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Abstract: Gait symmetry analysis plays an important role in the diagnosis and rehabilitation of
pathological gait. Recently, wearable devices have also been developed for simple gait analysis
solutions. However, measurement in clinical settings can differ from gait in daily life, and simple
wearable devices are restricted to a few parameters, providing one-sided trajectories of one arm
or leg. Therefore, head-worn devices with sensors (e.g., earbuds) should be considered to analyze
gait symmetry because the head sways towards the left and right side depending on steps. This
paper proposed new visualization methods using head-worn sensors, able to facilitate gait symmetry
analysis outside as well as inside. Data were collected with an inertial measurement unit (IMU) based
motion capture system when twelve participants walked on the 400-m running track. From head
trajectories on the transverse and frontal plane, three types of diagrams were displayed, and five
concepts of parameters were measured for gait symmetry analysis. The mean absolute percentage
error (MAPE) of step counting was lower than 0.65%, representing the reliability of measured
parameters. The methods enable also left-right step recognition (MAPE ≤ 2.13%). This study can
support maintenance and relearning of a balanced healthy gait in various areas with simple and
easy-to-use devices.

Keywords: gait symmetry analysis; gait symmetry; head-worn sensor; wearable sensor; inertial
measurement unit; eye diagram

1. Introduction

Gait symmetry is a key concept in the diagnosis of a pathological gait [1] which can
cause more serious health problems in a long- and short-term period. Researchers have
studied assessment methods of gait symmetry, and these studies have supported gait
rehabilitation and management for neurological, muscular, and sensorimotor problems [1],
such as postoperative symptoms of hips and knees [2], concussion [3], stroke [4], and
Parkinson’s disease [5]. As gait rehabilitation and management require long-term interven-
tions, there is an increasing interest in gait monitoring systems in daily life settings because
the measurement in clinical settings has temporal and spatial limitations [6]. For example,
a limited time is allowed for gait analysis in clinics because of their schedule. Patients,
in addition, walk a short distance or on treadmills for diagnostic measurement—quite
different conditions compared to natural gait in real life [6]. Therefore, the demands for the
analysis of natural gait in daily life settings have grown.

Combining various sensors, today’s smartphones [7] and wearable devices have
provided health monitoring services, including gait parameters available everywhere and
anytime. For example, commercial smartwatches inform users of the number of steps
and their gait instability that increases the risk of falling [8]. Smart insoles with pressure
sensors can analyze changing forces between the foot and the ground, informing users
of their gait symmetry [9]. These wearable devices facilitate gait analysis in daily life
settings. However, there are also certain limitations. Single sensor-based devices (e.g.,
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smartphones, smartwatches) hardly distinguish between the left and right steps, providing
limited information about gait symmetry. Devices using pressure sensors (e.g., smart
insoles) are not free from damage or shape changes caused by forces in every step, which
can reduce their product lifetime [10].

Recently, studies are also focusing on head-worn devices for gait analysis. For instance,
earbuds and smart glasses are of great interest because they are well-known to consumers
and provide a highly seamless user experience. Head mount displays (HMDs), in addition,
are directly engaged in virtual reality (VR) and augmented reality (AR) applications. The
idea of using head-worn devices in gait analysis is supported by literature. It is reported
that head acceleration is helpful to analyze gait events and gait patterns [11]. Researchers
have succeeded in embedding gait analysis features on ear-worn devices [12–14] or head-
worn inertial measurement unit (H-IMU) solutions [15]. These sensors have been developed
to provide more gait parameters independently.

In terms of gait symmetry analysis, however, single head-worn sensors have not been
developed as an independent solution. In these cases, temporal-spatial gait parameters
(e.g., step time) have been measured and differences between the odd and even data
periods are compared [13]. However, these kinds of sensors need support from additional
sensors because of the recognition of left or right steps. Without independent solutions
with single head-worn sensors, their advantages, such as cost effectiveness, spatial freedom,
and long product lifetime, are not expected in gait symmetry analysis. No previous studies,
nevertheless, have been published for independent solutions using single head-worn
sensors in gait symmetry analysis. The development of the independent solutions for gait
symmetry analysis has recently been required more often due to the increasing number of
head-worn devices such as earbuds, smart glasses, and HMDs.

This paper, therefore, starts to develop independent head-worn sensor solutions for
gait symmetry analysis. On the one hand, the head is swaying and oscillating during
walking. On the other hand, the hip obliquity (the pelvic rotation about the anterior-
posterior axis, influencing the trunk lateral movements) is a gait determinant [1]. As the
trunk and head are in coordination during walking [16], the head swaying and oscillating
trajectory might be used as a gait determinant. In gait analysis, diagrams have been used,
such as the sagittal plane joint angles [17], hip-knee angle-angle diagram [18], and butterfly
diagram [19]. These analysis methods are, however, normally used with angular kinematics
of low limbs or forces between the foot and ground. Thus, these diagrams are not fit for the
linear kinematic analysis of the head trajectory and, moreover, a symmetric format of these
diagrams is necessary to display the symmetricity of the data. One of the most widely used
diagrams to confirm symmetricity is the eye diagram (also called an eye pattern) in digital
communications [20]. With the eye diagrams, circuit designers and testers can intuitively
notice asymmetric patterns [21], even with their naked eye. The eye diagram helps circuit
designers to decide quickly whether they need to modify the circuit design in terms of
the size (or the ratio in the size) of n-type and p-type transistors which are responsible for
falling and rising signals, respectively. Secondly, to build modification plans or to decide
exact sizes of transistors, they look up more detailed parameters of the eye diagram, such
as the eye height, eye width, and eye crossing percentage. Finally, the eye diagram can be
used for a proof of the system reliability.

Motivated by the eye diagram in data communication, in this paper, two eye diagrams
and a W-diagram for gait symmetry analysis were proposed for independent solution of
single head-worn sensors. In eye diagrams, head trajectories during walking are divided into
left and right steps, which look rising and falling signals, respectively. In the W-diagram, the
divided left and right steps look like the left and right ‘U’ in the alphabet double-‘U’ (W),
respectively. These proposed diagrams were designed to help practitioners or therapists
to quickly notice gait asymmetry, and to plan gait rehabilitation properly. Materials and
methods including the overview of the experiment conditions are explained in the next
section. Results, discussion, and conclusion also follow.
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2. Materials and Methods
2.1. Participtants and Data Colection

Twelve healthy participants who can walk normally (female: 6, male: 6; age: 29.8 ±
6.8 years; height: 173.3 ± 8.6 cm) were asked to walk 100 steps on the part of a 400-m
running track that is for track and field athletics. They are the same participants in our
previous study [22]. Their movement data were collected by an IMU-based motion capture
system, so that each participant wore 17 IMUs from XSENS MVN Awinda system during
walking. A software from XSENS MVN visualized participants’ walking motion via an
avatar in 3-D space at 60 frames per second (fps). Head kinematic data of each participant
were extracted and analyzed by Python 2.7 in real-time. Foot kinematic data were also
used for comparison.

2.2. Sensor Placement and Orientations of Coordination Systems

The IMUs are placed on the head, stern, pelvis, shoulders, arms, hands, legs, and feet
(Figure 1). To be specific about the head and foot which are mainly monitored in this study,
the head IMU is placed on the back of the head, using a flexible headband. The foot IMU
is placed on the front of the foot, which was fixed by the shoelace of shoes. The global
orientations (origin: OGlobal) are defined as the north is the x-axis, the west is the y-axis, and
the upward is the z-axis, which is given by XSENS system. The local orientations (origin:
OLocal or O′) are also defined for the proposed diagrams as x′ is the direction of the walking
vector, y′ is the left of the walking direction, and z is the upward direction (Figure 1).
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Figure 1. Overview of the proposed real-time feedback system, including the data accusation, the sensor placement, and
the orientation of the coordinate systems.

2.3. Anatomical Planes in Observation

To observe the level of gait symmetry, two anatomical planes were chosen: the trans-
verse and frontal plane. The transverse plane is viewed from above the head or below the
foot. The trajectory of the head’s global movement is observed by this plane. In terms of
the frontal plane, the observation position is in the front or back side of the human body.
In this plane, the lateral and vertical head movement can be observed. On the coordination
systems shown in Figure 1, therefore, the transverse plane offers the gait trajectory on the
x-y (or x′-y′) coordinate system, and the frontal plane provides the observation on the y′-z
coordinate system.
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2.4. Temporal Alignment: Step Time

In the gait analysis, one of the well-known methods is using sagittal plane joint
angles [17] where changing joint angles in a gait cycle are compared. The repeated motions
in the walker’s gait cycle are aligned in a unit interval and compared to each other. In
this paper, a step time is defined as the unit interval instead of a gait cycle. The step time
is measured with the time differences between the peaks of the head vertical positions
as shown in Figure 2. In the sagittal plane joint angles diagram, the hip, knee, and ankle
angles can be compared to each other directly after the alignment with the unit interval
because the angle changes in a certain range (e.g., from −10◦ to 60◦ for the knee). Similarly,
the z-position in Figure 2 is also immediately compared after temporal alignment because
data are repeated in a certain range (e.g., 0.06 m). However, the y-positions keep increasing
or decreasing depending on the walking directions as shown in Figure 2a and b because
the x- and y-positions are continuously changing when people walk in daily life settings.
In this case, it is difficult to compare each trajectory on the x- and y-axis, so that spatial
alignment is also needed.
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walker’s height, independently from walking directions or the global positions.

2.5. Spatial Alignment and Walking Vector

In Figure 3, it is clearly observable that both x- and y-positions are diverse along
the walking direction. For example, the PA moves from (4.4, 9.9) to (6.4, 12.8) and PB
moves from (−8.6, −33.1) to (−7.8, −36.9). These participants were located in different
absolute positions and moved in different directions, and thereby data are not comparable.
To compare movements in each step, the x- and y-positions must be aligned with the
geometric transformation to a new x′-y′ coordinate system. For the new coordinate system,
a walking vector is defined between positions (On) as shown in Figure 4. The walking
vector is computed as below:

Wn = On −On−1 =

(
xn

yn

)
−

(
xn−1

yn−1

)
(1)

where Wn is the walking vector for the n-th step (n > 1). The position On and On-1 are
defined on the x-y coordinate system when the n-th and (n−1)-th head vertical peak are
detected. After On is detected, n-th the head trajectory between On and On+1 are defined
on the transverse plane as Dn (Figure 4a). For the spatial alignment, Wn and Dn are
transformed to W ′

n and D′n together on the new x′-y′ coordinate system as shown in
Figure 4b. When it comes to six steps with six walking vectors (Figure 4c), unit trajectories
are overlapped as shown in Figure 4d. We call the graph of Figure 4d gait eye diagram at the
head type-I (GE-H I).
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Data in Figure 4d are divided into positive and negative values on the y′-axis. When
the head is moving toward the left by stepping with the left foot, y′-values are positive.
When the head is moving toward the right to step with the right foot, y′-values are negative.
Normally, heel strike (HS) appears in the middle of the nearest two vertical peaks (VPs)
which means the middle of the unit trajectory (Dn). Therefore, it is easily recognized which
foot is stepping on the ground at HS, referring to the sign of the y′-values. From Figure 4d,
the step lengths and widths are also compared. The length of O′n (on the x′-axis) informs
the step length, which can show the step length skew (differences between two feet) and
step length jitter (differences of the same foot). In terms of the step width, the positive and
negative peaks of the y′-value can indicate the head lateral movement, and thereby the
symmetricity of left and right step widths can be estimated. In addition, the temporal skew
and jitter are also measured and compared. The step time can be calculated by multiplying
the frame interval time (16.7 ms at 60 fps) and the number of data points in a step.

When the gait velocity is changed, unit trajectories are mixed up because gait lengths
and widths are also changed. Therefore, the length of unit trajectories in the x′-axis are
normalized between 0.0 and 1.0 as shown in Figure 5, thereby being able to maintain the
eye shape, which is visually informative. This diagram is called gait eye diagram at the head
type-II (GE-H II). Although the step length information is lost, the gait symmetry can be
analyzed based on unit trajectories.
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Figure 5. Normalized head unit trajectories of six steps on the transverse plane (x”-y′ coordinate
system; x”: 0.0–1.0), also called the gait eye diagram at the head type-II (GE-H II).

In Figure 5, one of the most important features is the positive and negative peak. We
call them lateral peaks (LPs) because these peaks are from the lateral movement of the head.
From the average of LPs (ALPs), the range of lateral movement of the head is analyzed.
The second important feature is the average endpoint (AE), which contains information
about the lateral bias when the head position is vertically peaked. The average start point
(AS) should always be (0, 0), which shows if every unit trajectory is well aligned or not. In
this diagram, the average vertical valley (AVV) is also labeled, which can be detected in
Figure 6, but not in Figure 5. The AVV is labeled for comparison with other features.

These four features (ALP, AE, AS, and AVV) are also shown in Figure 6. The shapes
resemble the letter ‘W’, so that we call gait W-diagram at the head (GW-H). The unit trajectories
can be observed on the frontal plane (y′-z coordinate system), so that gait symmetry of the
vertical movement can be analyzed. The positive direction on the y′-axis is for the left side
of the head movement, and the negative direction is for the right side. The average vertical
valley (AVV) is the most important feature in Figure 6 because it obviously informs about
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gait symmetry patterns. In Figure 6, AS is the second important feature, showing vertical
differences (on the z-axis) between AS for the left and right side. Two other features, ALP
and AE, are also important; however, it is not visually clear, so it is better to be analyzed in
Figure 5. Actually, AE is the same value as the opposite side of AS.
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gait W-diagram at the head (GW-H).

2.6. Parameters in the Concepts of the Eye Diagram

In data communications, the eye diagram is much more informative with supportive
parameters. The parameters indicate not only symmetricity, but also stability. In this study,
new parameters are defined referring to concepts in parameters of the eye diagram: eye
height, jitter, bandwidth, signal to noise ratio (SNR). Those parameters are measured at
four events at VP, ALP, AVV, or the heel strike (HS) detected by the head motions. For
the benchmark, foot sensors are also used to measure comparable parameters to other
parameters using head sensors. These parameters are labeled as FT.

2.6.1. Eye Height

The eye height is the distance between positive and negative values in Figure 5. The
most noticeable example is the eye height at ALP (EH.LP), which is the distance between the
positive peak for the left side (ALP.L.y′) and the negative peak for the right side (ALP.R.y′).
Thus, the equation is as below:

EH.LP = ALP.L.y′ − ALP.R.y′. (2)

The other events (event) are also calculated with the distance between values of the
left and right side, described as below:

EH.event = event.L.y′ − event.R.y′. (3)

Thus, EH.VV and EH.HS are additionally defined. These values are supported by
other diagrams or algorithms. First of all, EH.VV should be supported by Figure 6. For
EH.HS, it should be supported by the algorithm of Hwang et. al. (2018) [15], which can
detect heel strike (HS) events by analyzing head motions.

In this concept, a comparable parameter using foot motions is the step width (SW.FT).
While EH.LP, EH.VV, and EH.HS can be obtained by only head motions, foot positions
are required to measure the step width. Due to the outside condition, foot positions are
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also transformed by using the head’s walking vector (Wn) in Figure 4, and foot position
data are also aligned after divided into unit trajectories. After these transformations, left
foot motions have positive y′-values and right foot motions are on the negative part of the
y′-axis. The step width was measured as a distance between positive and negative values
in foot lateral motions at the head’s vertical valley (VV) event.

2.6.2. Jitter

The concept of the jitter in the eye diagram is the variation of repeated signals in
time in data communications. When the jitter is out of the normal range, it means that the
system cannot reliably transmit the signals because of fluctuating bandwidth. The jitter,
thus, can indicate the reliability of the transmission systems.

In terms of gait symmetry analysis, unit trajectories of the head are also varying
temporally and spatially. These variations can be expressed by standard deviation, so
that the standard deviation of the step length and step time are used for the spatial and
temporal jitter, respectively. These parameters cannot be observed directly in the diagram;
however, they can be estimated by the thickness of the overlapped trajectory. Similar in
data communications, the jitter in gait symmetry analysis can indicate the reliability of
one’s gait.

In total, four methods were used to measure the step length and step time. Three
methods were used with head displacement at every vertical peak (SL.VP and ST.VP),
vertical valley (SL.VV and ST.VV), and heel strike (SL.HS and ST.HS). The other method
used foot kinematics, by measuring the displacement between the nearest two footprints at
HS events, as well as their duration (SL.FT and ST.FT).

2.6.3. Bandwidth

The bandwidth in data communications is the upper limit of data transfer rate (also
called data frequency). The eye diagram is used to check if the system is available to
transmit the signals at a certain data frequency, by analyzing parameters (e.g., eye height,
jitter, and signal to noise ratio). In the eye diagram in gait symmetry analysis, the data
transfer rate can be replaced by the gait velocity. Changing shapes of eye diagrams at
each gait velocity can help people to find the gait velocity range suitable for themselves.
In addition, differences between velocities of both the left and right side can provide
information about gait symmetry.

2.6.4. Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is a log scale parameter to display also reliability of
data transmission in a digital system. This is a log scale ratio between the signal and white
noise power of the system. When the noise power is higher, the signal-to-noise ratio is
lower, which reduces the possibility to transmit digital symbols (‘1’ or ‘0’) correctly. This
parameter is also related to the eye height and jitter as a signal and noise, respectively.
Therefore, the SNR for gait symmetry analysis is defined as below:

SNR.event = EH.event/σ.event.y′. (4)

The signal-to-noise ratio at an event (SNR.event) is obtained from eye height at the
event (EH.event) divided by the standard deviation in y′-value (σ.event.y′).

2.6.5. Vertical Movement

In Figure 6, the vertical movement of the head is well displayed. Some features can
be parameterized in terms of gait symmetry. First of all, it is obviously observed that the
height of AVV is different on the left and right side of the diagram. In other words, the head
oscillation is different depending on the stepping foot (left or right). The head oscillation
can be measured as the distance between vertical peak (VP) and vertical valley (VV). While
each side has one vertical valley (VV), there are two vertical peaks (VPs) at AS and AE.
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Thus, two parameters can be defined: the vertical distance between at AS and VV (S-VV)
and between at VV and AE (VV-E) as below:

S-VV = AS.z − VV.z. (5)

VV-E = AE.z − VV.z. (6)

Secondly, the distance between at LP and VV can be observed, so that the equation is
as below:

LP-VV = LP.z − VV.z. (7)

2.7. Gait Symmetry Indices

To measure the symmetricity, four coefficients are frequently used: ratio index
(RI) [23–25], symmetry index (SI) [25,26], gait asymmetry (GA) [27], and symmetry angle
(SA) [28]. As the angle is not measured, only three coefficients, RI, SI, and GA were chosen
for gait symmetry analysis in this study. The equations of RI, SI, and GA are as described
below:

RI(%) =

(
1− XR

XL

)
× 100%, (8)

SI(%) =
|XL − XR|

0.5 · (XL + XR)
× 100%, (9)

GA(%) = ln
XR
XL
× 100% (10)

where XL and XR are the absolute values of parameters of the left and right side, respec-
tively. For RI, the denominator (XL) is higher than the numerator (XR), meaning XL ≥ XR.
Otherwise, if XL < XR, XL and XR become the numerator and denominator, respectively. In
terms of original GA [27], the sign of the results can be information about which side is
bigger. In this study, however, the absolute value of GA was taken for comparison with
two other coefficients which are always positive.

In the measurement of indices for the EH, each side of y′-values is taken (XL: ALP.L.
y′; XR: ALP.R. y′). In the calculation of the jitter, XL is σ.event.L. y′, and XR is σ.event.R. y′.
For SNR, each side of EH and jitter.

3. Results

Figure 7 shows the gait eye pattern (x′-y′; GE-H I) normalized eye pattern (x′ ′-y′;
GE-H II) and gait W-patterns (y′-z; GW-H) of 12 participants. From spatial values (x′, y′,
and z) in the diagrams, symmetricity is readily observed in the prior-anterior, lateral, and
vertical direction. For example, P2, P5, P9, and P11 are laterally asymmetric patterns, as
shown in their GE-H I and GE-H II. Vertical asymmetric patterns can be found as well in
P1, P7, P8, P9, P10, P11, and P12 of GW-H. Different shapes of left and right wings and the
alignment at the beginning of unit trajectories (y′ = 0) can be easily recognized. In addition,
GE-H II can illustrate when and how an asymmetric pattern occurs. For example, the first
half of P2’s diagram is symmetric, but the second half is asymmetric. In GE-H II, the left
side of P7 is more unstable than the right side, and vice versa for P8.
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Figure 7. The gait eye diagrams at the head (x′-y′, GE-H I), normalized eye diagrams (x′ ′-y′, GE-H II) and the gait
W-diagrams (y′-z, GW-H) of 12 participants (P1–P12).
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3.1. Concept: Eye Height

One of the most interesting features of the eye diagram is the eye height, which is
related to the distance of the upper (left) and lower (right) trajectories. Figure 8a is the
average eye heights measured by four events. The eye height at the lateral peak (EH.LP),
vertical valley (EH.VV), and heel strike (EH.HS) were measured with y′. In addition, as a
comparable gait parameter, the step width was measured by using foot sensors (SW.FT).

In most cases observed in the measured data, the gait event sequence in a gait cycle
is HS, VV, and LP, so that eye heights increase gradually from EH.HS to EH.LP as shown
in Figure 8a. In the analysis with Pearson correlation, EH.VV was significantly correlated
with EH.LP (significant level (2-tailed): α = 0.05), EH.HS (α = 0.01), and SW.FT (α = 0.05).
Nevertheless, all methods showed a tendency of correlation coefficient (ρ > 0.5, p < 0.1)
except for the coefficient between EH.HS and SW.FT (ρ = 0.290). However, in Tukey’s hon-
estly significantly difference (HSD) as a post hoc test, the average of EH.LP is significantly
different from EH.HS (p < 0.05) and SW.FT (p < 0.05).

In Figure 8b, the three gait symmetry indices (RI, SI, and GA) of each method are
compared. These indices of EH.LP and EH.VV are significantly correlated (α = 0.01). The
results also showed significant correlations of GA between EH.LP and SW.FT, as well as
between EH.VV and SW.FT.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 17 
 

 

3.1. Concept: Eye height 
One of the most interesting features of the eye diagram is the eye height, which is 

related to the distance of the upper (left) and lower (right) trajectories. Figure 8a is the 
average eye heights measured by four events. The eye height at the lateral peak (EH.LP), 
vertical valley (EH.VV), and heel strike (EH.HS) were measured with y′. In addition, as a 
comparable gait parameter, the step width was measured by using foot sensors (SW.FT). 

In most cases observed in the measured data, the gait event sequence in a gait cycle 
is HS, VV, and LP, so that eye heights increase gradually from EH.HS to EH.LP as shown 
in Figure 8a. In the analysis with Pearson correlation, EH.VV was significantly correlated 
with EH.LP (significant level (2-tailed): α = 0.05), EH.HS (α = 0.01), and SW.FT (α = 0.05). 
Nevertheless, all methods showed a tendency of correlation coefficient (ρ > 0.5, p < 0.1) 
except for the coefficient between EH.HS and SW.FT (ρ = 0.290). However, in Tukey’s 
honestly significantly difference (HSD) as a post hoc test, the average of EH.LP is signifi-
cantly different from EH.HS (p < 0.05) and SW.FT (p < 0.05). 

In Figure 8b, the three gait symmetry indices (RI, SI, and GA) of each method are 
compared. These indices of EH.LP and EH.VV are significantly correlated (α = 0.01). The 
results also showed significant correlations of GA between EH.LP and SW.FT, as well as 
between EH.VV and SW.FT. 

  
(a) (b) 

Figure 8. Box and Whisker diagrams of (a) the average eye height at three events: lateral peak (EH.LP), vertical valley 
(EH.VV), and heel strike (EH.HS), and the step width measured by foot sensors (SW.FT), as well as (b) their three gait 
symmetry indices (RI, SI, and GA). 

3.2. Concept: Jitter 
Another main parameter in the eye diagram is the jitter. The spatial and temporal 

jitter are considered. The spatial jitter for gait analysis is related to the step length, which 
is measured by four different methods. Three methods are measured with head displace-
ment at every vertical peak (SL.VP), vertical valley (SL.VV), and heel strike (SL.HS). The 
other method is measured by the distance between the nearest two footprints at HS events 
(SL.FT). Only SL.VP can be observed directly in GE-H I, which is to On (see also Figure 
4d). The other three methods are measured for comparison. In all four methods, step 
lengths are correlated to each other (α = 0.05) as shown in Figure 9a. No significant differ-
ences were observed from ANOVA analysis and Tukey’s HSD. In Figure 9b, gait sym-
metry indices of four methods are compared, and all indices of SL.VV and SL.FT are sig-
nificantly correlated (α = 0.05). Other indices, however, resulted in no significant correla-
tions and differences. 

Figure 8. Box and Whisker diagrams of (a) the average eye height at three events: lateral peak (EH.LP), vertical valley
(EH.VV), and heel strike (EH.HS), and the step width measured by foot sensors (SW.FT), as well as (b) their three gait
symmetry indices (RI, SI, and GA).

3.2. Concept: Jitter

Another main parameter in the eye diagram is the jitter. The spatial and temporal
jitter are considered. The spatial jitter for gait analysis is related to the step length, which is
measured by four different methods. Three methods are measured with head displacement
at every vertical peak (SL.VP), vertical valley (SL.VV), and heel strike (SL.HS). The other
method is measured by the distance between the nearest two footprints at HS events
(SL.FT). Only SL.VP can be observed directly in GE-H I, which is to On (see also Figure 4d).
The other three methods are measured for comparison. In all four methods, step lengths are
correlated to each other (α = 0.05) as shown in Figure 9a. No significant differences were
observed from ANOVA analysis and Tukey’s HSD. In Figure 9b, gait symmetry indices of
four methods are compared, and all indices of SL.VV and SL.FT are significantly correlated
(α = 0.05). Other indices, however, resulted in no significant correlations and differences.
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Figure 9. Box and Whisker diagrams of (a) the step length in four different measurement sources and (b) their three gait
symmetry indices.

For the temporal jitter, step time was calculated by multiplying the sampled point in
one step and 16.7 ms (frame interval at 60 fps). Figure 10a shows the average of step times
measured by four methods. The average step times were measured between the nearest
vertical peaks (ST.VP), between nearest vertical valleys (ST.VV), and between heel strikes
(ST.HS), which are measured at head motion events in a step. The fourth value was the
step time measured by foot motion events (ST.FT). They are all significantly correlated in
α = 0.01 level. In Figure 10b, three gait symmetry indices of six parameters are compared.
The first four parameters are the indices of four step times (ST.VP, ST.VV, ST.HS, and ST.FT).
The two other parameters are x′ ′-values at VV (GE_II.VV) and LP (GE_II.LP) in GE-H II
(Figure 5). The first four parameters cannot be observed in any diagrams, whereas the
last two parameters can be observed in GE-H II and compared with the measured step
times. All indices in ST.VP and ST.HS are significantly correlated (RI: α = 0.01; SI, GA:
α = 0.05). All three indices in ST.VV and GE_II.VV are also significantly correlated (RI,
SI, GA: α = 0.01). Analysis of ANOVA and Tukey’s HSD test revealed that no indices are
significantly different; however, RIs of ST.VV and ST.FT show a tendency of difference
(p = 0.06).

Sensors 2021, 21, x FOR PEER REVIEW 12 of 17 
 

 

  
(a) (b) 

Figure 9. Box and Whisker diagrams of (a) the step length in four different measurement sources and (b) their three gait 
symmetry indices. 

For the temporal jitter, step time was calculated by multiplying the sampled point in 
one step and 16.7 ms (frame interval at 60 fps). Figure 10a shows the average of step times 
measured by four methods. The average step times were measured between the nearest 
vertical peaks (ST.VP), between nearest vertical valleys (ST.VV), and between heel strikes 
(ST.HS), which are measured at head motion events in a step. The fourth value was the 
step time measured by foot motion events (ST.FT). They are all significantly correlated in 
α = 0.01 level. In Figure 10b, three gait symmetry indices of six parameters are compared. 
The first four parameters are the indices of four step times (ST.VP, ST.VV, ST.HS, and 
ST.FT). The two other parameters are x′′-values at VV (GE_II.VV) and LP (GE_II.LP) in 
GE-H II (Figure 5). The first four parameters cannot be observed in any diagrams, whereas 
the last two parameters can be observed in GE-H II and compared with the measured step 
times. All indices in ST.VP and ST.HS are significantly correlated (RI: α = 0.01; SI, GA: α = 
0.05). All three indices in ST.VV and GE_II.VV are also significantly correlated (RI, SI, GA: 
α = 0.01). Analysis of ANOVA and Tukey’s HSD test revealed that no indices are signifi-
cantly different; however, RIs of ST.VV and ST.FT show a tendency of difference (p = 0.06).  

  
(a) (b) 

Figure 10. Box and Whisker diagrams of (a) the step time in four different measurement sources and (b) and their three 
gait symmetry indices.  
Figure 10. Box and Whisker diagrams of (a) the step time in four different measurement sources and (b) and their three gait
symmetry indices.



Sensors 2021, 21, 6621 13 of 17

3.3. Concept: Bandwidth

The gait parameter corresponding to the bandwidth in data communications is gait
velocity, which is obtained from step length (SL) divided by the step time (ST). These
gait velocities are compared in four methods as shown in Figure 11: the average gait
velocity at vertical peaks (Vel.VP), at vertical valleys (Vel.VV), at heel strikes with the head
(Vel.HS), and at HS with the foot (Vel.FT). Pearson correlation results reveal that Vel.HS is
significantly correlated with Vel.VP (α = 0.05), Vel.VV (α = 0.01) and Vel.FT (α = 0.01), as
well as Vel.VP and Vel.FT are significantly correlated at α = 0.01 level. In ANOVA analysis
and Tukey’s HSD, there is no significant difference. The average gait velocities at each side
(left, right) are also measured and compared with gait symmetry indices. In Figure 11b, all
three gait symmetry indices of Vel.VV and Vel.HS are significantly correlated at α = 0.01
level. Mean differences (ANOVA, Tukey’s HSD) show no significant results.
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3.4. Concept: Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) in gait eye diagrams is calculated by the average
eye height divided by its standard deviation at vertical peak (SNR.VP), vertical valleys
(SNR.VV), and heel strikes (SNR.HS). Additionally, using foot motions, the average step
width is divided by its standard deviation, resulting in an SNR (SNR.FT). Figure 12a
displays a significant correlation between SNR.VP, SNR.VV, and SNR.HS (α = 0.01). No sig-
nificant mean differences result, according to ANOVA and Tukey’s HSD test. In Figure 12b,
the gait symmetry indices of those four methods result in no significant correlation and
mean differences. The only observed fact is that their median values are in the range
between around 20 and 40.

3.5. Vertical Movement in Gait W-Diagram

Asymmetric vertical patterns are also compared in three parameters as shown in
Figure 13: the vertical displacement from AS to VV (S-VV) and from VV to AE (VV-E),
as well as between VV and LP (VV-LP). The correlation coefficient of the average S-VV
and VV-E is exactly correlated at 1.0 because the left start point is the same as the right
endpoint and vice versa. However, LP-VV is significantly different from S-VV and VV-E
(both p < 0.05) according to Tukey’s HSD. In terms of gait symmetry indices, all three
indices of S-VV are significantly correlated with VV-E (α = 0.05) and LP-VV (α = 0.01). With
Tukey’s HSD, significant differences are observed between all indices of LP-VV and S-VV
(p < 0.01), as well as between LP-VV and VV-E (p < 0.01).
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3.6. Validation

All proposed parameters with four methods are measured at head motion events dur-
ing walking: vertical peak (VP), vertical valley (VV), and heel strike (HS). The prerequisite
of the measurement is the detection of those events. These events should occur once in ev-
ery step, so that accuracy of step counting is chosen as an indicator of the system validation.
Table 1 describes a comparison of step counting at VP, VV, and HS, which is obtained by
the H-IMU system. Step counting at HS is validated only for both feet conditions [22]. The
ground truth is also compared, which was manually obtained by human observers. They
monitored walking avatars in the 3-D virtual space and foot kinematic data recorded by
XSENS Awinda system that was validated [29]. Mean absolute percentage errors (MAPE)
were also measured for both left and right steps. In both, step counting at HS is the highest;
however, the mean values are not significantly different. On the other hand, left and right
step counting at VV is highest. One of the reasons for this is that double vertical valleys
occur frequently. To avoid these events, the detecting algorithm should choose one of those
valleys at VP. Although this algorithm reduces errors at VV, it is dependent on errors at
VP. For example, when a step is missing at VP, one step is missing at VV as well. Thus, the
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error rate at VV is the highest. The mean absolute percentage errors at VP are higher than
at HS because ground truth is measured at heel strike, so that the range of left and right
steps at VP are differently defined from the ground truth. Nevertheless, the MAPE and
steps are not significantly different.

Table 1. Comparison of step counting with four methods.

Side Parameters VP VV HS Ground Truth

Both
Steps

(Mean ± Std.) 85.6 ± 2.9 85.3 ± 3.0 85.0 ± 2.7 85.6 ± 3.1
1 MAPE (%) 0.19 0.48 0.65

Left
Steps

(Mean ± Std.) 42.8 ± 1.8 42.7 ± 1.9 42.3 ± 1.3 42.7 ± 1.4
1 MAPE (%) 0.99 1.59 0.93

Right
Steps

(Mean ± Std.) 42.8 ± 1.2 42.7 ± 1.2 42.8 ± 1.6 42.9 ± 1.8
1 MAPE (%) 1.36 2.13 0.37

1 Mean absolute percentage error.

4. Discussion

In this paper, the main concepts of the eye diagram normally used in data commu-
nications were applied to gait symmetry analysis. With this new use of these diagrams,
practitioners, therapists, and researchers would be immediately informed about the level of
gait symmetry. Easily readable diagrams would play an important role in applications for
advanced analysis using high-performance computing systems, as well as simple analysis
using portable devices. Today, high-performance gait analysis systems and devices can
compare complicated data sets and even implement machine learning algorithms [30].
However, processor units require more power to run complicated methods or machine
learning algorithms, and also need processing time and memory space. On the other hand,
the simplified diagrams can offer real time feedback because they require devices only
to run simple computations, resulting in fast responses. In addition, non-experts in gait
analysis can immediately assess human gait symmetry of their own gait as well as others’
gait.

In terms of methods, as a pilot study, twelve participants were involved, by wearing
an IMU-based motion capture system (XSENS). Nevertheless, data were valuable because
it can be found that parameters are reliably in a certain range and trends in terms of
straight gait under the flat ground condition. It is also remarkable that their shapes of head
trajectory are all different, which could be one source of personal identification using gait
patterns.

Although SNR in data communications has a unit of decibel (dB) as a log scale
parameter, the SNR concept in gait analysis does not result in a log scale value in this
study. The first reason is to reduce unnecessary computations. Secondly, the final goal is to
compare left and right values, so that it was not important if the parameter is a log scale
or not. The comparison results might be different in different groups and conditions. In
future studies, it can be figured out if the log scale is more informative or not.

In addition, the eye crossing percentage in data communications plays an important
role in the analysis of signal symmetry (e.g., rising and falling signals). The concept of eye
crossing percentage is, however, not mentioned in this study because the gait symmetry
indices of the eye height can replace it to show the level of gait symmetry. In further
research with different conditions, the concept can be additionally proved, by measuring
the distance between AEs of the left (positive) and right (negative) side.

When these proposed simple diagrams are realized by head-worn devices (e.g., ear-
buds, HMD), more participants in various groups can be involved in gait analysis research
because those devices are easy to set up on participants. For example, those devices can
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be easily applied to people with Parkinson’s diseases, post-stroke, or post-concussion, for
whom it is currently still very difficult and problematic to perform measurements with
elaborate diagnostic systems. The performance of athletes can be also easily diagnosed
outdoor without any spatial limitations. For further applications, more studies with vari-
ous groups of people and conditions are needed with different gait velocities and ground
conditions (e.g., slope, curve, softness).

Moreover, the diagrams can provide not only visualization, but also sonification [31].
The trajectories of diagrams are so intuitive that users might easily understand the sound
generated by their gait patterns. Gait sonification is one of the emerging methods in the
rehabilitation of post-operative gait problems (e.g., hip replacement [2]) or other neuro-
structural problems such as Parkinson’s disease [32]. It is also expected that the diagrams
might be applied to other body parts (e.g., pelvis, foot) instead of the head during walking.

5. Conclusions

This study was undertaken to analyze gait symmetry on head trajectory diagrams
using head-worn IMU to inform about gait symmetry. Based on head kinematics, three
diagrams, gait eye diagram at the head I and II (GE-H I, GE-H II), and gait W-diagram at
the head (GW-H) were designed, which can easily inform about the level of gait symmetry
on the transverse and frontal plane. The proposed method using H-IMU implies that
today’s head-worn devices (e.g., earbuds, smart glasses, HMD) can easily monitor user’s
gait symmetry outside laboratories or clinics. Although this study was conducted with a
limited number of participants and conditions, it succeeded in visualizing the status of gait
symmetry. In future studies, the visualization methods will be run on head-worn devices
independently from the whole motion capture system. Furthermore, if it can provide
real time feedback visually or acoustically, it can contribute to rehabilitation and therapy
of abnormal gait as on people with Parkinson disease or post-stroke patients, as well as
maintenance of users’ healthy symmetry gait in daily life.
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