD73+ mBc are enriched in those
with somatic mutations [9] and GC- IgM mBc were mainly CD73+ [7]. However, the frequen-
cies of CD73 expressing IgMmBc [31] (Fig 2) are higher than those of cells undergoing isotype
switch (Fig 5). Using a combination of CD73 with one or more of the above mentioned differ-
entially expressed markers involved in activation, survival, or isotype switch may be useful to
identify IgM mBc that switch isotype after this stimulus.

The nature of human blood IgM+ CD27+ Bc is a subject of controversy [11, 30]. At least a
part of the subset that expresses IgD seem to be innate Bc with a pre-diversified repertoire of Ig
[49, 50], which share many markers with spleen marginal zone—and similar to those present
in mice—but capable of circulating in blood [10]. Besides, some studies [51], but not other
[52], have shown that the CD27+ IgM+ IgD+ Bc are clonally related to switched mBc, suggest-
ing that at least a fraction of these Bc may be true IgM mBc. In support for this hypothesis,
CD27+ IgM+ IgD+ cells transferred to immunodeficient mice immunized with Streptococcus
pneumoniae [53] can develop specific IgG mBc. The existence of human blood IgM+ IgD+ mBc
specific for rotavirus [17, 18], tetanus toxoid [17, 54], and the D antigen [54] also suggest that
at least a fraction of CD27+ IgM+ IgD+ Bc are true mBc. Finally, as previously mentioned, IgM
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mBc (excluding IgM only mBc) share a similar gene expression pattern with switched mBc
[25]. Thus, the CD27+ IgM+ IgD+ Bc seem to be heterogenous, a part being innate (related to
marginal zone Bc) while other being antigen dependent mBc (probably GC-) [11].

In conclusion, we have shown that a subset of IgM mBc rapidly proliferate and differentiate
to ASC early after stimulation with CpG/cytokines. The functional assay we have described
(Figs 4 and 5), applied to subsets of purified Bc selected based on combinations of the markers
that differentiate naïve Bc and IgM and switched mBc (Fig 2), may be useful to identify various
subpopulations among the IgM mBc.

Supporting Information
S1 Fig. Initial work-flow and pre-gating for phenotype and sorting experiments. As indi-
cated in the figure, sorting experiments include a negative microbead enrichment step that
incorporated microbeads with antibodies against CD3, CD14, CD16, and CD56. Moreover,
staining for both phenotype and sorting experiments included a dump channel with antibodies
against CD3, CD14, and AQUA.
(TIF)

S2 Fig. Phenotypic profile of the three Bc subsets. Representative histograms of the markers
studied in naïve Bc (blue), IgM mBC (red) and Sw mBc (green) subsets. Solid gray histogram
represents fluorescence minus one (FMO).
(TIF)

S3 Fig. Intracellular expression of TLR9. Summary of intracellular TLR9 iMFI of naïve Bc
and IgM mBC and Sw mBc (n = 6).
(TIF)

S4 Fig. Proliferation kinetics and differentiation to ASC (CD38hi CD27hi) of IgM and
switched mBc. Kinetic experiment of proliferation and differentiation to ASC (CD38hi

CD27hi) of IgM (brown) and switched mBc (blue) four days after stimulation with CpG, a
cocktail of cytokines (IL–2, IL–6, and IL–10), and murine fibroblasts (as feeder cells) for two,
three, four, and five days. Kinetic experiments for early (one, two or three days) and late
responses (five, seven and ten days) were also performed using ELISPOT as readout (data not
shown). Since the early time point experiments showed comparable results to the flow cytome-
try presented in this figure and cell mortality was above 80% in the late time point experiments
(data not shown), we chose day four for the experiments reported elsewhere in this paper.
(TIF)

S5 Fig. Post sort control for intracellular expression of IgG on sorted naïve Bc IgMmBc
and Sw mBc. Cells from a buffy coat were sorted like for the functional experiments of Figs 3
and 4 and directly stained for intracellular IgG as described for Fig 5.
(TIF)
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