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The whole-genome sequences of progenies with low-density single-nucleotide
polymorphism (SNP) genotypes can be imputed with high accuracy based on the
deep-coverage sequences of key ancestors. With this imputation technology, a more
powerful genome-wide association study (GWAS) can be carried out using imputed
whole-genome variants and the phenotypes of interest to overcome the shortcomings
of low-power detection and the large confidence interval derived from low-density SNP
markers in classic association studies. In this study, 19 ancestors of a large-scale
swine F2 White Duroc × Erhualian population were deeply sequenced for their genome
with an average coverage of 25×. Considering 98 pigs from 10 different breeds with
high-quality deep sequenced genomes, we imputed the whole genomic variants of 1020
F2 pigs genotyped by the PorcineSNP60 BeadChip with high accuracy and obtained
14,851,440 sequence variants after quality control. Based on this, 87 novel quantitative
traits loci (QTLs) for 18 hematological traits at three different physiological stages of
the F2 pigs were identified, among which most of the novel QTLs have been repeated
in two of the three stages. Literature mining pinpointed that the FGF14 and LCLAT1
genes at SSC11 and SSC3 may affect the MCH at day 240 and MCV at day 18,
respectively. The present study shows that combining high-quality imputed genomic
variants and correlated phenomic traits into GWAS can improve the capability to detect
QTL considerably. The large number of different QTLs for hematological traits identified
at multiple growth stages implies the complexity and time specificity of these traits.

Keywords: GWAS, imputation, hematology, pig, whole-genome sequence

INTRODUCTION

Hematological traits, which are associated with the immune system (Oddgeirsson et al., 1988;
Muller and Brem, 1991), have been widely used as biomarkers to detect the signs of diseases and
disease severity in human and animals. Hematological cells consist of three different kinds of cells:
leukocytes (white blood cells, WBCs), erythrocytes (red blood cells, RBCs), and platelets, which
perform different roles in blood (Tullis, 1952). WBCs are called immune cells and play the function
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of defending against bacteria or fungi and protecting an organism
from disease. RBCs exchange oxygen and carbon dioxide in
the respiration of vertebrate animals. Platelets play key roles in
wound healing and inflammatory response (Toby Simon, 2001).
Identifying highly associated SNPs and deciphering the genetic
mechanism of hematological traits would help in dealing with
hematological diseases.

The researchers have paid considerable attention to
hematological traits in humans. The heritabilities of RBC,
WBC, and platelet count have been estimated to be 0.42, 0.62,
and 0.57, respectively, indicating moderately or highly heritable
traits (Garner et al., 2000). Some heritability studies on twins
have proven that hematological traits are highly heritable and
tightly interactive (Evans et al., 1999; Garner et al., 2000). In 2012,
common genetic factors for hematological traits in humans were
reviewed in detail by Okada and Kamatani (2012). In the last
5 years, several missense variants in CXCR2 associated with the
reduction of WBC count, a common missense variant in CPS1
and a rare synonymous variant in GFI1B that caused a lower
platelet count, and a mass of genes and loci-related hematological
parameters have been detected by adopting the genome-wide
association studies (GWAS) approach (van der Harst et al., 2012;
Auer et al., 2014; Polfus et al., 2016; Ulirsch et al., 2016). Due to
the strong similarity with human physiological characteristics,
the domestic pig serves as a suitable model animal in elucidating
the genetic mechanism of hematological traits in humans
(Swindle et al., 2012).

To date, a total of 356 quantitative trait loci (QTLs) associated
with swine hematological traits have been identified by linkage
mapping recorded in the AnimalQTLdb database (Hu et al.,
2007), but because of the large confidence intervals and large
number of genes in these QTL regions, the identification of
potential causal genes would be obstructed to some extent.
With the discovery of massive numbers of genetic markers and
the advent of high-throughput technology to genotype animals
for hundreds of thousands of single-nucleotide polymorphisms
(SNPs) in a cost-effective way, GWAS is widely applied in
the fields of human and livestock for traits of interest. For
the hematological traits in pigs, hundreds of significant SNPs
located in the whole genome except chromosomes 14 and 16
were identified using the PorcineSNP60 BeadChip (Illumina Inc.,
San Diego, CA, United States) based on GWAS in diversified
pig populations (Luo et al., 2012; Wang et al., 2013; Zhang
et al., 2013, 2014; Jung et al., 2014; Ponsuksili et al., 2016). The
effects of uncovered significant loci are population- or breed-
specific and only a small fraction of loci are consistent among
these studies, implying the complexity and heterogeneity of
hematological traits. On the other hand, those massive significant
SNPs can explain only a relatively small fraction of phenotypic
variance, ranging from 4.75 to 19.41% of hematological traits
(Zhang et al., 2014). The remaining and missing heritability has
been discussed in 2009 (Manolio et al., 2009). A fairly stringent
statistical threshold, numerous small-effect loci affecting traits,
and the relative low linkage disequilibrium (LD) among markers
should be most likely responsible for the missing heritability. All
these genes with small effects can together explain the majority of
the genetic variance for most of these traits (Yang et al., 2010).

In our previous study, we performed a GWAS analysis in
a White Duroc × Erhualian F2 resource population using the
PorcineSNP60 BeadChip, and we identified 185 significant SNPs
distributed on chromosomes 1, 4, 5, 7, 8, 10, 11, 12, 13, 17,
and 18, affecting hematological traits at three different growth
stages (Zhang et al., 2013). To obtain the majority of the
remaining genetic variance and to overcome the weakness of
low efficiency caused by low LD in detecting small-effect QTLs
when using low-density BeadChip (Supplementary Figure S1),
we carried out a single- and multitrait association study using
imputation-based whole-genome sequence data in the same F2
resource population. As causal variants and higher LD may have
been included in the whole-genome sequences, the detection
power for small-effect variants would improve. We herein aim
to explore more loci associated with hematological traits using a
whole-genome sequence based on imputation in pigs.

MATERIALS AND METHODS

Ethics Statement
All the processes involving animals are in accordance with the
care and the guidelines of experimental animals established by
the Ministry of Agriculture and Rural Affairs of the China. The
ethics committee of Jiangxi Agricultural University specifically
approved this study.

Animals and Phenotypic Measurements
The description of the White Duroc × Erhualian F2 resource
population and the related method of phenotypic measurement
have been described in detail in our previous publications
(Zou et al., 2008; Guo et al., 2009; Yang et al., 2009). In short,
a total of 1912 F2 individuals were produced from two White
Duroc boars and seventeen Erhualian sows. All F2 piglets
were fed under the same circumstance in a pig farm at Jiangxi
Agricultural University. Eighteen hematological parameters from
1449 F2 individuals were measured at three growth-age stages,
i.e., days at 18, 46, and 240. These hematological parameters
include seven erythroid parameters [hematocrit (HCT),
hemoglobin (HGB), mean corpuscular hemoglobin (MCH),
mean corpuscular hemoglobin concentration (MCHC), mean
corpuscular volume (MCV), red blood cell count (RBC), and red
blood cell volume distribution width (RDW)], seven leukocyte
parameters [granulocyte count (GRAN), granulocyte count
percentage (GRAR), monocyte count (MON), monocyte count
percentage (MONR), lymphocyte count (LYM), lymphocyte
count percentage (LYMA), and white blood cell count (WBC)],
and four platelet parameters [plateletcrit (PCT), platelet
distribution width (PDW), platelet count (PLT), and mean
platelet volume (MPV)].

Processing With Reference and Target
Panels
One hundred and seventeen individuals with whole-genome
sequence data produced by the Illumina HiSeq 2000 platform
with an average depth of ∼25 coverages were introduced as the
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reference panel; of the individuals, 19 F0 individuals are the
progenitors of the 933 F2 resource populations (target panel)
and 98 unrelated pigs are from nine diverse breeds and one
wild boar population. Sixty-nine unrelated pigs were used in a
study of adaptation and introgression project (Ai et al., 2015).
Briefly, these 69 pigs comprising 6 Bamaxiang, 6 Luchuan, 6
Wuzhishan, 6 Jiangxi Wild boar, 5 Erhualian, 6 Hetao, 6 Laiwu,
6 Min, 4 Gansu Tibetan, 6 Sichuan Tibetan, 6 Tibet Tibetan,
and 6 Yunnan Tibetan represent both low- and high-latitude
populations of pigs in China. After being sequenced, the raw
reads were firstly trimmed based on a quality score threshold
>15; reads that passed the chastity filtering were then aligned
to the reference porcine genome assembly Sus-scrofa 10.2
(Groenen et al., 2012) using the Burrows–Wheeler aligner tool
(Li and Durbin, 2009). Variants were called following the
genome analysis toolkit (GATK) (McKenna et al., 2010) best
practice protocol. PCR duplications were firstly marked by Picard
MarkDuplicates1, and local realignments were performed with
the GATK IndelRealigner option. Then, variants were filtered
with the GATK VariantFiltration option, and insertions and
deletions were performed with VCFtools (Danecek et al., 2011).

A subset of this resource population with 62,163 loci detected
by PorcineSNP60 BeadChip was treated as the target panel.
The target panel included 19 F0, 68 F1 and 933 F2. The
19 F0 ancestors included both resequencing variants and 60K
genotypes. Individuals were genotyped by the PorcineSNP60
BeadChip following a standard protocol on an iScan system.
A more complete description, including methods and the criteria
of quality control (QC) of this SNP dataset can be found in our
previous report (Zhang et al., 2013). To keep the alleles consistent
with the reference panel, the following analysis was carried out.
The information of forward or reverse strands of each SNP in
the PorcineSNP60 BeadChip was firstly annotated by BLAST
(Altschul et al., 1990). Then, the reversed SNPs in the target
panel were flipped by PLINK (v1.9) software (Chang et al., 2015).
The SNPs without specific information of chromosomes and (or)
positions were excluded from further analysis.

Haplotype Construction of Reference
Panel and Target Panel
The accuracy of the haplotypes of the ancestors (F0) is critical
for high-quality imputation of the F2 population. The number
of individuals present in a population is a crucial factor in
determining how well the phase can be estimated for haplotype
construction. Browning and Browning (2011) and Williams et al.
(2012) have fully demonstrated the relationship between sample
size and haplotype accuracy; the more individuals, the better
the haplotype estimation. In our study, to obtain more accurate
phases of the 19 founders, an additional 98 unrelated pigs were
added into the reference panel. The haplotypes of the reference
panel were constructed by SHAPEIT (v2 r837) (Delaneau
et al., 2013). To improve the accuracy of the construction of
haplotypes, phase informative reads (PIRs) that span at least
two heterozygous sites were firstly extracted from aligned bam
files by using the extractPIRs program from SHAPEIT appendix,

1http://broadinstitute.github.io/picard/

setting the –base-quality and –read-quality options to 20 and 30,
respectively. Combined with the variants files, PIRs were then
involved in haplotype construction using the standard Markov
chain Monte Carlo iterative procedure of the phasing module
(-assemble) in SHAPEIT and the window was set to 0.2 Mb by
the –window parameter. Haplotypes of the target panel were
constructed and improved by taking advantage of both linkage
and LD information using DualPhase software; It firstly phased a
large proportion of loci and individuals based on Mendelian rules
and linkage information using the pedigree relationship of the F2
population; then, the remaining small part of the unphased loci
were haplotyped based on a hidden Markov model (Druet and
Georges, 2010).

Imputation of Sequence Variants
Subsequently, the genotype imputation between the target and
reference panels with known phase information were performed
by IMPUTE2 (v.2.3.2) (Howie et al., 2009). Specifically, the
option of -use_prehased_g was required to set IMPUTE2 in the
prephasing mode. Then, the size of the region to be imputed on
the current chromosome was set to a 5 Mb window with the
-int option. Finally, the other options used in the imputation
follow the default setting. Imputation accuracy was automatically
assessed by an internal cross-validation strategy in IMPUTE2.
Briefly, it masked the variants of one SNP in the target panel
at a time, and then the masked genotypes were imputed by
the information of the reference panel and the nearby studied
variants. Then, the genotypic concordance rate and the squared
correlation (R2) between the best-guess imputed and the original
variants were calculated as imputation accuracy.

To investigate the imputation accuracy further, we carried
out whole-genome resequencing for five experimental animals
in the present study population including two F1 and three
F2 individuals. The SNP calling of these five individuals was
performed following the pipeline described above. The R2 value
between the sequenced variants and the best-guess imputed
variants across chromosomes was calculated.

Furthermore, to obtain relatively accurate imputation results
that would be used for the following GWAS, a series of methods
were applied into the GEN file format from the imputation result.
As the GEN file contains the information of genotype probability,
we used a cutoff of 0.5 to convert the GEN file into a common
PED file by GTOOL2 as it best balanced the imputation accuracy
and the missing proportion in the next analysis process. Then,
variants with a call rate <90% and a minor allele frequency
(MAF) <0.01 were further excluded by PLINK.

Phenotypic and Genetic Correlation
The estimated breeding value (EBV) of all experimental
animals for 54 hematological traits were estimated by
Bayesian sparse linear mixed models implemented in Gemma
(v.0.94) (Zhou et al., 2013). The phenotypic correlation and
the genetic correlation were calculated by using the cor
function using the Pearson correlation coefficient in the stats
package.

2http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html
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Single-Trait GWAS Analysis
A univariate linear mixed model (see Eq. 1) implemented in
GEMMA (v.0.94) is employed for the single-marker association
test between variants and phenotypes (Zhou and Stephens, 2012),
and is described in the following equation:

y =Wα+xβ+u+ε; u ∼ MVNn
(
0, λτ−1K

)
,

ε ∼ MVNn
(
0, τ−1In

)
(1)

where y is the vector of phenotypic observation; W is a design
matrix of covariates, including a column of 1 s; α is a vector
of fixed effects (e.g., gender); x is a vector of genotypes at each
locus; β is the effect of the marker; u is a vector of random
effects following the multivariate normal distribution (see Eq. 1),
in which τ−1 is the variance of the residual errors, λ is the
ratio between τ−1 and the variance of polygenetic effects, and
K is a kinship matrix estimated from whole-genome sequence
variants; ε is a vector of errors following the multivariate normal
distribution (see Eq. 1) and In is an identity matrix. Using
naïve Bonferroni corrections of 0.05 divided by the number
of examined SNPs to correct multiple comparisons would lead
to an overly conservative threshold in our study because these
SNPs were highly correlated with each other. Pe’er et al. (2008)
and Johnson et al. (2010) suggested that 5E-08 could serve as a
genome-wide significant threshold in human GWASs based on
independent haplotype blocks of an African population structure.
Based on the assumption that an equal number of independent
haplotype segments between pigs and humans are held, we used
the same genome-wide threshold in our study.

Multitrait GWAS Analysis
Hierarchical clustering of the traits in multitrait-GWAS was
performed by using the function corrplot in the corrplot R
package with the agglomeration method of “complete,” which
employs the longest distance principle to generate clusters. Based
on the clusters of phenotypic and genetic correlation from
different stages, the multitrait association tests between variants
and multiple correlated phenotypes were carried out by the
multivariate linear mixed model (see Eq. 2) implemented in
GEMMA (v. 0.94) (Zhou and Stephens, 2014), which is described
in the following equation:

Y =WA+xβT+U+ E; U ∼ MVNn×d
(
0, K, Vg

)
,

E ∼ MNn×d (0, In×n, Ve) (2)

where n and d are the numbers of individuals and phenotypes,
respectively. Y is a n by d matrix of phenotypic observation; W is
an n by c design matrix of covariates, including a column of 1 s;
A is a c by d matrix of fixed effects (e.g., gender); x is a vector of
genotypes at each locus; β is a d vector of marker effect sizes for
d phenotypes; U is an n by d matrix of random effects following
the n × d matrix normal distribution (see Eq. 2), in which K is a
relatedness matrix generated by genotypes of n individuals, and
Vg is a d by d matrix of genetic variance components; E is an n
by d matrix of errors, in which In × n is an n by n identity matrix,

and Ve is a d by d matrix of environmental variance components.
The genome-wide significant threshold in multitrait GWAS was
also set to 5E-08 as mentioned above.

RESULTS

Phenotypic and Genetic Correlations
In this study, 1020 individuals in three generations, including
19 F0, 68 F1, and 933 F2 were genotyped by the PorcineSNP60
BeadChip. The number of individuals measured for each trait
ranged from 181 to 924 (Supplementary Table S1). The
detailed descriptive statistics of these 18 hematological traits were
presented in our previous report (Zhang et al., 2013).

The detailed information about phenotypic correlation
and genetic correlation across the three different stages
were presented (Supplementary Figure S2). Some traits
were excluded because there were too few records in those
traits (Supplementary Table S1). There is a highly similar
correlation pattern between the phenotypic correlation and
genetic correlation for these traits; for example, traits with a
high positive phenotypic correlation also have a high positive
genetic correlation and vice versa. To further explore potential
common genetic factors for multiple traits, we performed
clustering analysis for the hematological traits using their genetic
correlation matrix. Briefly, HCT, HGB, MCH, and MCV at day
18 were clustered to one group (Supplementary Figure S2A). At
day 46, there was also only one cluster with many significant
positive correlations among traits including GRAN, GRAR,
MCH, and MCHC (Supplementary Figure S2B). For day 240,
RDW, PCT, PLT, LYM, and LYMA were clustered to one group
and MON, MONR, GRAN, GRAR, RBC, HCT, and HGB traits
were clustered into another group (Supplementary Figure S2C).
Here, a correlation cluster including at least four traits was used
in the multitrait GWAS analysis process.

Summary Imputation
The distributions of proportion of the variants across MAF
for 60 K and imputation results before QC are compared in
Figure 1A. Both of them had a more than 15% homozygote rate
in this population. In general, the imputed variants had a larger
proportion of low frequency loci (below 0.2) when compared
to 60K SNP classes. Finally, 1020 individuals with 40,057 sites
were regarded as the target panel. More than 20 million variants
were imputed for 1020 animals. After trimming the genotype
probability with a threshold of 0.5, several variants contained
missing values in PED files. We repeated the QC process using
thresholds of missing rate of each variant and MAF. 2,572,745
variants with a low call rate (0.9) and 4,200,615 variants with a
low MAF (0.01) were discarded further in the QC process. Thus,
a total of 14,851,440 variants were retained for the following
GWAS process (Figure 1B).

To investigate the imputation accuracy across MAF in detail,
we studied the genotypic concordance rate and R2 according to
MAF and chromosome (Figures 2A,B). Genotypic concordance
rate and R2 between the best-guess imputed and true variants
in the cross-validation reached an average of 89 and 80%,
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FIGURE 1 | Imputation of whole-genome sequence variants. Distribution of SNP frequencies of 60 K and imputed variants across MAF classes (A). Quality control
for imputed variants with MAF and genotype missing rate (B).

respectively. With the increasing of MAF, R2 increased from
23 to 88%, while genotypic concordance rate decreased from
97% to approximately 86% (Figure 2A). The whole-genome
genotypic concordance rate fluctuated between 85 and 92%,
with R2 fluctuating between 73 and 85%, and varying across
chromosomes (Figure 2B). R2 between variants in five sequenced
individuals and best-guess imputed variants, fluctuated between
79 (s35) and 87% (s1143) across individuals (Figure 2C).

Single-Trait GWAS
Totally, we identified 197 QTLs for all hematological traits
at three different stages. Among them, we obtained 75, 86,
and 36 QTLs for hematological traits at day 18, day 46,
and at day 240, respectively. With regard to the three classes
of hematological traits, we identified 108, 76, and 13 QTLs

for erythroid parameters, leukocyte parameters, and platelet
parameters, respectively. To detect the number of independent
QTLs identified in this study, we defined a minimum distance
of 5 Mb between two top SNPs to differentiate two independent
QTLs. Thus, we identified 95 unique QTLs, 87 of which are
novel compared to the 60 K GWAS in the same population.
Furthermore, we identified a series of significant variants located
on some annotated protein-coding genes.

Loci for Erythrocyte Traits
One hundred and eight QTLs significantly associated with
the seven erythrocyte traits in different stages were identified.
The Manhattan plots for these association results and detailed
information across the three different stages are presented
in Figure 3, Table 1, Supplementary Figures S3, S4, and
Supplementary Table S2. Among the 108 QTLs, 22, 68, and
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FIGURE 2 | Imputation accuracy. The imputation accuracy from IMPUTE2 internal cross-validation across MAFs (A) and chromosomes (B). R2 is the squared
correlation. The squared correlation between five sequenced and imputed individuals (C).

18 QTLs were identified for days 18, 46, and 240, respectively.
There is no significant variant association with RDW at day 18,
and HGB and RBC at day 46 (P > 5E-08). Variants affecting
HCT, HGB, and RBC at day 18 are located on SSC9 and near
within 1 Mb, and are treated as identical QTLs (P = 1.18E-14,
P = 1.01E-13, and P = 2.27E-11). The nearest gene in this
region is the serine/threonine kinase 33 (STK33) gene. We also
identified a QTL at 304,622,788 bp located on SSC1 that possibly
affected HCT and HGB at day 18. The most significant SNP
(P = 1.51E-09) was located on the far upstream element-binding
protein 3 (FUBP3) gene. Several significant loci were detected
for erythrocyte traits at day 46, especially for HCT, MCHC,
and MCV (Supplementary Figure S3). Regarding the traits at
day 240, one and two novel QTLs were detected for MCH and
MCHC, respectively. And some QTLs located on SSCX were
identified for MCV and RDW. The novel locus associated with
MCH was located at ∼77 Mb on SSC11 including 23 significant
SNPs (P < 5E-08). The most significant SNPs (P = 1.97E-
09) were exactly located within the fibroblast growth factor 14
(FGF14) gene. The two novel QTLs associated with MCHC were

located on SSC6 and SSC17, respectively. More information
about significant SNPs are listed in Table 1 and Supplementary
Table S2.

Loci for Leukocyte Traits
Seventy six loci significantly associated with the seven leukocyte
traits at different stages were detected. The related Manhattan
plots and detailed information across three different stages are
presented in Supplementary Figures S5–S7 and Supplementary
Table S2. Among the 76 loci, 47, 11, and 18 QTLs were
identified to be responsible for the seven leukocyte traits at the
three different stages, respectively. At day 18, many QTLs were
identified for MON, MONR, and WBC. One locus near the
FGF14 gene located on SSC11 was simultaneously associated with
GRAN, LYM, and WBC at day 18. There was only one possible
QTL located on SSC8 that affected GRAR at day 18. This region
held 35 significant SNPs, where the most significant SNP was
at the position of 10,485,550 bp and located in the coiled-coil
and c2 domain containing 2A (CC2D2A) gene. At day 46, the
majority of QTLs were identified associated with MONR. At day
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FIGURE 3 | Single-marker GWAS results for seven erythrocyte traits at day 18. The y-axis and the x-axis represent the negative log10 P-value of the SNPs and the
genomic positions separated by chromosomes, respectively, and the black solid lines indicate the significance threshold (negative log10 5E-08).

240, some identical QTLs were uncovered for MON and MONR.
There is no significant association for lymphocyte count (LYM)
and WBC (P > 5E-08). The detailed descriptions of significant
SNPs across the three different stages of QTLs are presented in
Supplementary Table S2.

Loci for Platelet Traits
Unlike the plenty of loci identified for erythrocyte and leukocyte
parameters, only a few loci were identified for platelet traits
(Supplementary Figure S8 and Supplementary Table S2). Six
and seven loci were associated with platelet traits at days 18
and 46, respectively. There was no significant association with
platelet traits at day 240. Although some SNPs were significantly
associated with MPV at day 18, no annotated gene was found
around a distance of 700 Kb near the most significant SNP
(P = 4.44E-10). For PDW at day 18, a region of 1.56 Mb
on SSC5 was identified including 13 significant SNPs, and
the most significant SNP (P = 2.2E-08) was located in the
activating transcription factor 7 interacting protein (ATF7IP)
gene. Fourteen significant SNPs located on SSC11 were detected
for PDW at day 46. The most significant SNP (P = 1.19E-09) was
located in the integrin subunit beta like 1 (ITGBL1) gene.

Multitrait GWAS
For these four multitrait GWAS of correlated traits, we identified
eight, one, four, and three novel significant loci, respectively,
compared to single-trait GWAS (Figure 4, Supplementary
Figure S9 and Supplementary Table S3). The multitrait GWAS
(including HCT, HGB, MCH, and MCV traits) at day 18
identified two, one, two, one, and two loci located on SSC3, SSC5,
SSC7, SSC9, and SSC10, respectively (Supplementary Table S3).
The most significant SNP (P = 2.33E-08) was located on SSC3
at 115 Mb near to an annotated gene called the lysocardiolipin
acyltransferase 1 (LCLAT1) gene. The other significant SNPs are
listed in Supplementary Table S3.

DISCUSSION

Genotype Imputation
In the current study, we obtained 14,851,440 variants with a
high imputation accuracy. Genotypic concordance rate and R2

between the best-guess imputed and true variants in the
cross-validation reached an average of 89 and 80%. In the
case of the pig, most studies focused on the imputation
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TABLE 1 | Genome-wide significant loci associated with erythroid traits at day 18 obtained by single-trait GWAS.

Trait1 Chr2 Pos (bp)3 P-value Num4 Nearest gene5 Dis (bp)6 Maf7

HCT18 1 304,622,788 1.51E-09 297 FUBP3 Within 0.04

HCT18 3 5,110,712 5.65E-10 86 USP42 4297 0.019

HCT18 9 1,131,862 1.18E-14 179 STK33 8983 0.018

HCT18 12 12,753,349 1.07E-11 7 AXIN2 91,972 0.015

HGB18 1 304,622,788 8.41E-09 210 FUBP3 Within 0.041

HGB18 2 152,599,639 2.16E-08 2 NA NA 0.012

HGB18 9 3,329,737 1.01E-13 157 OR6A2 183684 0.022

HGB18 12 12,995,699 3.54E-09 7 APOH 146651 0.017

MCH18 4 16,730,041 1.17E-08 14 WDYHV1 Within 0.146

MCHC18 3 5,155,853 9.79E-09 156 EIF2AK1 Within 0.019

MCHC18 3 27,061,999 4.64E-08 5 TMC7 57,656 0.011

MCHC18 5 63,702,557 9.37E-10 490 BCL2L14 Within 0.014

MCHC18 6 7,942,824 6.17E-09 6 CDYL2 247,063 0.047

MCHC18 15 53,936,604 7.10E-09 1 KLKB1 Within 0.017

MCHC18 16 3,021,631 2.26E-08 1 NA NA 0.013

MCV18 8 76,425,157 4.47E-08 25 SHROOM3 22105 0.502

MCV18 16 3,226,563 4.13E-08 1 NA NA 0.02

RBC18 3 5,110,712 6.09E-09 3 USP42 4297 0.019

RBC18 8 47,538,823 2.50E-11 1222 PDGFC 136,724 0.251

RBC18 8 66,311,823 4.69E-10 2183 TECRL Within 0.28

RBC18 9 1,131,862 2.27E-11 176 STK33 8983 0.018

RBC18 12 12,753,349 1.65E-09 7 AXIN2 91,972 0.015

1Abbreviations of hematological traits, i.e., HCT18 is hematocrit at day 18. 2Chromosomal locations of the most significant SNPs. 3Positions of the most significant SNPs
according to sus scrofa 10.2 genome assembly. 4The number of SNPs that reached the threshold (P < 5E-08). 5The nearest annotated genes from the most significant
SNPs. 6The distance from the most significant SNPs to the nearest genes. 7The frequency of the most significant SNPs.

FIGURE 4 | Multitrait GWAS results for correlated hematological traits at day 18. The multiple traits include HCT, HGB, MCH, and MCV at day 18. The y-axis and the
x-axis represent the negative log10 P-value of the SNPs and the genomic positions separated by chromosomes, respectively, and the black solid lines indicate the
significance threshold (negative log10 5E-08).

from low-density genotypes to 60 K variants with correlations
ranging from 0.938 to 0.992 for imputation from 3 to 60 K
(Cleveland and Hickey, 2013), and with R2 ranging from 0.88
to 0.95 for imputation from 9 to 60 K (Badke et al., 2014).
However, few studies reported the imputation accuracy from
60 K to a whole-genome sequence in the pig. Genotypic
concordance rate was reported to be 92.1% from 80 to 650 K
and 85.6% from 650K to whole-genome sequence variants using
a stepwise imputation strategy in 1,363 Duroc pigs (Zhang et al.,
2018), and was lower compared to the present study (89%).
Another study showed an average correlation of 80% between
the true and imputed genotypes ranging from 0.74 to 0.86
with imputing 60K to whole-genome sequence variants in Sutai

pigs (Yan et al., 2017). Sometimes, comparing the imputation
accuracy among different studies is difficult since it is defined
in different ways. Genotypic concordance rate is highly sensitive
to MAF and is not appropriate for comparing genotypes with
different MAF. To directly compare other studies, we adopted
both genotypic concordance rate and R2 to estimate imputation
accuracy.

Many factors affect the accuracy of imputation from low- or
medium-density genotypes to whole-genome sequence data. As
the whole-genome sequence data contains a huge percent of low
MAF variants compared to chip data, imputation accuracy will
be affected by those low MAF variants more in the imputation to
whole-genome sequence data. In the present study, R2 decreased
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from 72 to 22% when the MAF decreased from 0.1 to 0. In
other studies, the same trend was found (Daetwyler et al., 2014;
van Binsbergen et al., 2014). The relationships between the
target and reference panels is another key factor that influences
imputation accuracy (van Binsbergen et al., 2014). We sequenced
19 ancestors of F2 to achieve a high imputation accuracy.
LD and reference size will also affect the imputation accuracy
according to many studies (van Binsbergen et al., 2014). Usually,
a smaller distance between markers in the target panel and in
reference would lead to a higher imputation accuracy. Thus,
imputation accuracy can be improved by considering different
factors, which will lead to a high accuracy in GWAS and genomic
selection.

Whole-Genome Association vs. 60K
GWAS and Potential Novel Candidate
Genes
With the development of advanced statistical models and the
decrease of genotyping cost, GWAS has become a considerably
effective and popular method to search for the association
between the genetic variants and complex traits across the
whole genome (Hirschhorn and Daly, 2005). Previously, by
performing a single-marker GWAS and a LONG-GWAS in the
same population of 18 hematological traits at three different
stages using PorcineSNP60 BeadChip (Zhang et al., 2013),
we identified 38 genome-wide significant regions distributed
on SSC1, 4, 5, 7, 8, 10, 11, 12, 13, 17, and 18, which
only confirmed 10 QTLs (Supplementary Figure S10 and
Supplementary Table S4) from the linkage mapping result
obtained using 194 microsatellites for traits of seven erythroid
parameters at three stages, and five leukocyte and four platelet
parameters at day 240 within the same population (Zou et al.,
2008; Yang et al., 2009). Because of the relatively shorter LD
(10.5 kb) decay distance (threshold: r2 = 0.3) in most native
pigs than in western pigs (Ai et al., 2013), and the density
of the current 60 K BeadChip cannot effectively cover the LD
block (∼80 kb), if there is no marker in tight LD with casual
variants in a such broader region, no significant association
signal would be detected as LD decreased rapidly. Thus, some
QTLs were missing when we conducted the 60 K GWAS.
In comparison, the whole-genome sequence including almost
genetics variants across genome as well as causative mutation for
traits of interesting association between causative variants and
phenotypes can meet the shortcoming of low-density BeadChip
based association.

After performing the whole-genome association study, we
identified 108, 76, and 13 QTLs for erythroid, leukocyte, and
platelet traits, respectively. Among these QTLs, 95 QTLs are
unique and 87 QTLs are novel when compared to the 60K
GWAS result in the same population (Supplementary Table
S4), of which 39, 41, and 7 are novel QTLs for erythroid,
leukocyte, and platelet traits, respectively. These novel QTLs
distributed on almost all chromosomes except chromosome 18
across the whole genome. Because of the numerous novel results,
we herein paid more attention to the gene which is function-
related to each trait or the gene which the most significant

SNP is rightly located on for each trait. We identified one
locus that affected LYM and WBC at day 18 with the most
significant position of 50, 736, and 762 bp (PLYM = 2.03E-10
and PWBC = 7.10E-10), which is near the TOX2 gene. TOX2
is a transcription factor that shares a highly conserved high-
mobility group DNA-binding domain with the other TOX family
members. A recent study shows that TOX2 can regulate the
development of natural killer cells with the control in T-BET
expression (Vong et al., 2014). Another study illustrates that TOX
is a requirement for the differentiation of common lymphoid
progenitors into innate lymphoid cells in vivo (Seehus et al.,
2015). These evidences imply that TOX2 gene may be a candidate
gene for WBC and LYM at day 18. Furthermore, except the
QTL on SSC8, we identified another novel QTL located on
SSC11 associated with MCH at day 240. This region including
23 significant SNPs, with the top SNP located at the position
of 77,754,820 bp (MAF = 0.212, P = 1.97E-09) and posited
the fibroblast growth factor 14 (FGF14) gene. Fibroblast growth
factors (FGFs) family are involved in a variety of biological
processes. Among the Fgf family, FGF14 is one member of
the intracellular subfamily, also known as iFGFs (Itoh and
Ornitz, 2008). The iFGFs function as intracellular proteins
in an FGFR-independent way (Wang et al., 2000; Goldfarb,
2005). FGF14 was identified to be associated with neuronal
signaling in mice (Wang et al., 2002). Recent studies on the
FGF14 gene focused on neurology in humans and in mice
(Amado et al., 2017; Di Re et al., 2017; Hsu et al., 2017).
Interestingly, this gene was also identified to be a candidate
for teat number in Duroc pigs (Tan et al., 2017), implying
the pleiotropy of FGF14. These new candidate genes could
help to complete the gene regulatory network of hematological
traits.

We almost confirmed all the QTLs identified in our prior 60K
GWAS based on a single-marker, except the QTLs located on
SSC5, SSC7, and SSC13 for MCH at day 18, WBC at day 240,
and PDW at day 46. The undetected signal is probably because of
the higher threshold in the whole-genome GWAS. In particular,
as to the QTLs located on SSC7 or SSC8 for HCT, MCH, and
MCV at day 240, respectively, we did not discuss these QTLs in
detail here, because the conditional GWAS was performed and
results have been elaborately discussed by Zhang et al. (2013)
in the same population using SNP60 BeadChip data. Although
we identified many novel QTLs, most of them are time-specific
except for the region on SSC8 harboring the kit proto-oncogene
receptor tyrosine kinase (KIT) gene, implying that the same
hematological trait at different stages may be affected by different
genes.

Result Consistency With Other Studies
To the best of our knowledge, there are only six published
studies demonstrating the association between either all 18
hematological traits or part of these traits and genomic loci using
the Porcine SNP60 BeadChip based on GWAS in pigs (Luo et al.,
2012; Wang et al., 2013; Zhang et al., 2013, 2014; Jung et al.,
2014; Ponsuksili et al., 2016). The KIT gene was proposed as a
candidate gene for hematological traits by some different studies.
We found that the candidate gene of KIT should be responsible
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for the MCV trait (days 18, 46, and 240), and MCH and RBC
traits (day 240) in our previous study (Zhang et al., 2013). The
same result was obtained in Landrace × Korean native pigs F2
population at the age of 140 days (Jung et al., 2014). However,
Luo et al. only identified the candidate gene of KIT associated
with two erythroid traits including MCH and MCV at day 240 in
White × Minzhu F2 population (Luo et al., 2012). In this study,
we found that this candidate gene can also significantly affect the
PDW trait at day 18, although the SNPs in that region did not
reach the significant threshold (P = 1.35E-07). The relatively low
significance may be because of the small samples for this trait,
i.e., only 250 samples that held phenotypes were used for GWAS.
If we can increase number of the valid samples, the association
between PDW and the genotypes may emerge. Beside the KIT
gene claimed as the candidate gene for hematological traits in
majority studies at different stages (i.e., days 140 and 240), some
other candidate genes were identified, including neuroligin 4,
x-linked (NLGN4X) and high-mobility group box family member
2 (TOX2) gene, which was identified in the Commercial Landrace
population (Ponsuksili et al., 2016). In the GWAS study in
the Commercial Landrace population, Ponsuksili et al. (2016)
identified a candidate gene named NLGN4X associated with
MCH, MCV, and RDW traits at an average day 170 using
the Bayesian GWAS approach. The mutations of NLGN4X are
generally linked with autism and Asperger syndrome in different
human populations (Jamain et al., 2003; Volaki et al., 2013;
Landini et al., 2016). We found that this NLGN4X gene is not
only associated with MCV traits at day 46 but also associated with
HCT, MCHC, and PCT at day 46. In summary, although we have
confirmed the associations of different QTLs or candidate genes
with these hematological traits reported in other studies, the
different genetic backgrounds and populations and the different
stages when the traits are measured would lead to different
association results.

Multitrait GWAS
A multivariate linear mixed model has been recently considered
as a remarkably efficient method in GWAS, not only because of
its stronger ability in correcting sample relatedness (Meyer, 1991;
Amos, 1994; Korte et al., 2012) and population stratification (Yu
et al., 2006), but also because of the advantage over standard
univariate analysis in terms of increasing statistical power (Korte
et al., 2012). Multivariate analysis can increase detection power
by accumulating common genetic factors together for multiple
correlated traits and increasing the sample size (Stephens, 2013).
We thus used multiple correlated traits implemented in a
multitrait linear mixed model to discover more novel QTLs.
The genetic correlation and the phenotype correlation are highly
similar. The statistical power of multitrait GWAS on HCT, HGB,
MCH, and MCV at day 18 were increased in most chromosomes.
The novel loci with the most significant SNP at the position
of 115,277,228 bp (P = 2.33E-08) located on SSC3 near the
lysocardiolipin acyltransferase 1 (LCLAT1) gene were found to
be responsible for MCH and MCV at day 18. A study reported
that LCLAT played an important role in the development of
hematopoietic and endothelial lineages, probably acting at the
level of the hemangioblast in mice (Wang et al., 2007).

CONCLUSION

Whole-genome association analyses based on imputed sequence
variants increase the possibility to identify more QTLs and
the potential causative mutation. Multitrait GWAS has been
proven to be a remarkably powerful statistical method to
uncover the variants that affect multiple correlated traits.
This study identified more than 87 QTL novel regions that
affected 18 hematological traits at three different stages by
single and multitrait GWAS, based on the whole-genome
imputation data. We propose that the FGF14 and LCLAT1
genes located at SSC11 and SSC3 may affect MCH at
day 240 and MCH as well as MCV at stage at day 18,
respectively.
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