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Microarray data are used to determine which genes are active in response to a changing cell environment. Genes are “discovered”
when they are significantly differentially expressed in the microarray data collected under the differing conditions. In one prevalent
approach, all genes are assumed to satisfy a null hypothesis,H0, of no difference in expression. A false discovery (type 1 error) occurs
when H0 is incorrectly rejected. The quality of a detection algorithm is assessed by estimating its number of false discoveries, F.
Work involving the second-moment modeling of the z-value histogram (representing gene expression differentials) has shown
significantly deleterious effects of intergene expression correlation on the estimate of F. This paper suggests that nonlinear
dependencies could likewise be important. With an applied emphasis, this paper extends the “moment framework” by including
third-moment skewness corrections in an estimator of F. This estimator combines observed correlation (corrected for sampling
fluctuations) with the information from easily identifiable null cases. Nonlinear-dependence modeling reduces the estimation error
relative to that of linear estimation. Third-moment calculations involve empirical densities of 3× 3 covariance matrices estimated
using very few samples. The principle of entropy maximization is employed to connect estimated moments to F inference. Model
results are tested with BRCA and HIV data sets and with carefully constructed simulations.

1. Introduction

This work is motivated by analytical challenges that arise in
the use of microarray data to discover genes that are dif-
ferentially expressed across experimental conditions such
as control and treatment. Although the discussion centers
around this genomics task, the developed methods are
quite general and should be useful in other multiple-testing
applications in which there is substantial dependence among
test measures, and in which a small sample size may cause
significant fluctuations in statistics employed in the testing.
The specific aim of this work is to develop a reliable estimator
of the number of false discoveries (type I errors—denoted F)
in a multiple-testing problem in such an adverse setting.

The classic and contemporary literature in cell biology,
and the more recent literature in genomics (both in print and
posted on the Internet), is replete with tutorial information

at all levels about cell anatomy and physiology, and genomics,
as well as the microarray technology deployed in the present
application. A good entry point for accessing information
about contemporary developments in the genomics field is
the web site of the US National Genome Research Institute
[1]. The papers by Page et al. [2] and Wang [3] provide
relatively current reviews of microarray technology and
methods. A brief description of the biological aspects of the
genomics application underlying this work is found in
Appendix A of this paper.

In the gene-discovery application, each gene is tested
against a null hypothesis, H0, that the gene is not differ-
entially expressed across experimental conditions. All genes
are initially assumed to satisfy H0 in this analysis, and F
is estimated conservatively. This “all-null” presumption is
consistent with this application in whichH0 is true for a vast
majority of the genes in any experiment. Beyond the gene
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detection problem, however, this presumption is realistic in
many practical applications of large-scale testing in which the
prior probability of null cases, say π0, is large, and in which
the goal is to identify a small set of interesting “nonnull” cases
[4]. With π0 ≈ 1, it is also possible to impose identifiability
(the strongly justified assumption that a given gene satisfies
H0) on some of the genes, yielding crucial information with
which to condition the estimation of F [5].

One of the earliest reports of research using the microar-
ray (or “gene chip”) appeared in a paper by Schena et al.
in Science in 1995 [6]. Generally speaking, research that
employs the microarray to analyze gene expression data has
one (or both) of the following underlying aims: the discovery
of gene coexpression, or the discovery of gene differential
expression. To the extent that these problems have been inves-
tigated separately, the coexpression problem has frequently
been addressed by clustering methods (e.g., [7–13]), whereas
differential expression has been studied using variations of
classical statistical hypothesis testing (e.g., [5, 14]). Whereas
differential-expression/hypothesis-testing research was, and
is, concerned with expression in response to differing cell
conditions (normal versus pathology, medical treatment ver-
sus control, etc.), the early coexpression/clustering research
was often focused on phenotypic manifestations of the gene
expression.

As the technology has matured, the dichotomy suggested
above has blurred with many current applications of the
microarray involving “hybrid” research questions into both
differential and coexpression. Application areas include
discovery and exploration of gene regulatory systems, tissue
and tumor classification, biomarker prediction, discovery
and reverse engineering of gene expression networks—not to
mention the microarray’s deployment in the study of protein
synthesis, metabolism, evolution, and other areas related
to cell biology. Technical approaches to these problems
have gone well beyond classical clustering and hypothesis-
testing methods. Indeed, in the past few years, statistical
(i.e., “nonclustering”) methods to address the coexpression
problem have been reported (e.g., [15, 16]), while the
hybrid of the two problems—that of detecting and analyzing
differentially coexpressed genes—has been researched using
an ever-increasing number of methods including clustering
with complex and dynamic feature selection methods, image
transformation and processing of expression data, bicluster-
ing, graph and network theory, hypothesis testing, and other
statistical approaches (e.g., [17–28]). In this paper, we return
to the focused problem of detecting differential expression
across treatment conditions, but it will become clear—as
it has to the community working on this problem—that
differential expression cannot be studied independently of
coexpression.

Early work on classical statistical techniques for microar-
ray-based gene discovery is summarized in the 2002 review
paper by Pan [29]. Initially, it was customary to treat gene
expression outcomes as realizations of independent random
variables (RVs). More recent papers, however—notably,
those of Owen [30], Efron [31], and Pawitan et al. [32]—
caution researchers of the detrimental effects of correlated
gene-expressions on the validity of “discovered” genes. In

particular, it was reported that highly correlated tests increase
the variance of F (or, its normalized counterpart, the false

discovery rate, Ḟ
def= F/G∗, where G∗ is the number of

“discovered” genes), thus making estimates of F less reliable.
In particular, high variance renders the average, μ̂F ≈ μF =
E{F}, an unreliable estimator of F [30]. Among many
causes, intergene correlation is attributable to coexpressed
genes [4] and to unmodeled factors that introduce systematic
effects across genes [33, 34]. As a result, for most real data,
the assumption of independence or weak dependence among
gene expressions is unfounded, and methods treating corre-
lation are necessary [35, 36].

Accordingly, there has been significant recent interest
in improving statistical gene detection methods in light of
this detrimental correlation. For example, Storey et al. [37]
present an approach to the notion of sharing information
across t scores, which they describe as “borrowing strength
across the tests” for a potential increase in statistical power.
Tibshirani and Wasserman [38] discuss a quantity called
the “correlation-shared” t-statistic and derives theoretical
bounds on its performance. Hu et al. [39] examine the cova-
riance structure of the expression data and discover benefits
of linking coexpression and differential expression in a dis-
tance measure—thus, moving toward the “hybrid” problem
described above.

Recent research into the hybrid differential coexpression
problem has also yielded results and methods that could ulti-
mately benefit the differential expression problem. Because
the differential coexpression research is often concerned with
differing phenotypes, rather than with different treatment
conditions, two given research efforts involving differential
coexpression might seek answers to different sets of genetic
questions through expression data. Like the “dual conditions
researchers,” however, the “phenotype” researchers have
encountered their own forms of confounding dependencies,
notably the relative gene locations, the expression time
sequencing, and phase information (e.g., [40–42]). Papers
have been published addressing these issues, including
the exposition of new statistical approaches—for example,
“CorScor” developed by Dettling et al. [21], the “ECF-
statistic” of Lai et al. [22], “the gene-set coexpression analy-
sis” of Choi and Kendziorski [15]—as well as new clustering
methods—for example, the web-based expression analyzer
of Xiang et al. [43], high-order preclustering method of
Wong et al. [44], and the “BioSym” distance measure of
Bandyopadhyay and Bhattacharyya [45]. A recent review
of clustering methods in genomics appears in the paper
by Dalton et al. [46]. A more general examination of the
performance of classifiers of microarray expressions appears
in the paper by Ancona et al. [47].

The present paper returns to the problem of gene discov-
ery by statistical hypothesis testing, but with the concern for
the effects of nonlinear dependencies on (the estimation of)
the number of false results. Empirical work below provides
cogent evidence that accounting for intergene correlation
alone does not sufficiently mitigate the adverse effects of
dependency. Recent work by Hu et al. [48] has shown
the importance of accounting for nonlinear dependence
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Table 1: Notation used for elementary scalar quantities. v, v 1 , and v 2 are RVs and E denotes the expectation.

Mean, average μx or μ(x) = E{x} Standard deviation σv
def=

√

E{(v − μv)2} =
√

ϕ(v, v)

Covariance ϕ(v 1 , v 2 )
def= E{(v 1 − μv 1

)(v 2 − μv 2
)} Variance σ2

v
def= E{(v − μv)2} = ϕ(v, v)

Correlation
E{v1, v2} def= ϕ(v1, v2) + μv1μv2

(no special symbol reserved)
Correlation coefficient ρ(v1, v2)

def= ϕ(v1, v2)
σv1σv2

(normalized covariance)

in imputing missing values in microarray data. Modeling
nonlinear dependencies is a challenging problem, and the
present work makes only a modest—nevertheless, empiri-
cally significant—step into the realm of nonlinear depen-
dence by modeling the third-moment characteristics of the
quantity F. In principle, the proposed extension admits any
order moment, but computational constraints limit the
present developments. However, even the single step to a
third-moment extension under severe sampling fluctuations
is very challenging, and, in spite of this modest modeling
enhancement, it is a hard-won extension yielding signifi-
cantly improved estimates for a range of real and simulated
examples (see Section 5).

Thus, a central finding of this work is that null statistic
histogram approaches can be improved by including third-
moment skewness corrections. Advancing the techniques to
model higher order dependencies is challenging, but the
effort could have a substantial payoff. Errors in gene detec-
tion are expensive in financial terms, but the derailing of
biomedical research resulting from a false gene discovery
could be profoundly costly in many ways. Even modest im-
provements in genomic techniques are potentially very sig-
nificant.

2. Notation and Terminology

Because this paper has a practical aim, we will assume, with-
out comment, “friendly” mathematical conditions such as
existence of distributions, measurability, and sure conver-
gence of integrals. Even so, the mathematical developments
in this paper necessarily involve extensive notation and we
strive for consistency and clarity in its use. Quantities are
generally formulated as RVs unless stated otherwise. This
excludes obviously deterministic quantities like sequence
indices, integers defined in the abstract (e.g., the number
of microarrays, “M”), and statistical expectations. Precise
formulations require that probability distributions ordinarily
be denoted formally as, for example, pv1,v2 (ξ1, ξ2) for the joint
distribution of RVs v1 and v2, but the more common abusive
notation “p(v1, v2)” is more expedient in a few cases. The
notation p(·) may denote either a discrete or continuous
(i.e., density) distribution, depending, of course, on the
RV(s) being modeled. The meaning should be clear in con-
text. We deliberately allow this ambiguity because it avoids
some notational awkwardness as discrete distributions are
fitted with densities. On the other hand, the notation P(A)
is used to denote a probability assignment to a measurable
event A.

Many developments in this paper are centered on second-
order statistical concepts. It is important to carefully define

terminology used in this regard, since the vocabulary has
nuanced differences across disciplines. The elementary nota-
tion for scalar RVs in Table 1 is standard and is used con-
ventionally in this paper. A caveat arises in the discussion of
related matrices, however. The term “correlation matrix” is
used in this paper in a way consistent with its use in many sta-
tistical developments, but not in a way that is universal across
disciplines. The following definitions are used throughout
this paper.

Definitions 1. Consider a random vector vT = [v1 · · · vG]

with mean vector μv
def= E{v}. Then, the covariance matrix

associated with v is defined as

Σv
def= E

{

(

v − μv

)(

v − μv

)T
}

∈ RG×G, (1)

in which the (i, j) element is ϕ(vi, vj). The correlation matrix
of v is

Rv
def= E

{

S−1
(

v − μv

)(

v − μv

)T
S−1

}

, (2)

in which the (i, j) element is ϕ(vi, vj) and S is a diagonal
matrix with (i, i) element = σvi , the standard deviation of the
ith RV, vi.

In this paper, the term “correlation matrix” will refer to the
definition in (2). On the contrary, in much of the engineering
literature, the outer product E{vvT} = Σv +μvμ

T
v is called the

(spatial) correlation matrix. In this case the (i, j) element of
the matrix is the scalar correlation E{vivj}. In our definition
the elements are correlation coefficients, which are, in fact,
normalized covariances. One significant implication of this
fact is that mean values of RVs have no effect on either
matrix. This should be kept in mind in the developments to
follow.

3. Problem Formulation

G genes are to be studied using M microarray experiments.
The expression values are recorded in an G × M matrix,
X = [xgm]. For analytical purposes, the expression quantities
xgm are generally RVs. Each of the M microarray experiments
takes place under one of two conditions (indexed by k =
1 or 2) such as control and treatment. These two subsets
of the data are called treatment groups in the paper. There
are Mk samples (i.e., microarrays) in treatment group k.
Based on the evidence in X, we seek to identify a “small”
number, G∗ � G, of genes that are significantly differentially
expressed across the two treatment groups. One widely used
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strategy (e.g., [5, 14]) is to posit that each of the genes, for
g = 1, 2, . . . G satisfies a null hypothesis,

H0,g : Gene g is not differentially expressed

in the two treatment groups.
(3)

All G genes are tested against this hypothesis using two-
sample null statistics z1, z2, . . . , zG [14]. The magnitudes of
zg scores establish a gene ranking, and the G∗ genes with the
largest scores are reported as statistically significant discover-
ies.

Clearly, the list of G∗ discovered genes is only meaningful
to the extent that F is very small. Of course, F can only
be estimated since the state of any gene (i.e., whether or
not it should be “discovered”) is unknown. Strong causal
relationships among genes give rise to highly correlated zg
scores and greatly complicate the estimate of F [30, 31].
Moreover, in spite of their declining cost, microarrays are still
a relatively expensive technology. Consequently, the number
of microarrays, M, in an experiment is usually smaller than
number of genes, G, by as much as four orders of magnitude.
Typically, existing microarrays record expression data for
at least a few thousand genes. The fact that M � G
further complicates the problem because the knowledge
about the underlying gene-gene correlation structure is
critically sparse in the observations. At the same time, the
consequences of correlation on differential analysis cannot
be overlooked [35]. In fact, the present work will suggest
that even nonlinear dependencies must be accounted for in
order to properly estimate F. Theoretical justifications for
this contention are given momentarily.

This paper develops a moment-based estimator of F by
giving the null z histogram a stochastic interpretation. The
observed null counts are viewed as realizations of a more
fundamental random model shaped by inter-zg dependence.
A small zero-symmetric bin in the space of z statistics is
designated as the center area, and it is posited that no zg
scores from “nonnull” genes fall in this range. Then, the
null count in the center area, say C, is observable, and by
conditioning F on C, the variance of F can be reduced sig-
nificantly [5, 49]. We relate F to C through the discrete joint
distribution p(F,C). To obtain an approximation of p(F,C),
we estimate its first three moments, then fit the maximum
entropy function (Appendix B). This approach inherently
yields an estimate of the conditional distribution p(F | C).
A large number of estimates of the distribution of Ḟ would
theoretically be more useful than a point estimate because
of the noisy nature of large-scale inferences [30]. Compared
to histogram-curve-fitting techniques like empirical null [5],
however, the present approach enjoys the attractive feature
that covariance is separately estimated, and then explicitly
incorporated into the inference.

Efron [31] reports that RVs F and C are found to be
extremely negatively correlated in a number of real exper-
iments. He provides an explanation for this finding,
then employs these insights to develop a Poisson-model-
based second-order estimator of F which, like the present

approach, relies on the center area concept. While Efron’s
work is extremely important, his own research has gone on to
show that purely second-order F estimates suffer from over-
and under-estimation effects. The second-moment estimates
of F reported later in the present paper (see Section 5),
as well as those in the cited Efron paper, all show these
adverse effects. There are three contributory factors: (i) F is
bounded below by zero, (ii) the mean of F is small, and (iii)
intergene covariance causes the variance of F to inflate. All
of these factors suggest that skewness corrections—reflecting
nonlinear dependence—are vital.

4. Methods

4.1. Moments of the Joint Distribution P(F,C)

4.1.1. Count Models. The process begins by transforming
test t statistics to z values as zg = P−1

Gu
{P0(tg)}, g =

1, . . . ,G, where P0 is the putative null cumulative distribution
function (c.d.f.) of the test statistic, and P−1

Gu
is the inverse

c.d.f. of the unit normal density, pGu ≡ G(0, 1). The z
values, modeled as RVs, provide the analytical convenience
of multivariate normal form while describing the joint
t-statistic behavior. We formally define the fundamental
quantities:

F
def= #

{

zg : zg ≤ δ ∩H0,g is true
}

,

C
def= #

{

zg :
∣

∣

∣zg
∣

∣

∣ ≤ c ∩H0,g is true
}

,
(4)

in which #{S} denotes the number of elements in the discrete
set {S}. Z ⊆ R is the sample space of z values. The interval

ZC
def= {z ∈ Z : |zg| < c} corresponding to count C is called

the center area, and the semi-infinite interval ZF
def= {z ∈

Z : z ≤ δ} associated with count F is the left tail area. For
proper comparison with Efron’s results [31], we work with
a left tail area; however, the present approach can employ
right- or double-sided tail areas equally well.

The premise that very few nonnull zg scores fall in ZC

and, hence, that C is practically observable is of prime
importance. A similar assumption plays a central role in the
literature on estimating the proportion of null genes, as in,
for example, papers by Efron [31], Pawitan et al. [32], and
Langaas et al. [50]. The empirical null approach [5] relies
on similar reasoning. We exploit the observability of C to:
(i) estimate the moments of p(F,C), (ii) use them to infer
the distribution (estimate) p̂(F,C), and then (iii) report (an
estimated) p(F | C) which in turn could be used to find an
estimator of F conditioned upon C. Initially, all cases are
treated as null. Improvement is possible by estimating π0

[50, 51].

4.1.2. Assumptions

Assumptions. The following assumptions underlie these de-
velopments:

(1) π0 is large, say π0 ≥ 0.9 (Efron discusses this bound
in [4]).
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(2) zg is a unit normal variate [∼G(0, 1)] for all g =
1, 2, . . . ,G.

(3) The z scores are jointly Gaussian to the third order
(but not uncorrelated).

(4) Recall that xgm [element (g,m) of the expression
matrix X] denotes (the RV model for) the expression
of gene g on microarray m. Let xg• denote the
marginal RV for xgm, that is, the model for the
expression outcomes of gene g. The realizations of xg•
are the elements of row g of an observed X. Then, it is
assumed that ϕ(zg , zg′) = ρ(zg , zg′) ≈ ρ(xg•, xg′•) for
all g, g′ (justified below).

4.1.3. The z-Value Histogram. It is convenient and compu-
tationally efficient to obtain the moments of p(F,C) using
the moments of the z-value histogram. We seek central
moments because they facilitate working with the maximum
entropy distribution (Appendix B). The moment estimation
is carried out as follows. Z is partitioned into B disjoint bins,
Z = ∪B

b=1Zb, where the bth bin has center z[b] and width Δ
(constant with b). Then, the z-histogram bin counts are

Yb = #
{

zm : zg ∈ Zb

}

=
G
∑

g=1

Ib
(

zg
)

, for b = 1, . . . ,B,

(5)

in which Ib(zg) is the indicator function for the event “score
zg falls in bin Zb.”

Consider bin b with count Yb for some b ∈ {1, . . . ,B}.
The mean of count Yb is

μ(Yb)
def= E{Yb} = E

⎧

⎨

⎩

G
∑

g=1

Ib
(

zg
)

⎫

⎬

⎭

=
G
∑

g=1

P
(

zg ∈ Zb

)

= G
∫ z[b]+(Δ/2)

z[b]−(Δ/2)
pGu(ξ) dξ

≈ μ̂(Yb)
def= GΔpGu

(

z[b]
)

, where pGu(ξ) ≡ G(0, 1).

(6)

The second-order joint central moment covariance of the pair
(Yb,Yb′), where b may equal b′, is

ϕ(Yb,Yb′)
def= E

{[

Yb − μ(Yb)
][

Yb′ − μ(Yb′)
]}

= E

⎧

⎨

⎩

G
∑

g=1

Ib
(

zg
)

G
∑

g′=1

Ib′
(

zg′
)

⎫

⎬

⎭

− μ(Yb)μ(Yb′)

=
∑

g /= g′
P
(

zg ∈ Zb, zg′ ∈ Zb′
)

+
∑

g

P
(

zg ∈ Zb, zg ∈ Zb′
)

− μ(Yb)μ(Yb′).

(7)

Because of the bivariate normality of zg and zg′ , (7) can be
approximated by:

̂ϕ̂(Yb,Yb′)
def=

∑

g /= g′
Δ2pG

(

z[b], z[b′]; 0,Σ[g,g′]
)

−μ̂(Yb)
[

μ̂(Yb′) + δbb′
]

,

(8)

where δbb′ is the Kronecker delta, and pG (ζ1, ζ2; 0,Σ[g,g′]) ≡
G(0,Σ[g,g′]) is the bivariate Gaussian density with mean
vector 0 = [0 · · · 0]T , and covariance matrix (equivalent to
the correlation matrix in this case)

Σ
[g,g′]
z

def= E

⎧

⎨

⎩

⎡

⎣

zg

zg′

⎤

⎦

[

zg zg′
]

⎫

⎬

⎭

=
⎡

⎢

⎣

1 ρ
(

zg , zg′
)

ρ
(

zg′ , zg
)

1

⎤

⎥

⎦ = R
[g,g′]
z .

(9)

That is, defining the vector of arguments ζ
def= [ζ1 ζ2]T ,

pG

(

ζ ; 0,Σ
[g,g′]
z

)

= 1

2π
∣

∣

∣Σ
[g,g′]
z

∣

∣

∣

1/2

× exp
{

−1
2
ζT

(

Σ
[g,g′]
z

)−1
ζ
}

= 1

2π
√

1− ρ2
(

zg , zg′
)

× exp

⎧

⎨

⎩

−
ζ2

1 − 2ρ
(

zg , zg′
)

ζ1ζ2 + ζ2
2

2
[

1− ρ2
(

zg , zg′
)]

⎫

⎬

⎭

,

(10)

where | · | denotes the determinant. In the approximation
(8), the density in (10) is evaluated at ζ1 = z[b] and ζ2 = z[b′].

As reflected in the second line of (10), the covariance
matrix Σ

[g,g′]
z is fully specified by a a single-scalar param-

eter, ρ(zg , zg′) for each g, g′ pair. Thus, we can express
the Gaussian density in (10) as being parameterized by
this autocorrelation coefficient for the given z-score pair,
p G [ζ ; 0, ρ(zg , zg′)]. Now, suppose that we can derive an
empirical density [52], say qρz(·), over the interval [−1, 1],
fitted to the discrete set of

(

G
2

)

autocorrelation coefficients,
{ρ(zg , zg′), 1 ≤ g, g′ ≤ G}. This empirical distribution
allows the summation over gene indices in (10) to be replaced
by a continuous computation. This smoothed computation
represents a further approximation of ϕ(Yb,Yb′), which is
stated in the form of a lemma below. This result is similar
to those of Owen [30, Theorem 1] and Efron [31, Lemma 2].

Lemma 1. Let qρz(ξ) denote the empirical density of ρz,
derived from the

(

G
2

)

z-pair sample correlation coefficients,
ρ(zg , zg′), 1 ≤ g, g′ ≤ G. Then, the second joint central
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moment of a histogram count pair (Yb,Yb′), where b may equal
b′, is approximated by

ϕ(Yb,Yb′) ≈ ϕ̂(Yb,Yb′)
def= [G!]2Δ

2Qρz

(

z[b], z[b′]
)

− μ̂(Yb)
[

μ̂(Yb′) + δbb′
]

,
(11)

where [G!]	
def= G(G − 1) · · · (G − [	 − 1]), for 1 ≤ 	 ≤ G,

and

Qρz(ζ1, ζ2)
def=

∫ +1

−1

qρz(ξ)

2π
√

1− ξ2

× exp

{

− ζ2
1 − 2ξζ1ζ2 + ζ2

2

2(1− ξ2)

}

dξ.

(12)

Further, the third joint central moment of a triplet
(Yb,Yb′ ,Yb′′), where two or more indices may be equal, is:

γ(Yb,Yb′ ,Yb′′)

def= E
{[

Yb − μ(Yb)
]

×[Yb′ − μ(Yb′′)
][

Yb′ − μ(Yb′′)
]}

= E{YbYb′Yb′′ } − μ(Yb)μ(Yb′)μ(Yb′′)

− [

μ(Yb)ϕ(Yb′ ,Yb′′)

+ μ(Yb′)ϕ(Yb,Yb′′)

+μ(Yb′′)ϕ(Yb,Yb′)
]

,

(13)

where

E{YbYb′Yb′′ }

= E

⎧

⎨

⎩

G
∑

g=1

Ib
(

zg
)

G
∑

g′=1

Ib′
(

zg′
)

G
∑

g′′=1

Ib′′
(

zg′′
)

⎫

⎬

⎭

=
∑

g /= g′ /= g′′
P
(

zg ∈ Zb, zg′ ∈ Zb′ , zg′′ ∈ Zb′′
)

+ δbb′′
∑

g /= g′′
P
(

zg ∈ Zb, zg′′ ∈ Zb′′
)

+ δbb′
∑

g /= g′
P
(

zg ∈ Zb, zg′ ∈ Zb′
)

+ δb′b′′
∑

g′ /= g′′
P
(

zg′ ∈ Zb′ , zg′′ ∈ Zb′′
)

+ δbb′b′′
∑

g

P
(

zg ∈ Zb

)

,

(14)

in which δbb′b′′ is the Kronecker sequence over Z× Z× Z.
The assumed trivariate normality of the z scores implies

that the joint distribution for each score triplet is specified
by a 3 × 3 covariance matrix. Let us denote the covariance

(equivalent to correlation) matrix for the z-value triplet
(zg , zg′ , zg′′) by

R
[g,g′,g′′]
z = E

⎡

⎢

⎢

⎢

⎣

zg

zg′

zg′′

⎤

⎥

⎥

⎥

⎦

[

zg zg′ zg′′
]

=

⎡

⎢

⎢

⎢

⎢

⎣

1 ρ
(

zg , zg′
)

ρ
(

zg , zg′′
)

ρ
(

zg′ , zg
)

1 ρ
(

zg′ , zg′′
)

ρ
(

zg′′ , zg
)

ρ
(

zg′′ , zg′
)

1

⎤

⎥

⎥

⎥

⎥

⎦

.

(15)

For each z-score triplet, Rz is an element of the space—
call it R3—of all symmetric positive-semidefinite matrices
in R3 × 3 with element magnitudes no greater than unity. Rz

is continuously distributed over R3.
Again, we need an empirical way to compute the joint

moments of the z scores. Let qRz(Ξ) be the empirical density
of the

(

G
3

)

correlation matrices, Rz. This density must be
inferred from the observed data. Of practical importance is
the fact that, although each Rz is distributed over a subspace
of R3 × 3, the domain of qRz is effectively a three-dimensional
manifold of that space because each covariance matrix is
unambiguously determined by its three values above or
below its main diagonal (with unity diagonal elements). The
argument Ξ may be thought of as a vector of these three
elements (over the continuum of allowable values), but we
will continue to denote it as a matrix as a reminder of its
association with Rz. We have, in conjunction with (6)–(14),
the following useful approximation.

Lemma 2. The third-order joint central moment of a his-
togram count triplet (Yb,Yb′ ,Yb′′), where two or more indices
may be equal, is approximated by

γ̂(Yb,Yb′ ,Yb′′)

def= [G!]3 Δ3QRz

(

z[b], z[b′], z[b′′]
)

+ [G!]2 Δ2
[

δbb′′Qρz

(

z[b], z[b′′]
)

+ δbb′Qρz

(

z[b], z[b′]
)

+δb′b′′Qρz

(

z[b′], z[b′′]
)]

+ δbb′b′′ μ̂(Yb)− μ̂(Yb)μ̂(Yb′)μ̂(Yb′′)

− [

μ̂(Yb)ϕ̂(Yb′ ,Yb′′) + μ̂(Yb′)ϕ̂(Yb,Yb′′)

+μ̂(Yb′′)ϕ̂(Yb,Yb′)
]

,

(16)

where

QRz (ζ1, ζ2, ζ3)

=
∫

R3

qRz(Ξ)

(2π)3/2|Ξ|1/2

×exp
{

−1
2

[

ζ1 ζ2 ζ3

]

Ξ−1
[

ζ1 ζ2 ζ3

]T
}

dΞ,

(17)
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μ̂, Qρz , ϕ̂, and [G!]	 are defined in (6) and (11), and Δ is the
z-histogram bin width.

To obtain the moments of p(F,C) it is simply necessary
to combine the moments of the corresponding Yb counts.
For example,

σ2
F = E

{

(

F− μF
)2
}

≈
∑

{b, b′: Zb ,Zb′⊂ZC}
ϕ̂(Yb,Yb′),

σ2
C = E

{

(

C − μC
)2
}

≈
∑

{b, b′: Zb ,Zb′⊂ZC}
ϕ̂(Yb,Yb′),

ϕ(C, F) = E
{

(

C − μC
)2(

F− μF
)2
}

≈
∑

{b, b′: Zb⊂ZF, Zb′⊂ZC}
ϕ̂(Yb,Yb′).

(18)

The key quantities in the lemmas for approximating mo-
ments are the empirical covariance densities. Obtaining these
densities in the presence of severe sampling errors is dis-
cussed next.

4.2. Empirical Correlation Densities

4.2.1. Approach. Because of severe sampling fluctuations, the
current methods can recover only qρz(ξ) from the data. This
density is then used to estimate qRz(Ξ). For this purpose,
as well as to facilitate the calculations of Lemmas 1 and 2,
we seek to parameterize the requisite densities. For most
real examples, a single omnibus parameter α is found to be
sufficient.

4.2.2. Data Normalization. For all-null false discovery rate
calculations, normalization of the per-microarray expression
results has been found to be beneficial [31, Remark E]. The
columns of the data matrix X are standardized to mean
zero and unity variance. This standardization normalizes
output “brightness” among microarrays [53, 54]. It also
forces the sum of covariances, and approximately the sum
of correlations, to be zero. This permits the fitting of a zero
symmetric density to qρz(ξ), which, in turn, has profound
consequences for the form of qRz(Ξ).

Formally, let Xo denote the residual expression matrix,
obtained by subtracting from X each gene’s average response
within each treatment group, and let xog• denote the marginal
random variable modeling the residual expression outcomes
for gene g [like xg• of Assumption (4), p. 5]. All further
discussion of gene expression values will refer to these nor-
malized residual values.

4.2.3. Obtaining qρz(ξ). The empirical densities qρz and qRz ,
as well as others to be introduced below, clearly play a key
role in moment estimation above. In each case, the empirical
density—a surrogate for the true statistical density of the
correlation coefficient(s) being modeled—is a distribution
of a correlation function or matrix over a continuum, but
it must be inferred from the data samples.

To deduce qρz(ξ), we require qρx(ξ)—the empirical
density of the

(

G
2

)

gene expression correlation coefficients.
The mapping between the domains of qρz and qρx is needed,
in principle, to calibrate qρz . However, for the usual two-
sample t-statistic, assuming independent columns in Xo,
ρ(zg , zg′) ≈ ρ(xg•, xg′•) [recall Assumption (4), p. 5]; hence,
qρz(ξ) ≈ qρx (ξ). We make the assumption of equality of these
densities below.

Let ϕ (xog•, x
o
g′•) denote the sample covariance between

rows (genes) g and g′ of Xo. For convenience, we define the
notation

ρgg′
def= ρ

(

xog•, x
o
g′•

)

=
ϕ
(

xog•, x
o
g′•

)

√

ϕ
(

xog•, xog•
)

ϕ
(

xog′•, x
o
g′•

)
. (19)

These are the values to be fit with density qρx(ξ).
To reduce the variability added by sampling errors, we

apply the Fisher transform:

τgg′ = 1
2

log
1 + ρgg′

1− ρgg′
. (20)

For bivariate normal samples, the Fisher transform has
remarkable normalizing and variance stabilizing properties
[55], and each τgg′ is well modeled by the distribution
τgg′ ∼ G(τgg′ , [G−3]−1), where τgg′ is the Fisher-transformed
underlying correlation coefficient. Assuming a sampling
model

τgg′ = τgg′ + ε; τgg′ ∼ pτ(ξ), (21)

where pτ is the distribution of the Fisher-transformed under-
lying correlation coefficients, we can interpret the histogram
of Fisher-transformed sample correlations, say the “τgg′-
histogram,” as a convolution of pτ(ξ), the statistical correla-
tion density on the scale resulting from the Fisher transform,
and the histogram of sampling errors, say, the “ε-histogram,”
also on the τ-scale. Then, the underlying pτ(ξ) is obtained by
deconvolving this density from the convolved pair, p τ (ξ) =
pτ(ξ) ∗ pε(ξ). For a wide variety of microarray data sets
studied in this work (also see [30]), the normal distribution
G(0, σ2) fits nicely to the τgg′ histogram. For bivariate normal
samples, where ε ∼ G(0, [G−3]−1), the estimate of pτ(ξ), say
p̂τ(ξ), takes the normal form G(0, σ2 − [G − 3]−1). It is this
estimate that will serve as the empirical density of the Fisher-
transformed correlations, qτ ≡ p̂τ .

Having obtained the underlying qτ(ξ), we must, in prin-
ciple, undo the mapping (20) to obtain qρx(ξ), then deduce
qρz from qρx . Recall, however, that we assume that the corre-
lation coefficients of the z and xo variables are identical [31],
so that we may directly seek qρz(ξ) = qρx(ξ) from qτ(ξ). A
distribution that fits the inverse-transformed qτ(ξ) well is

qρz(ξ) ∝ (

1− ξ2)a =
[

1
2

(ξ + 1)
]α[

1− 1
2

(ξ + 1)
]α

,

∣

∣ξ
∣

∣ ≤ 1,

(22)
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a class of densities in the general Beta distribution family
given by:

pB
(

ξ;α,β
) = 1

B
(

α,β
)ξα−1(1− ξ)β−1,

0 ≤ ξ ≤ 1,

(23)

where B is the Beta function and α and β are nonnegative
shape parameters. Comparing (22) and (23) gives a useful
probabilistic interpretation of the correlation coefficient, say
ρ̃z, modeled by the empirical density qρz : We see from (22)
that ρ̃z ∼ pB(0.5ξ + 1;α,α). Therefore, σ2

ρ̃z
will be a factor of

four greater than the variance of a Beta-distributed random
variable with parameters α = β. That is,

σ2
ρ̃z
= 4

α2

(2α)2(2α + 1)
=⇒ α =

1− σ2
ρ̃z

2σ2
ρ̃z

. (24)

Thus, using σ2
ρz

as an estimate of σ2
ρ̃z

, we obtain the parameter
α, hence, the distribution qρz .

4.2.4. Obtaining qRx(Ξ). We now pursue qRx(Ξ) as an exten-
sion of qρx(ξ). Like qRz , the effective domain of qRx is of
only three dimensions. Also similarly to the scalar density,
for the two-sample t-statistic, qRz(Ξ) ≈ qRx(Ξ). Hence, we
can pursue qRz indirectly by finding qRx .

We seek a joint distribution on the space of all 3 × 3
correlation matrices such that all the inherent marginal
distributions (i.e., the distributions of ρ(xog•, x

o
g′•) for g /= g′)

are equivalent to qρx(ξ). Such a result can be obtained
from the inverse-Wishart distribution whose marginaliza-
tion properties are helpful when studying a subset of
variables [56]. Suppose that the true statistical covariance
matrix of Xo, say,

ΣXo
def= E

{

Xo(Xo)T
}

∈RG ⊂ RG×G

(

for simplicity Σo def= ΣXo

) (25)

follows the inverse-Wishart distribution W−1
G (I, ν), ν ≥ G,

Σo ∼ p Σo (Ξ | ν ≥ G) ∝ |Ξ|−0.5(ν+G+1)

× exp
{

−0.5 | tr
{

Ξ−1
}}

, Ξ ∈ RG×G,
(26)

where ν is the single parameter that characterizes the distri-
bution, and tr{·} indicates the trace. The goal is to relate ν to
parameter α of (22) and to determine the distribution of any
of the 3× 3 covariance submatrices of Σo.

Following the separation strategy of Barnard et al. [57],
we decompose Σo into its variances and normalized covari-
ances (i.e., correlation coefficients) as

Σo = SRoS, (27)

where S ∈ RG×G is the diagonal matrix whose ith diagonal
element, si, is the standard deviation of the gene i residual

expression [recall (2)]. Ro def= RXo is the G × G correlation
matrix of the residual expression matrix Xo. Under the
transformation Σo → (S, Ro), the Jacobian is given by
(2
∏

isi)
G [58, Theorem 3]. Thus, after marginalization over S:

Ro ∼ pRo(Ξ | ν) ∝ |Ξ|−0.5(ν+G+1)
G
∏

i=1

∫∞

0
s−(ν+1)
i e−ξ

ii/2s2
i dsi,

(28)

where ξii is the ith diagonal element of Ξ−1. The product
arises because of independence of the si elements. Substitut-
ing ωi = ξii/2s2

i yields

Ro ∼ pRo(Ξ | ν) ∝ |Ξ|−0.5(ν+G+1)

⎛

⎝

∏

i

ξii

⎞

⎠

−0.5ν

×
⎛

⎝

∏

i

∫∞

0
ω0.5(ν−2)
i e−ωidωi

⎞

⎠,

(29)

which leads to an expression for the probability density of the
matrix Ro:

pRo(Ξ | ν) ∝ |Ξ|0.5(ν−1)(G−1)−1

⎛

⎝

∏

i

∣

∣(Ξ)ii
∣

∣

⎞

⎠

−0.5ν

, (30)

where (A)ii denotes the ith principal submatrix of A, and
where we have used the fact that ξii = |(Ξ)ii|/|Ξ|. For Ro with
probability density (30), the marginal density of its arbitrary
correlation submatrix also has a useful expression.

Lemma 3. For a correlation matrix Ro ∈ RG with the
probability density (30), the κ× κ correlation submatrix, Ro

κ ∈
Rκ, has the density

pRo
κ

(Ξκ | ν) ∝ |Ξκ|0.5(ν−G+κ−1)(κ−1)−1

×
⎛

⎝

∏

i

∣

∣(Ξκ)ii
∣

∣

⎞

⎠

−0.5(ν−G+κ)

, Ξκ ∈Rκ.

(31)

Proof. Suppose that the κ×κ statistical covariance submatrix
Σo
κ undergoes the transformation Σo

κ → (Sκ, Ro
κ), where

Sκ is the diagonal scaling matrix of appropriate standard
deviations [recall (27)]. Then due to the marginalization
property of inverse-Wishart, Ro

κ ∼ W−1
κ (I, ν − G + κ).

Following steps(26)–(30) for Σo
κ yields (31).

Substituting κ = 2 in result (31) yields

pRo
2
(Ξ2 | ν) ≡ pρ12 (ξ | ν ≥ G) ∝ (

1− ξ2)0.5(ν−G−1)
,

∣

∣ξ
∣

∣ ≤ 1.
(32)

Note that this density is the function of a scalar argument,
the single value of the off-diagonal elements of Ro

2. We have
indicated this by use of the subscript “ρ12” in the second term
in the expression. The critical property of this result is that it
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has the same uniparametric form as (22). By setting ν−G =
2α + 1 we can force the inherent marginal densities of the Ro

entries (ρ(xog•, x
o
g′•), g /= g′) to equal qρx (ξ)—the specific aim

of this derivation.
Finally, substituting κ = 3 in result (31), we obtain

qRx(Ξ) ∝
(

1− ξ 2
12 − ξ 2

23 − ξ 2
13 + 2ξ12 ξ23 ξ13

)2(α+1)

[(

1− ξ 2
12

)(

1− ξ 2
23

)(

1− ξ 2
13

)]α+2 , (33)

in which ξi j is the (i, j) element of the evaluated matrix (in
the abstract) Ξ. The density of a particular covariance matrix
in R3, say Ξ = Rx, involves the use of the three elements in
the upper triangle of the matrix, reinforcing earlier assertions
that the domain of qRx is a manifold of the matrix space.

Recall that R
[g,g′ ,g′′]
x (assumed equivalent to R

[g,g′,g′′]
z ) is the

original notation for the 3 × 3 covariance matrix of a score
triplet (zg , zg′ , zg′′), and, by extension, (xog•, x

o
g′•, x

o
g′′•). In the

present discussion, Rx assumes the role of a 3× 3 submatrix
of Ro, namely, Ro

3.
For large G, the assumption of the inverse-Wishart distri-

bution in (26) is not well justified. However, the assumption
is used here strictly for its value in deducing qRx(Ξ) from
qρx(ξ). There is no concern for a model of the entire matrix
Ro = RXo . Further, single-parameter distributions on a
positive definite matrix space are few. The inverse-Wishart
distribution is chosen for its useful marginalization property.
Of course, a tenuous assumption is not justified by a useful
property if it leads to an unuseful procedure. The practical
validation of the assumption is manifest in Section 5. The
“Bayesian correlation priors” point of view from the work of
Liechty et al. [59] was especially helpful in formulating these
ideas. Exploring other ways to obtain qRx is a worthwhile but
challenging endeavor.

Finally, we have derived poRκ(Ξκ|ν) only up to a propor-
tionality constant. However, for qRx(Ξ) (κ = 3), normaliza-
tion is straightforward. For κ ≥ 4 it is necessary to resort to
Monte Carlo methods which only require densities up to a
proportionality constant.

5. Results

5.1. Testing on Real Data Sets. A MATLAB implementation
of the approach based on the work above is available at
the website http://www.egr.msu.edu/∼deller/. The methods
were tested on two real data sets, both showing a significant
amount of intergene covariance but exactly opposite F
behaviors. Calculations below are for left-sided tail-area
parameter δ = −2.5, and center area parameter c = 1 [recall
(4)]. Comparisons with Efron’s [31] second-order estimator
of F are made.

The first data set is from the breast cancer (BRCA) study
of Hedenfalk et al. [60]. These data record the expression of
G = 3226 genes on M = 15 microarrays with seven samples
assigned to BRCA1 mutations and eight to BRCA2. The
original research seeks to identify genuine mRNA activity
differences between these two categories. In the present
paper, the logarithm is applied to the mRNA levels to increase
Gaussianity [61].

In a study of the human immunodeficiency virus (HIV),
Van ’t Wout et al. [62] investigated G = 7680 genes over M =
8 microarrays with four samples assigned to an HIV infected
condition and the remaining four to the control. To produce
the test cells, the control cells (CD4 T cell lines) were infected
by the HIV−1BRU virus. The paper reports raw mRNA levels
which, like the BRCA data, are converted to logarithms in the
present work.

The present analysis reduces an entire expression matrix
to two numbers: the center area null count, C, and the
omnibus parameter, α. As is evident in Figure 1, the para-
metrization described in Section 4 is realistic. For the BRCA
data, α = 17.77, and for HIV, α = 3.51. The Figure 1 caption
provides details.

The next step is to compute the moments of p(F,C) per
Lemmas 1 and 2. These calculations require parameters G, α,
c, δ, and Δ. We set Δ = 0.1. These estimated moments are
used to find the maximum-entropy (maxent) distribution
p̂(F,C) (Appendix B). Figure 2, for example, reports the
moments and the corresponding maxent distribution for the
BRCA data. F and C exhibit strong negative correlation of
−0.89, a value similar to that in [31, Table 1]. Furthermore,
F shows significant positive skewness, which causes C to
exhibit negative skewness. This is not surprising as F is
bounded below by zero, and yet has small mean but inflated
variance. The third-moment provides an additional level of
detail about the joint behavior of F and C.

During the maxent numerical optimization, a 100 × 500
equispaced mesh was found sufficient for the BRCA data;
however, for the HIV data the resolution had to be increased
to 400 × 2000. This is because, in addition to the larger
G, the HIV X also exhibits more covariance. The BRCA
optimization required 30 iterations, while HIV took ∼70
iterations, to converge to an estimated distribution.

Figure 3 reports the estimated p(F | O), where O refers
to the observed data. Second- and third-moment estimates
are shown separately. In the framework of statistical inference
such a distribution is the ultimate goal, but this result
could later be used for other purposes like computing point
estimates and associated confidence intervals.

If the mean of the estimated p̂(F | O) is used as a
point estimate of F, then for the BRCA data, third-moment
calculations suggest 104 false discoveries versus 79 for the
second-moment while the usual μ̂F ≈ E{F} suggests only 20
false discoveries. These numbers must be put in perspective
by noting that the actual zg count falling in the left-sided
tail-area is 116. For the HIV data, the third-moment analysis
found eight false discoveries compared to 19 for second-
moment, while the mean estimator μ̂F ≈ E{F} produces 48.
This time the zg count in the left-sided tail area is 46. Clearly,
extensive analysis of intergene dependence can lead to very
different conclusions from the same data, relative to those
of the mean estimate of false discoveries (and, in turn, the
procedures built around it).

The second-order estimator designed by Efron [31]
found 77 false discoveries for BRCA. Efron compares that
to the results of nonparametric analysis in the same paper
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Figure 1: Effect of sampling fluctuations on the empirical covariance density. (a) Upper curves: BRCA data. (b) Lower curves: HIV data.
For each subfigure: left panel is the histogram of sample covariances after applying the Fisher transformation (20) and a normal distribution
(heavy curve) fitted to it; right panel is the histogram of denoised covariances and a modified beta distribution fitted to it (heavy curve).
These distributions summarize the cumulative effect of (G2 ) gene-gene covariances in a single parameter (α) distribution.

and concludes underestimation, but the issue is not further
pursued. Our findings show that nonlinear dependence
(as reflected in the present case by moments higher than sec-
ond) is potentially very important in characterizing the null
z histogram.

We note in passing that the availability of p̂(F | O)
permits the application of the bound P(F/G∗ | O ≥ γ) ≤
λ as a control measure, as recommended by Lehmann and
Romano [63]. It is not a trivial matter to choose γ and λ
such that a fair comparison with other error measures is
possible; however, for illustrative purposes, we set γ = 0.15
and λ = 0.5. With this constraint, the present approach
reports 174 discoveries (108 for second-moment) for the
HIV X. This compares favorably with the results of Efron
[31], where the Benjamini-Hochberg procedure, with false
discover rate control level 0.10 and an empirical null
from [5], yields 180 discoveries. Without covariance mod-
eling, the Benjamini-Hochberg procedure reports only 20
discoveries.

5.2. Testing on Simulated Data. Insight is gained by testing
the approach on simulated data for which the “correct
answer” is known. In the studies below, all cases are null (no
treatment, residuals only). The goal is to see how well the
realized left-sided tail-area count can be estimated from the
center count. To maintain realism, we simulate raw mRNA
levels. The testing scenario is a “two-group study,” so en route
to z-values we take the usual two-sample t-statistic.

Let the mRNA expression level, xgm, of gene g measured
by microarray m, be distributed as the Gamma density: For
m = 1, . . . ,M,

xgm ∼ pΓ (ξ; κ, θ) = ξκ−1 e−ξ/θ

θκΓ(κ)
, ξ ≥ 0, κ, θ > 0, (34)

where Γ(κ) = ∫∞
0 vκ−1e−vdv is the Gamma function. κ and

θ are called the shape parameter and the scale parameter
of the distribution, respectively. This distribution is similar
to the Gamma-Gamma model used by Newton et al. [64].
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Figure 2: BRCA example: estimated p(F,C) moments and estimated distributions using maxent, p̂(F,C). The distribution estimate on
the left uses third-moment information in the maxent optimization, while the right estimate uses only second moments. The third-order
estimate exhibits finer details than its second-order counterpart, and a contour that cannot be modeled using a quadratic distribution.
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Figure 3: Estimated conditional distributions of the number of false discoveries p̂(F | C). Panel (a) BRCA data. Panel (b) HIV data. To show
the effect of skewness corrections the third-moment F distribution (solid curve) is compared to its second-moment counterpart (dashed
curve). For BRCA the second-moment mean estimate is 79 compared to 104 for the third-moment, while for HIV these are 19 and 8. The
BRCA curves are also labeled with 50% (solid line) and 75% (dotted line) confidence intervals.
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In (34) the shape parameter κ is common to all genes, while
the scale parameters {θg}Gg=1 characterize varying mRNA

levels from gene to gene, but are assumed i.i.d. as

θg
i.i.d.∼ pΓ(ξ; κ0, θ0), for g = 1, . . . ,G. (35)

The intuition that genes with larger underlying mRNA levels
would have higher variance is supported by model (34) since
the mean of the gth gene is κθg and variance is κθ2

g .
The parameter set (κ, κ0, θ0) in (34) and (35) can be

chosen on the basis of the overall gene expression histogram
of real microarray data. Results for three such parameter sets:
(1, 0.6, 500), (2, 0.39, 384), and (3, 0.33, 300), are presented.
These numbers were chosen to preserve the total sample vari-
ance, and the particular values are based on the HIV data of
Van ’t Wout et al. [62] which were collected using Affymetrix
microarrays. In particular, κ = 1 models xgm variables that
are exponentially distributed, κ = 2 models a unimodal
distribution with heavy tails and a noticeable departure from
Gaussianity. Case κ = 3 represents an approximation to a
Gaussian distribution, but with slightly heavier tails.

Substantial row-wise covariance was added via the
Gaussian copula technique: A (G×M) matrix, say Z, of i.i.d.
unit normal RVs was used to produce a correlated matrix,
Z c, via the mapping

Zc = LTZ, where Z has elements zgm
i.i.d.∼ G(0, 1), (36)

in which L is the lower-triangular Cholesky factor (e.g.,
[65]) of Rz,G + εIG, the correlation matrix of the actual
expression matrix X from the BRCA study, plus a small
diagonal load to prevent singularity due to the fact that
M < G. Several other dense matrices, R, generated through a
different method [66], yielded similar results. This process
imposes the covariance of the real BRCA data on the
simulated substrate of independent Gaussian variables. The
resulting elements zcgm were mapped to P values, PGu(zcgm),
then further transformed to simulated expression variables,
xgm, through the inverse Gamma c.d.f. as in (34). The result
is the simulated expression matrix X = [xgm]G×M .

Figures 4 and 5 compare second- and third-moment
estimates for δ = −2.0 and δ = −2.5, respectively. In both
cases, c = 1 for the center area (see Section 6). For each
(κ, κ0, θ0), 800 matrices X were processed. On each X the
approach was applied in its entirety and no additional
knowledge was assumed. The a posteriori mean was used as
the final estimate. The usual mean estimator μ̂F ≈ E{F}
consistently reported 20 for δ = −2.5 and 73 for δ = −2.0,
regardless of the particular X.

Strikingly, for all three parameter sets (κ, κ0, θ0), the
third-moment skewness corrections make the estimation
process more accurate. For some of the scenarios third-
moment estimates saturate somewhat, but the effect is minor
compared to that in the second-order approaches. To the
extent that these parameter sets cover a wide range of realistic
gene expression data, the practical utility of the proposed
approach is evident.

6. Discussion

Advances in DNA microarray technology, improved stan-
dardization procedures, and a careful execution of labo-
ratory protocols collectively lead to testing situations with
marginally correct but strongly correlated null hypotheses.
If correlation is the result of intrinsic gene-gene interactions,
no experimental design can circumvent it. Correlation can
cause the realized Ḟ to vary significantly from case to case
[63], and the control of E{Ḟ} via the usual μF = E{F} may
no longer represent the basic facts. The moment theory of the
null statistic histogram can be used to deduce an estimator of
μF which explicitly combines identifiability and covariance.
Though we have explored these ideas in the differential
analysis context above, the findings are quite general.

It is reasonable to question the necessity of the heavy
mathematical machinery of the foregoing sections since it
is possible to simulate a number of sets of z-scores {zg}Gg=1

from the distribution z ∼ G(0,ΣG × G
z ), then estimate the

moments. However, due to sampling fluctuations, the under-
lying covariance matrix ΣG×G

z is ordinarily unattainable;
however, pursuing quantities like qρz(ξ) and qRz(ξ) is still
possible. Also, asG gets larger (∼25,000 for recent microarray
studies) computational demands, as well as the large number
of z-score sets required, become prohibitive.

Permutation calculations, as in [31, Section 4], offer an
alternative way to estimate the moments. They too can run
into computational difficulties, especially when the test
statistic itself is computationally intensive. Further difficulty
arises when samples are few. For a two-group study like
HIV (four samples each condition), the data provide only 70
unique permutations.

When a direct extraction of inter-hypotheses covariance
is not feasible, single omnibus parameter models remain
useful in that the investigator can still use judgment to
intelligently incorporate some form of covariance effect by
setting a value of the parameter α.

The distribution of interest p(F,C) resides over support
domain D as shown in Figure 6, and the maxent algorithm
is adept at handling such complicated support regions. At
a more fundamental level, through maxent, we seek to
minimize the amount of unintentional prior information
brought into the inference.

Apart from the numerical parameters Δ (bin width) and
the mesh resolution in maxent, the only open choice of
parameterization in the present method is c, the center area
boundary. The selection of c = 1 in this paper is based on
the first eigenvector analysis of Efron [31] which suggests
that (within certain approximations) the interval [−1, 1] has
completely opposite count behavior from the rest of the Z
space.

One surprising result of this and similar studies is
that more inter-zg covariance does not translate into more
extreme covariance between variables F and C. In the BRCA
data, for example, the coefficient between F and C is −0.89,
while for the HIV data the covariance drops to −0.75.
Further research to gain insight into this behavior would be
very useful.
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Finally, while covariance was viewed in the present paper
as a “destructive factor” in the attempt to estimate F, inter-
zg covariance can, in fact, be exploited to increase power
by finding a superior ranking of potential discoveries. The
recent multiple testing literature has begun to address this
possibility.
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Appendix

A. Genes and Microarrays

To understand the core statistical methods developed in
this paper, it is only necessary to know some very general
facts about the biological application. The “blueprint” for
building the components of every cell in an organism (except
some viruses) is encoded in macromolecules collectively
called deoxyribonucleic acid or “DNA.” Each DNA molecule
consists of a complementary pair of long sequences (poly-
mers) of small molecular elements known as nucleotides.
The characteristic “double helix” configuration of DNA
molecules results from chemical forces as the nucleotides on
the complementary polymers strongly bind to one another.
Each nucleotide is built around one of the four nitrogen bases
guanine, adenine, thymine and cytosine, commonly known
by their initial letters G, A, T, and C. It is the sequence of these
bases that encodes the information for producing proteins
that, in turn, determine the structures and functions of cells.
In the human genome (the complete set of life-sustaining
instructions in the genetic material of an organism), the
DNA consists of about three billion nucleotides organized
into 23 sets of structures called chromosomes.

Genes are certain identifiable sections of the DNA—
varying in length from a few hundred to a few million
bases—that encode a particular trait or “hereditary unit” of
biological information by specifying and regulating the types
of proteins produced. Almost every gene is present in the
DNA of every cell of a given organism, but only a relatively
few genes are active in any given cell type. Genes comprise
only about 1% of the DNA material in the human geneome.
The reasons for the existence of the remaining 99% of the
DNA remain the subject of much conjecture, hypothesis,
and research. It is currently estimated that there are on the
order of 25,000 genes in the human genome, 99% of which
are identical among all humans. The slight variances in the
other 1% of the genes (gene alleles) determine differences
among individuals (e.g., eye, hair, and skin color, blood type,
etc.). Apart from normal variations (alleles), mutations in
genes can lead to the formation of abnormal proteins with
beneficial, neutral, or negative consequences for cell function
and replication.

A gene is defined by its sequence of nucleotide bases,
which, in turn, can be expressed as a sequence whose ele-
ments come from the set of four letters G, A, T, and C
as described above—thus reducing the information carried
by the gene to a simple code like “ATCGCT. . .”. A three
letter code (i.e., a three base set like “AGA”), called a codon,
ultimately specifies one of the 20 amino acids that are the
building blocks of proteins. There are 64 possible codons,
and 61 of these are used to indicate 20 amino acids, so
there is redundant representation of the amino acids in the
codons. The remaining three codons are used for regulating
the protein synthesis.

The manifestation of genes as proteins is called gene ex-
pression. The degree to which a gene is “active” in a given
collection of cells (e.g., a basal cell (skin) tumor) in a given
set of conditions (e.g., untreated versus treated with radiation
or chemotherapy) can be ascertained by measuring the levels
of certain molecules [messenger RNA (mRNA) or comple-
mentary DNA (cDNA)] related to to proteins manufactured
by the gene. A microarray consists of thousands of binding
sites (“probes”), each populated with DNA fragments that
can be associated with particular genes. The extent to which
a gene is expressed in a particular preparation determines
the extent to which the related microarray site “lights up”
as the phosphorescent mRNA or cDNA in the preparation
binds to its site. A single microarray experiment can be used
to simultaneously quantify the expression levels of thousands
of genes in a particular tissue preparation.

The applied purpose of the statistical modeling work
in this paper is to develop methods for determining from
microarray data which genes are expressed at significantly
different levels when a cell type is exposed to different condi-
tions. Ultimately, this information can be used to understand
normal and abnormal cell function and replication, to target
genes for medical therapies, and to develop drugs for treating
myriad diseases and systemic disorders at the cellular level.

B. Estimating P(F, C) by Maximum Entropy
Optimization (MAXENT)

B.1. MAXENT Distribution. p(F,C) is a discrete distribution
with support domain

D={(

i, j
)

: i, j ∈ Z; 0 ≤ i ≤ G, 0 ≤ j ≤G, 0 ≤ i + j≤G
}

.
(B.1)

Any moment-based inference involves computation over D
whose increasing cardinality (∝ G2) makes processing dif-
ficult for a large G. However, computation can be reduced
substantially by truncating the domain D to the set

Dt =
{(

i, j
)

: Fmin ≤ i ≤ Fmax,

Cmin ≤ j ≤ Cmax, 0 ≤ i + j ≤ G
}

,
(B.2)
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where,

Fmin = max
(⌊

μF − 	σF
⌋

, 0
)

,

Fmax = min
(⌈

μF + 	σF
⌉

,G
)

,

Cmin = max
(⌊

μC − 	σC
⌋

, 0
)

,

Cmax = min
(⌈

μC + 	σC
⌉

,G
)

.

(B.3)

Chebyshev’s inequality guides the choice of parameter 	. For
	 ≥ 6, the loss of accuracy due to truncation is negligible.

Computation can be reduced further by recognizing that
distributions imposed on the basis of a small number of
moment constraints often enjoy a high level of regularity so
that a sparser mesh should be adequate. The computation-
accuracy trade-off becomes much easier to analyze if the
problem is posed as one of learning a density function over a
continuous domain, say

St =
{

(v,w) : v ∈ �(F), w ∈ �(C),

−hμ ≤ v + w ≤ 1− hμ
}

,
(B.4)

where, hμ
def= G/(μF + μC),

�(F)
def= range of F

= the interval

[

G

Fmin − μF
,

G

Fmax − μF

]

,
(B.5)

and similarly for�(C) (see Figure 6). Note that the continu-
ous domain is scaled by the factor G to improve numerical
stability. The moment constraints must be scaled accord-
ingly. Let Pc denote the space of feasible distributions
p(ξ1, ξ2). Then, for all p ∈ Pc:

∫

St

ξi1ξ
j
2 p(ξ1, ξ2)dξ1dξ2 =

E
{

(

F− μF
)i(

C − μC
) j
}

Gi+ j
def= ηi j ,

(B.6)

with 0 ≤ i + j ≤ J . In (B.6), (i, j) = (0, 0) corresponds to
the constraint

∫

St
p(ξ1, ξ2)dξ1dξ2 = 1, while (i, j) = (1, 0)

together with (i, j) = (0, 1) imply that every p ∈ Pc has
mean [0 0]T . We are concerned with problems for which
J ≤ 3. For convenience, we have defined the notation ηi j as a
shorthand for the scaled (i, j) joint central moment of F and
C.

The selection of a unique p(ξ1, ξ2) is based on the prin-
ciple of entropy maximization (MAXENT) which seeks a
p ∈ Pc with maximum information entropy [67]. The
information entropy essentially measures the spread of the
distribution, and hence, maxent can be seen as a criterion,
which, within one’s knowledge constraints, maximizes the
representation of unknown information (“ignorance”)—
arguably, a suitable approach for statistical inference.

MAXENT seeks the following solution in Pc:

p∗(ξ1, ξ2) = max
p∈Pc

{

−
∫

St

p(ξ1, ξ2) ln
{

p(ξ1, ξ2)
}

dξ1dξ2

}

.

(B.7)

The solution takes the following exponential form:

pλ(ξ1, ξ2) =
exp

{

∑

1≤i+ j≤J λi j ξ
i
1 ξ

j
2

}

∫

St
exp

{

∑

1≤i+ j≤J λi j ξ
i
1 ξ

j
2

}

dξ1dξ2

, (B.8)

in which the λi j are Lagrange multipliers. The derivation of
the exponential form (B.8) and a procedure to determine
optimal multipliers λi j are given in the following subsection.

B.2. MAXENT Solution Details. The information entropy
functional is concave [68], and the constraints in (B.6) are
linear in p(ξ1, ξ2). Thus, the problem in (B.7) is a convex pro-
gram that be solved in a Lagrangian dual framework, where
one works with an unconstrained upper bound that is easy to
optimize (e.g., [69]). More importantly, in the present case,
the framework allows the conversion of the original infinite-
dimension problem of functional variation into a finite-
dimension problem with as few variables as the number of
constraints.

Lemma 4. The dual, Ψ(λ), of the concave optimization prob-
lem (B.7) is given by:

Ψ(λ) = ln

⎡

⎣

∫

St

exp

⎧

⎨

⎩

∑

1≤i+ j≤J
λi jξ

i
1ξ

j
2

⎫

⎬

⎭

dξ1dξ2

⎤

⎦−
∑

2≤i+ j≤J
λi jη

i j ,

(B.9)

where λ is the set of Lagrange multipliers, {λi j}i, j ; λi j is the mul-

tiplier corresponding to the (i, j)th constraint; and i, j, J , and
ηi j are defined in (B.6).

Proof. By the definition of the Lagrangian dual function

Ψ(λ) = sup
p∈Pc

⎧

⎨

⎩

−
∫

St

p(ξ1, ξ2) ln
{

p(ξ1, ξ2)
}

dξ1dξ2

+
∑

i+ j≤J
λi j

(
∫

St

ξi1ξ
j
2 p(ξ1, ξ2)dξ1dξ2 − ηi j

)

⎫

⎬

⎭

.

(B.10)

Taking the functional variation of the bracketed term in
(B.10) with respect to the unknown density p(ξ1, ξ2), and
using the fact that

∫

St
p(ξ1, ξ2) dξ1 dξ2 = 1, we obtain the

maximizer of (B.10)

pλ(ξ1, ξ2) =
exp

{

∑

1≤i+ j≤J λi jξ
i
1ξ

j
2

}

∫

St
exp

{

∑

1≤i+ j≤J λi jξ
i
1ξ

j
2

}

dξ1 dξ2

. (B.11)
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Inserting (B.11) into (B.10) yields

Ψ(λ) =
∫

St

p
(

ξ′1, ξ′2
)

× ln

⎧

⎨

⎩

∫

St

exp

⎛

⎝

∑

1≤i+ j≤J
λi jξ

i
1ξ

j
2

⎞

⎠dξ1dξ2

⎫

⎬

⎭

dξ1′dξ2′

−
∑

1≤i+ j≤J
λi jη

i j

= ln

⎧

⎨

⎩

∫

St

exp

⎛

⎝

∑

1≤i+ j≤J
λi jξ

i
1ξ

j
2

⎞

⎠dξ1dξ2

⎫

⎬

⎭

−
∑

2≤i+ j≤J
λi jη

i j ,

(B.12)

where we have used the facts
∫

St
p(ξ1, ξ2)dξ1 dξ2 − η00 = 0,

η10 = 0, and η01 = 0 from (B.6).

It is easy to verify that the Hessian, denoted H{·}, of
(B.9) is positive definite and hence Ψ(λ) is convex. Suppose
that λ∗ is the minimum of Ψ(λ). Then the corresponding
primal solution pλ∗(ξ1, ξ2)—obtained via (B.11)—indeed
maximizes (B.7). To verify this, let po(ξ1, ξ2) be the maxi-
mizer of (B.7). Then, from (B.10), Ψ(λ) ≥H{po(ξ1, ξ2)} for
all λ. Now from general optimization theory, the functional
variation of the Lagrangian with respect to p(ξ1, ξ2) evalu-
ated at po(ξ1, ξ2) must be zero, which implies that po(ξ1, ξ2)
can be written in the form (B.11) for some λo. But, then,
Ψ(λ∗) ≤ Ψ(λo) ⇒ Ψ(λ∗) ≤ H{po(ξ1, ξ2)}. Consequently,
Ψ(λ∗) = H{po(ξ1, ξ2)}, so that λ∗ = λo. Hence pλ∗(ξ1, ξ2) is
the maximizer of (B.7).

Newton’s method (e.g., [70, Section 4.6]) specifies that if
a multivariable function Ψ(λ) is twice differentiable and the
initial value λ0 is chosen close enough to the optimal λ∗, then
the sequence over indices t = 0, 1, 2, . . .,

λt+1 = λt − γ
ΔΨ(λt)

H{Ψ(λt)} (B.13)

converges to λ∗. In (B.13), ΔΨ(λt) denotes the gradient
of Ψ(λ) evaluated at λt. The parameter γ > 0 allows a
finer control of step sizes to avoid numerical instabilities.
Intuitively, at the tth iteration, Ψ(λ) is replaced by its
second-order Taylor expansion around λt and then mini-
mized exactly, which produces the minimum λt+1. At the
(t + 1)st iteration, λt+1 becomes the point of expansion and
the method continues until the desired convergence level is
achieved.

The elements of the gradient ΔΨ(λ̆) are given by:

∂Ψ
(

λ̆
)

∂λi j

=
∫

St

ξi1ξ
j
2

×
⎡

⎣

exp
{

∑

1≤i+ j≤J λ̆i j ξ
i
1ξ

j
2

}

∫

St
exp

{

∑

1≤i+ j≤J λ̆i j ξ
i
1ξ

j
2

}

dξ1dξ2

⎤

⎦× dξ1 dξ2 − ηi j

=
∫

St

ξi1ξ
j
2 p̆(ξ1, ξ2)dξ1dξ2 − ηi j = η̆i j − ηi j ,

(B.14)

where η̆i j denotes the (i, j) central moment of the distribu-
tion of (B.11) parameterized by λ̆. Similarly, the elements of
the Hessian are given by:

∂2Ψ
(

λ̆
)

∂λi′ j′∂λi j
=

∫

St

ξi+i
′

1 ξ2
j+ j′ p̆(ξ1, ξ2) dξ1dξ2

−
∫

St

ξi
′

1 ξ
j′
2 p̆(ξ1, ξ2) dξ1dξ2

×
∫

St

ξi1ξ
j
2 p̆(ξ1, ξ2) dξ1dξ2

= η̆(i+i′)( j+ j′) − η̆i
′ j′ η̆i j .

(B.15)

The gradient calculations that occur as a part of the Hessian
essentially involve integration over the planar domain St.
Many advanced techniques for implementing numerical
integration on a quadrangle like St are available in the litera-
ture; however, an equispaced rectangular mesh is found to be
sufficient for the present purpose. We initiate the sequence
(B.13) with λ = 0 which implies a uniform distribution over
St.
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