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Abstract

Translational models directly relating drug response specific processes that can be

observed in vitro to their in vivo role in cancer patients constitute a crucial part of the devel-

opment of personalized medication. Unfortunately, current studies often focus on the optimi-

zation of isolated model characteristics instead of examining the overall modeling workflow

and the interplay of the individual model components. Moreover, they are often limited to

specific data sets only. Therefore, they are often confined by the irreproducibility of the

results and the non-transferability of the approaches into other contexts. In this study, we

present a thorough investigation of translational models and their ability to predict the drug

responses of cancer patients originating from diverse data sets using the R-package FORE-

SEE. By systematically scanning the modeling space for optimal combinations of different

model settings, we can determine models of extremely high predictivity and work out a few

modeling guidelines that promote simplicity. Yet, we identify noise within the data, sample

size effects, and drug unspecificity as factors that deteriorate the models’ robustness. More-

over, we show that cell line models of high accuracy do not necessarily excel in predicting

drug response processes in patients. We therefore hope to motivate future research to con-

sider in vivo aspects more carefully to ultimately generate deeper insights into applicable

precision medicine.

Author summary

In the context of personalized medicine, finding genomic patterns in a cancer patient that

can predict how a specific drug will affect the patient’s survival is of great interest. Transla-

tional approaches that directly relate drug response specific processes observed in cell line

experiments to their role in cancer patients have the potential to increase the clinical rele-

vance of models. Unfortunately, existing approaches are often irreproducible in other

applications. In order to address this irreproducibility aspect, our work comprises a thor-

ough investigation of a diverse set of translational models. In contrast to other approaches

that focus on one isolated model characteristic at a time, we examine the overall workflow

and the interplay of all model components. Additionally, we validate our models in multi-

ple patient data sets and identify differences between cell line and patient models. While
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we can establish models of high predictive performance, we also expose the deceptive

potential of optimizing methods to a specific use case only by showing that those models

do not necessarily depict biological processes. Thus, this study serves as a guide to inter-

pret new approaches in a broader context to avoid the dissemination of noise-driven mod-

els that fail to serve in everyday applications.

Introduction

Within the context of a permanently growing interest in precision medicine over the last

years, where therapies are intended to be tailored to specific characteristics of individual

patients, the study of drug sensitivity prediction for complex diseases, such as cancer, has expe-

rienced a tremendous boost [1]. The availability of both the computational power to work

with complex algorithms and large-scale pharmacological data sets gave rise to various drug

sensitivity studies. Since in vitro experiments are easily standardizable, readily quantifiable

and feasible for high-throughput settings, cell lines moved up to become convenient test speci-

mens to explore the characteristics of diverse diseases and the mechanisms behind drug

action.

Thus, cell lines were not only extensively characterized by means of their molecular profile,

such as mutational status, gene expression, proteomics, copy number variation or methylation,

but also based on their responses to broad panels of drugs [2–7]. Consequently, a variety of

computational approaches were developed to connect the disease-specific molecular profiles

and drug responses [8–12]. In order to keep an overview of the versatile field of drug sensitivity

prediction, efforts were also made to systematically compare existing approaches, for example

in collaborative projects, such as the DREAM challenge by Costello et al. [13].

While these efforts are great in comparing and improving distinct components of a model,

such as batch effect correction methods [14], feature selection methods [15] or regression algo-

rithms [1], they often lack the consideration of the complete modeling workflow and the inter-

play of the individual pipeline components. Moreover, published methods are inclined to be

biased towards the authors’ fields of expertise, which hinders a fair and objective benchmark-

ing of existing methods. Consequently, a lot of different models exist in the literature, which

are all carefully adapted for very specific purposes and distinct data samples, while generic

rules for promising models are difficult to find.

Furthermore, in the majority of these studies, the ultimate goal is to understand the molecu-

lar mechanisms in living patients, while the analyses are performed on in vitro data. Even

though studies have shown that cell lines reflect many important aspects of human in vivo biol-

ogy, they also exhibit significant differences. This is especially evident regarding the absence of

an immune system and a micro-environment of tumor cells in cell cultures, making the direct

translation of preclinical models into a clinically relevant context rather difficult [16]. Transla-

tional models that relate in vitro and in vivo mechanisms already in the model building process

[17], can help to tackle the discrepancy between abstract training of cell line-based models and

their clinical application. One prominent solution is to address the genomic differences

between in vitro and in vivo data via batch-effect removal concepts [18]. However, correspond-

ing to the challenges that are opposing pure cell line models, translational models are often not

robust across different patient data sets. Moreover, the processes that are relevant to the fitting

often remain invisible.

Accordingly, in this study, we intend to systematically investigate the workflow of transla-

tional models of such kind, using our R-package FORESEE [19] to explore all relevant model
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components and their interplay. By including publicly available approaches and running the

different modeling pipelines automatically, we reduce the bias introduced by the users’ hetero-

geneous experiences in those methods. Furthermore, we directly evaluate the resulting models

on patient tumor data to inherently attain clinical relevance of our models. By addressing

noise, sample size effects and a lack of drug-specificity in our models, we point out possible

factors that can affect the robustness of a model. Thereby, we want to demonstrate how a

model that seems to perfectly predict drug response in one scenario does not necessarily

describe meaningful patterns that can help to advance the general understanding of drug

response mechanisms. Instead, we want to encourage future investigations to dig deeper into

understanding the disease and disease treatment models by broadening the validation of mod-

els, considering more and larger data sources and comparing more modeling pipelines. More-

over, we aim to show that pipelines that model cellular drug response mechanisms with high

accuracy cannot automatically predict in vivo processes and therefore hope to motivate

research to consider in vivo aspects more carefully to ultimately generate deeper insights into

applicable precision medicine.

Results

A systematic scan of the model space reveals models of outstanding

performance

In order to systematically scan the space of translational models, the FORESEE package was

applied to different combinations of cell line- and patient data sets, combining five methods of

cell response preprocessing with seven approaches of homogenization and batch effect correc-

tion, four kinds of feature selection, four ways of feature preprocessing and seven model algo-

rithms. The scan of these 3,920 different modeling pipelines revealed models of very high

performance. Especially for the breast cancer patient data set GSE6434 [20], multiple good

model pipelines could be found, with 189 of them yielding an AUC of ROC> 0.81, which is

the reported performance of the established translational ridge regression model by Geeleher

et al. [18]. The best model pipeline, implementing a k-means binarization of the reported IC50

values, a remove unwanted variation (RUV) homogenization between the cell line- and patient

data set, a landmark gene filter, no further feature preprocessing of the remaining gene expres-

sion features, and an elastic net or a lasso regression algorithm, which both accomplished a

performance of AUC of ROC = 0.99 (Panel A in Fig 1), produced a near to perfect separation

between responders and non-responders of the treatment (Panel B in Fig 1). Still, the 3,920 dif-

ferent modeling pipelines manifested a high heterogeneity with a wide performance distribu-

tion (Panel C in Fig 1) and a median AUC of ROC of 0.579. As portrayed in S1 Fig, each of the

other patient data sets shows a similarly wide-spread performance distribution for the 3,920

models tested with FORESEE. Yet, models of very high performance can be found for each of

them, the best model settings being listed in Table 1.

Model performance is patient data specific

A perfect model for a specific data set is insignificant for other use cases. From the

comparison of the settings of the best model in each of the cell line—patient data set scenarios

in Table 1 it becomes apparent that the best model pipeline settings vary strongly between the

different patient data sets. One specific modeling pipeline that yields the best performance in

all of the data sets does not exist. For a visual representation of this finding, Fig 2A shows the

AUC of ROC of the best model of each of the analyzed patient data sets (Table 1) and the per-

formances of the same models, when they are used to predict the other patient data sets, in a
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colored heatmap. Since there were two modeling pipelines that yielded the best performance

in the GSE6434 data set (AUC of ROC = 0.99) and two for the Sorafenib subset of the

GSE33072 data set (AUC of ROC = 0.7), nine pipelines are compared with respect to their per-

formance in the seven patient data sets. Fig 2B depicts the same information as Panel A, but in

Fig 1. Performance portrayal of translational models trained on GDSC cell line data using the R-package FORESEE to predict GSE6434 patient

drug response. Of a total of 3,920 modeling pipelines, the best modeling pipeline had the following settings: drug: Docetaxel, cell response type: ln

(IC50), cell response transformation: binarization with k-means, sample selection: all, duplication handling: remove all duplicates, homogenization:

remove unwanted variation, feature selection: landmark genes, feature preprocessing: none, black box algorithm: elastic net (while lasso would have

yielded the same performance). (A) The receiver operating curve of the best model reveals an AUC of 0.986. (B) The comparison of the true responders

and non-responders and their separation obtained from the best FORESEE model shows an almost perfect distinction, with a p-value of a t-test of

4.19e-6. (C) The performance distribution of all 3,920 model pipelines reveals a median AUC of ROC of 0.579.

https://doi.org/10.1371/journal.pcbi.1007803.g001

Table 1. Model performance and pipeline settings of the best model for each patient data set.

Data Set Cell Response

Transformation

Homogenization Feature

Selection

Feature

Preprocessing

Black

Box Algorithm

AUC of

ROC

AUC of

PR

p-value of t-

test

GSE6434(a)

Docetaxel

binarization k-means RUV landmark

genes

none elasticnet 0.986 0.655 4.19e-06

GSE6434(b)

Docetaxel

binarization k-means RUV landmark

genes

none lasso 0.986 0.655 1.08e-05

GSE18864 Cisplatin logarithm none landmark

genes

zscore genewise rf 0.822 0.307 0.0216

GSE51373 Paclitaxel powertransform RUV4 all none rf 0.859 0.307 1.03e-03

GSE33072 Erlotinib powertransform RUV4 all none rf 0.897 0.307 7.54e-04

GSE33072

Sorafenib(a)
binarization k-means YuGene p-value none linear regression 0.697 1 0.0406

GSE33072

Sorafenib(b)
binarization cutoff RUV4 landmark

genes

none rf 0.697 1 0.0406

GSE9782 GPL96

Bortezomib

none ComBat landmark

genes

PCA svm 0.680 1 6.76e-05

GSE9782 GPL97

Bortezomib

binarization k-means limma p-value PCA rf 0.704 0.714 4.95e-06

(a,b) Two models having the same (best) performance value for the respective data set.

All models were trained on ln(IC50) values of the respective drug.

All models were trained on all available GDSC cell line samples in the training data set without tissue specifications.

All models removed all feature names occurring more than once from the training process.

https://doi.org/10.1371/journal.pcbi.1007803.t001
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ranks rather than absolute numbers. It becomes evident that a model that yields almost perfect

prediction performance in one of the data sets has a merely mediocre performance for other

data sets. For example, one of the best modeling pipelines (GSE6434 (a)) that was found for

modeling the Docetaxel response of GSE6434 patients—the elastic net regression model that

was trained on k-means binarized IC50 values of GDSC cell lines and RUV homogenized gene

expression values of the set of landmark genes without any further preprocessing of the fea-

tures—yields an AUC of ROC = 0.99 in this setting, while for the Cisplatin response of

GSE18864 patients the same model only generates an AUC of ROC = 0.55, which is ranked

1,600th among all 3,920 pipelines. One modeling pipeline however constitutes an exception:

the model trained on power-transformed ln(IC50) values, with RUV4 as homogenization

method between training and test features, including all genes as features without further fea-

ture preprocessing and a random forest algorithm for model training yields the best perfor-

mance of all 3,920 modeling pipelines in both the GSE51373 data set (AUC of ROC = 0.859)

and the Erlotinib subset of GSE33072 (AUC of ROC = 0.897). Despite this outstanding perfor-

mance in two of the data sets, the pipeline fails to exceed an AUC of ROC of 0.56 in all other

data sets, confirming the more general notion that a perfect model for a specific data set is

insignificant for other use cases.

Model performance is poorly correlated among patient data sets. From our systematic

scan of model space, it becomes clear that the problem of reproducibility does not only occur

Fig 2. Heatmaps of the performance of the best modeling pipeline of each patient data set in each of the other patient data sets. (A) The color

depicts the AUC of ROC of the respective pipelines. (B) The color represents the rank of the modeling pipeline among all 3,920 pipelines that were

trained for a specific data set. More details of the modeling pipelines are listed in Table 1. The ranks of the best pipelines of the GSE6434 data set and the

Sorafenib subset of the GSE33072 data set are 1.5, as two modeling pipelines yielded the exact same performance for the respective data set.

https://doi.org/10.1371/journal.pcbi.1007803.g002
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for the very best pipeline in each specific data set, as shown in the previous section. This prob-

lem manifests for almost all modeling pipelines, independent of the absolute value of their

performances.

Section A in the upper left corner of the correlation plot in Fig 3 portrays the Pearson corre-

lation of the AUC of ROC performance values of 3,920 modeling pipelines in different patient

data sets. Not only are the absolute correlation values very low, but also some of the patient

data set pairs exhibit a negative correlation. Especially the correlation between the GPL96 and

the GPL97 cohort of the GSE9782 data sets, which comprises the gene expression data of the

exact same patients only measured with two different array technologies, exposes a

Fig 3. Pearson correlation of the performances of 3,920 FORESEE pipelines among the different cell line- and patient data sets. Pearson

correlation of the performances of 3,920 FORESEE pipelines for seven different patient data sets (A): GSE6434, GSE18864, GSE51373,

GSE33072 Erlotinib cohort, GSE33072 Sorafenib cohort, GSE9782 GLP96 cohort and GSE9782 GLP97 cohort and (B) six different cell line

model scenarios with data from GDSC for Docetaxel, Cisplatin, Paclitaxel, Erlotinib, Sorafenib and Bortezomib. The performance measure for

the cell line-to-cell line modeling scenarios is the mean AUC of ROC of a 5-fold cross-validation for each drug.

https://doi.org/10.1371/journal.pcbi.1007803.g003
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surprisingly low value of 0.39. Notably, in the context of generally rather low correlation val-

ues, the correlation of 0.39 between GSE51373 and the Erlotinib cohort of GSE33072, which

also share the same best performing modeling pipeline (Fig 2A and 2B), appears to be excep-

tionally high. Still, the overall mediocre correlation implies that it is impossible to reliably

determine if a certain modeling pipeline will yield a good (or bad) prediction performance in

another data set, even though the performance in one of the data sets is known.

In order to put the poor reproducibility into perspective and examine the problem in a

broader context, S2 Fig features the conditions of the underlying data sets that were used in

the presented analyses. After all, there are immediate factors that affect the model performance

that do not originate from model specifications.

First, even though all of the models were trained on cell line data from GDSC, the training

data sets differed enormously. This is owed to the fact that the drugs included in the GDSC

database are not screened on all of the available cell lines, but mostly on smaller subsets. Con-

sequently, the training data sets for the different translational scenarios in this paper varied in

sample size and in the distribution of the cell lines’ tissues of origin depending on the drug

that was modeled (S2C Fig).

Second, the features that were available for training the translational model varied signifi-

cantly. Both, the microarrays that were used in the generation of the patient gene expression

data and the gene IDs that were originally chosen to define the features, have an impact on the

resulting overlapping feature list for each distinctive pair of cell line- and patient data set. After

converting the reported gene names into Entrez Gene IDs [21] with biomaRt [22, 23] and

removing all duplicates, the feature set size varied from 4,786 genes in translational models for

the GSE9782 GPL97 data set to 15,703 genes in translational models for the GSE33072 Erloti-

nib and Sorafenib data sets before any feature selection method was applied. As a consequence,

all of the gene filter methods none, variance and pvalue produced feature sets that could differ

in size by a factor of 3, which makes the comparison of these methods in two different data

sets unbalanced.

Third, while the training sets’ distributions of gene expression values were highly similar in

all seven settings (S2A Fig)—which is expected, since all training sets are subsets of the same

cell line database GDSC [2]—the distribution of gene expression differed enormously between

the different patient data sets (S2B Fig). For this very reason, the homogenization of the train-

ing and test data set pairs is a highly important element of a modeling pipeline. The common

homogenization methods should be well prepared for these differences, whereas the option

none, which simply skips any type of homogenization between the training and test set, can

result in very different conditions for different patient data sets. Consequently, it is no surprise

that some of the pipelines do not show a high correlation among the different patient data sets.

Taking into account these effects of the data constitution, it becomes accessible that the cor-

relation of the ensemble of 3,920 pipelines is not in a perfect range. Still, they do not justify the

large extent of the bad correlation that was attained in this study and the lack of transferability

of these approaches in general.

Model performance is affected by noise

Concluding from the weak correlation of model performances among different data sets and

the widespread performance distributions of the set of 3,920 pipelines in one individual data

set, the translational models that are investigated in this study seem to be affected by noise. In

order to assess the extent of this noise, we investigated three different aspects that could poten-

tially compromise modeling performance.

PLOS COMPUTATIONAL BIOLOGY Methodological challenges in translational drug response modeling in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007803 April 20, 2020 7 / 23

https://doi.org/10.1371/journal.pcbi.1007803


The sample size of the patient data sets affects the perception of noisy results. As

apparent from the violin plots in Fig 1 and S1 Fig, models seem to yield much higher perfor-

mances for data sets such as GSE6434 with a maximum AUC of ROC of 0.986 than data sets

such as the GSE9782 GPL97 cohort with a maximum AUC of ROC of only 0.704. While there

is no doubt that noise varies from data set to data set, such that certain ones are better adapted

for model training than others, it is still reasonable to investigate the circumstances of this per-

formance disparity in more detail.

One principal difference between the patient data sets is their sample size. Therefore, Fig 4

displays the performance distributions of all 3,920 modeling pipelines in the order of increas-

ing sample size of the patient data sets (light blue violin plots). Following the principle that it is

a lot more probable to correctly guess the responses of a small sample set than those of a very

large sample set at random, it becomes explicit that data sets that exhibit a wide spread of per-

formance values with high reaching peak performances have a significantly smaller sample

size (GSE6434: 24 patients, GSE18864: 24 patients and GSE51373: 25 patients) than data sets

with a narrow performance distribution (GSE9782 GPL96 and GPL97: 169 patients). For the

Fig 4. Violin plots of the FORESEE performances compared to random distributions. Distributions of the performances of all 3,920 FORESEE

modeling pipelines in each of the seven different patient data sets: GSE6434, GSE18864, GSE51373, GSE33072 Erlotinib cohort, GSE33072 Sorafenib

cohort, GSE9782 GLP96 cohort and GSE9782 GLP97 cohort. The actual performance distributions of the translational models (light blue) are

compared to the distributions, where each of the 3,920 translational models was applied to 1,000 patient objects with randomly permuted gene labels

(medium blue) and to distributions, where the actual patient response values are compared to 10,000 randomly generated binary vectors to calculate an

artificial AUC of ROC measure (dark blue). Data sets are shown in increasing sample size from left to right.

https://doi.org/10.1371/journal.pcbi.1007803.g004
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purpose of illustration of this sample size effect, Fig 4 includes distributions that represent arti-

ficial AUC of ROC values from the comparison of 10,000 randomly generated binary vectors

in the size of the patient data sets compared to the actual responses of the respective patient

data sets (dark blue). Moreover, Fig 4 depicts distributions that summarize the performances

of the 3,920 FORESEE model pipelines applied to 1,000 versions of each patient object, where

the gene labels were randomly permuted (medium blue).

From the direct comparison between the actual performance distributions and the ran-

dom ones, it becomes apparent that certain model findings may be less significant than previ-

ously thought. In the cases of GSE9782 GPL96 and GPL97 for instance, even though the best

models have comparably low absolute values of AUC of ROC, their performances are still

higher than predictable by 10,000 random guesses. Thus, they effectively allow the training of

robust models that are not entirely driven by noise. The Sorafenib cohort of the GSE33072

data set and the GSE18864 data on the other hand yield worse results on average when a

model is trained to predict the response than when the response is guessed at random, even

though the absolute values of the AUC of ROC seem more promising than the ones of

GSE9782 GPL96 and GPL97. This is particularly prominent for the Sorafenib cohort of the

GSE33072 data set, which exhibits a median AUC of ROC of 0.46—the lowest among all data

sets.

This indicates that these data sets are predominantly governed by noise and should there-

fore be considered with caution for the training of universally valid clinical models. For

GSE18864, this finding is concurrent with previous findings by Geeleher et al. [18], whose

models could not capture variability in clinical response, and by Silver et al. [24], the authors

of the original study, who could not identify a predictive gene signature of Cisplatin response.

Similarly, a unified set of biomarker genes that establishes a robust prediction of Sorafenib

responses for the GSE33072 data set has not been determined so far [25].

Even though, compared to GSE18864 and the Sorafenib subset of GSE33072, the 3,920

FORESEE models yield a better performance distribution in the other data sets, it becomes

explicit that the fitted models do not outperform the randomized models by far. Especially the

large range of the performance distribution of translational models applied to patient data

with permuted gene labels (medium blue) demonstrates that an optimized model of very high

predictive performance in one application scenario—as listed in this study or as published sep-

arately by other groups—does not necessarily produce a model that truly captures the mecha-

nisms that are relevant for the drug response and can therefore not be employed in clinical

practice. Instead, the high predictivity can equiprobably stem from random mechanisms that

were captured by the model by chance and are only relevant to that specific scenario. In this

sense, our analysis demonstrates the importance of considering the possible degree of random-

ness that could affect modeling results, especially when the sample size of the test population is

small.

Translational models are not necessarily specific to the drug of interest. In an attempt

to further analyze the extent of randomness accompanying the performance results of the

shown FORESEE modeling pipelines, a drug specificity analysis was conducted. For each of

the patient data sets and each of the 266 drugs contained in the GDSC database, a set of 100

randomly chosen pipelines, which are listed in S1 Table, was used to train translational models

on the GDSC cell line data and predict the respective patient response.

Fig 5 depicts the drugs that were used during the training process for each individual

patient data set ranked according to their mean performance of 100 modeling pipelines. In

none of the cases the drug that is administered to the patients is the best option to pick for

training the translational models on the cell line data. While for the majority of the data sets—
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the Docetaxel treated breast cancer patients of GSE6434, the Cisplatin treated breast cancer

patients of GSE18864, the Paclitaxel treated ovarian cancer patients of GSE51373, and the Bor-

tezomib treated patients with multiple myeloma of GSE9782—the specific drug that is admin-

istered to the patients is in the top range of training drugs, for other data sets, namely the

patients of GSE33072 with non-small cell lung cancer that were treated with Erlotinib or Sora-

fenib, the drugs of interest only yield performances in the lower half of the list of drugs

investigated.

To a certain degree, it is expectable that drugs that differ in their specific mode of action

still kill the same cancer cells and therefore have a comparable effect on cancer patients,

because drug action is also impacted by general characteristics, such as unspecific cell death

and survival mechanisms, drug efflux or resistance properties. Still, especially in the context of

searching for distinct drug targets and related fields, such as drug repurposing, the specific

mechanisms of drug action are considered a major contribution towards the cell’s or the

patient’s survival in the end. Yet, especially the examples of Erlotinib and Sorafenib in this

analysis demonstrate that the effect of the drug that is used during the training process on

model performance is merely minor. Indeed, the fact that so many models reveal good perfor-

mances, even though the drugs that the models were trained with are not the ones that were

predicted in the end, suggests that the internal mechanisms that dominate the translational

models for drug action in cancer patients are not at all specific to the drug of interest, but

rather to general mechanisms of drug response. This hypothesis is further supported by the

observation that the drugs that are more predictive than the drugs of interest do not share the

Fig 5. Drug specificity plot of FORESEE modeling pipelines. Impact of the training drug on model performance for each of the seven different

patient data sets: GSE6434, GSE18864, GSE51373, GSE33072 Erlotinib cohort, GSE33072 Sorafenib cohort, GSE9782 GLP96 cohort and GSE9782

GLP97 cohort. A set of 100 pipelines, which are listed in S1 Table, were randomly chosen and used to train translational models on the GDSC cell line

data with each of the 266 drugs contained in the GDSC database individually and then tested on each of the patient data sets. For each of the data sets,

the drugs are ordered with respect to the mean AUC of ROC of the 100 random pipelines trained with that drug. The red color marks the drug that is

actually applied to the patient. The first-ranked drug is additionally indicated in order to facilitate the comparison of the different drugs and their

modes of action. As an exception, for predicting GSE9782 GPL97 patient outcome, six pipelines that include RUV as homogenization method were not

trained on those drugs that resulted in a training set that had more samples than features, as this was not compatible with the PCA step performed in

this method.

https://doi.org/10.1371/journal.pcbi.1007803.g005
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same mode of action. For example, Docetaxel is a chemotherapeutic drug that binds to micro-

tubules and prevents their disassembly, eventually causing the initiation of apoptosis, while the

drug occupying the first rank in predicting GSE6434 patients, Tanespimycin, is an antineo-

plastic antibiotic that inhibits the heat shock protein 90 (Hsp90), which then promotes the pro-

teasomal degradation of oncogenic signaling. Likewise, Erlotinib is an inhibitor of EGFR

signaling, while the drug that is ranked first for GSE33072 patients is Tozasertib, which targets

aurora kinases.

The lack of model transferability is not endorsed by in vitro models. Following the

observation that randomized models can yield prediction performances close to performances

gained from actually trained translational models and the finding that translational models are

not necessarily specific to the administered drug, the question arises whether the 3,920 model-

ing pipelines tested in this study are at all capable of predicting drug response or if all observa-

tions should be attributed to noise. In a baseline experiment, we therefore investigated in vitro
models that were trained and tested on cell line data in a five-fold cross-validation for all six

drugs of interest: Docetaxel, Cisplatin, Paclitaxel, Erlotinib, Sorafenib and Bortezomib. In

order to keep the cell line models comparable to the translational patient models, the features

used for training the in vitro models were restricted to those that were available for the respec-

tive patient models. The violin plots in S3 Fig summarize the performances of 3,920 modeling

pipelines for each drug. Moreover, section B in the lower right corner of the correlation plot in

Fig 3 depicts the correlation of the set of cell line models for different drugs. With a minimum

of 0.56 between Cisplatin and Erlotinib, and a maximum of 0.96 between Cisplatin and Doce-

taxel, the Pearson correlation for models that are trained and tested on cell line data is high

enough to manifest that more than noise is fitted by the 3,920 modeling pipelines of the FORE-

SEE routine and that the models capture a reasonable amount of information about drug

response. While S3 Fig reveals a strong variation in the absolute values of model performance

among different drugs, the correlation in Fig 3 proves that there are in fact groups of pipelines

that yield consistently high and other groups that yield consistently low prediction perfor-

mance for multiple drugs. Interestingly, the performance variation among different drugs for

cell line models is not the same as the variation observable for different translational patient

models. While the distribution of model performances for cell line models for Erlotinib resides

around an AUC of ROC of 0.57, for example, which is the lowest of all tested drugs, the set of

translational patient models for Erlotinib shows a median of 0.58, which makes it one of the

best three translational model scenarios. Taken together, this attenuates the potential specula-

tion that the differences observed for modeling different drugs reside purely on the extent to

which drug mechanisms of a specific drug candidate can be captured within a gene expression

profile. Instead, the results of the in vitro study point towards the notion that information

about drug response and the cell death or cell survival mechanisms can in fact be captured in

the underlying gene expression data and can be used to create a prediction model for all inves-

tigated drugs in this study. Consequently, the lack of transferability between the different

translational models reveals that there are other, more complex challenges to overcome for the

translation from in vitro processes into an in vivo setting.

Simple model settings improve translational model performances

As shown in the previous analyses, there is no modeling pipeline that yields outstanding pre-

diction performance for all data sets that were investigated. Yet, it is possible to identify set-

tings that help to generate more promising models.

An enrichment analysis reveals that simpler translational models yield higher perfor-

mances. A closer investigation of which pipeline settings were enriched among the best
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model performances for each individual data set provided important insights into promising

modeling choices. The top panel of Fig 6 summarizes the significantly enriched model settings

in the best 5% of all 3,920 FORESEE pipelines in each of the patient data sets partitioned into

the five varying pipeline categories: cell response transformation, homogenization, gene filter-

ing, feature preprocessing and black box algorithm. Similar to the comparison of the best

FORESEE modeling pipeline in each patient data set in Table 1, the significantly enriched

model settings vary among the different data sets. Yet, some regularities can be observed for

the best performing modeling pipelines:

• Binarization of the cell response, using either a cutoff value or the k-means algorithm, is ben-

eficial in three of the seven data sets.

• Reducing the features to genes of the landmark gene list of the LINCS consortium during

feature selection is significantly enriched in four of the seven data sets.

• Reducing the dimensionality of the input data by applying principal component analysis to

the gene expression values is advantageous in four of the seven data sets.

• There are several well-performing black box algorithms, but linear regression is significantly

enriched in three of the seven data sets.

• While RUV homogenization yields outstandingly high-performance values for the GSE6434

data set, it is strongly underperforming in every other data set.

Fig 6. Heatmap of the performances of 3,920 FORESEE pipelines in the different cell line- and patient data sets averaged for model setting

categories. Heatmap of the performance of 3,920 FORESEE modeling pipelines tested with seven different patient data sets (Cell2Patient): GSE6434,

GSE18864, GSE51373, GSE33072 Erlotinib cohort, GSE33072 Sorafenib cohort, GSE9782 GLP96 cohort and GSE9782 GLP97 cohort, and six different

cell line model scenarios (Cell2Cell): GDSC data for Docetaxel, Cisplatin, Paclitaxel, Erlotinib, Sorafenib and Bortezomib. The performance measure for

the cell line-to-cell line modeling scenarios is the mean AUC of ROC of a 5-fold cross-validation for each drug. The color depicts the mean AUC of

ROC of modeling pipelines that comply with the corresponding model pipeline setting (x-axis). The black stars denote if a model pipeline setting is

significantly enriched (p< 0.01) in the best 5% of all 3,920 modeling pipelines.

https://doi.org/10.1371/journal.pcbi.1007803.g006
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Taking into account all categories together, it becomes explicit that settings that aim to sim-

plify the model, such as binarizing the output data or reducing the dimensionality of the input

data, tend to be significantly enriched in well-performing models and are therefore good prin-

ciples to aim for.

Superior model settings for in vitro models differ from superior model settings for

translational models. The overview provided by Fig 6, which lists the mean performance of

every possible FORESEE model setting in this study as well as the enrichment in the best sub-

set of model options for all data sets, allows for a direct comparison between in vitro models

and translational models. Strikingly, model settings that work significantly better for in vitro
models, such as support vector machine regression as modeling algorithm, no transformation

or power-transformation of the cell line response values (ln(IC50)), z-score transformation of

the gene expression values or a gene filter based on variance, do not show superiority for trans-

lational models that aim to predict in vivo drug performance. This finding is confirmed by

another independent study, in which we compared the model performances of in vitro models

and translational models. In order to investigate whether models that are proven to perform

well for a certain set of cell lines also perform well on another set of cell lines, as well as on

patients, for each drug of interest we split the GDSC data into three parts—a training set, a val-

idation set and a test set—and compared the performance of 3,920 FORESEE modeling pipe-

lines on the validation set, the test set and the patient data. The boxplots in S4 Fig depict that

the set of 300 pipelines that perform best on the validation bin of the in vitro data also performs

significantly better on the test bin of the in vitro data, proving that the information that is cap-

tured in those in vitro models can be applied to other in vitro use cases. If these 300 FORESEE

pipelines of high performance are used to predict the response of patients in a translational

model setting however, they do not show a significant improvement in 5 of the 7 scenarios.

Thus, models that are selected based on their performance on cell line data alone, do not nec-

essarily excel in predicting the drug response of patients. Likewise, model settings that yield

higher prediction performance in translational models, such as a gene filter based on the land-

mark gene list or principal component analysis as feature preprocessing method, do not seem

to be advantageous for in vitro models. In the case of linear regression, which is significantly

enriched in the modeling of 3 out of 7 patient data sets, the performance in cell line data is

even lower than every other modeling algorithm tested in vitro. Consequently, also the correla-

tion between in vitro and translational models is rather low, as depicted in Fig 3. Hypothesiz-

ing based on these observations, it seems that drug-specific processes on the in vitro level are

observable in a more isolated context, which allows to capture more details in more complex

models, while these specific characteristics depreciate during the translation into the greater

context of an in vivo setting, where drug response and survival processes are reflected in much

simpler patterns.

Validation of model setting recommendations. Despite the lack of transferability of

both extremely high performing model pipelines and the general set of 3,920 pipelines with a

poor correlation among different data sets, the enrichment analysis revealed that certain set-

tings can be appointed that promote model performance. In order to validate those findings,

we compared a subset of 35 modeling pipelines that followed the design rules established in

this study—linear regression models fitted on genes that are part of the landmark gene list and

preprocessed by applying PCA—to the overall set of 3,920 FORESEE pipelines. Fig 7 depicts

the differences via boxplots, revealing that in 5 out of 7 data sets a significant improvement of

model performance can be achieved if the design principles are applied. Only in GSE51373

and GSE9782 GPL97 the increase is not remarkable enough to be considered significant.
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Overall this confirms the hypothesis that simple models help to improve the performance of

translational drug response prediction.

Discussion

The ensemble of investigations of this study proves that a systematic analysis of translational

models, not focussing on one specific model element only, but instead considering the whole

modeling pipeline and the interplay of preprocessing methods and modeling algorithms, can

be beneficial to refine the understanding of modeling coherences and key model characteris-

tics. Tools, such as our R-package FORESEE, have the potential to support this systematic

analysis by spanning an extensive space of model parameters that is searched for an optimal

setting. By considering all combinations of model settings, our scan indeed spawned superior

models for individual application scenarios. This superiority however was proven to not be

robust across multiple data sets.

While this seems to resemble the common overfitting problem for models that are trained

and tested on one data set only and fail to replicate in a new, unknown one, this finding is dif-

ferent in the sense that during the translational model fitting process, a model is trained on cell

line data and it is not until after the training process that the model is applied to the patient

data to obtain a prediction. Considered in isolation, this separation of training- and test set

should provide for a definite quantification of model performance that is robust with respect

to overfitting to the underlying data. Strikingly however, the incorporation of the search pro-

cess on the full model parameter space seems to introduce an effect that is quite similar to the

overfitting problem. In this regard, we could demonstrate that random predictions could in

fact yield performance values that could compete with those of actual models. Moreover, we

showed that the drug that a translational model is trained with does not have a prevailing

impact on the model performance. Effectively, the training drug does not even have to share

the same mode of action with the drug that is predicted to create a good model.

Taken as a whole, this proves that translational models in the fashion of the ones developed

in this study are not yet able to explain all processes of drug action in patients. On the contrary,

the processes that are dominating translational models are not yet understood, such that ran-

dom or drug unspecific models seem to be similarly good predictors in most of the cases.

Moreover, our study revealed that modeling pipelines that are well fitted to predict cell line

drug response differ considerably from translational modeling pipelines that excel in predict-

ing patient drug response. Yet, the concept of using in vitro experiments in the preclinical

Fig 7. Validation of model setting guidelines. Boxplots of the performances of all 3,920 FORESEE modeling pipelines for each of the seven different

patient data sets: GSE6434, GSE18864, GSE51373, GSE33072 Erlotinib cohort, GSE33072 Sorafenib cohort, GSE9782 GLP96 cohort and GSE9782

GLP97 cohort, compared to only those 35 pipelines that include landmark genes as gene filter, PCA as preprocessing method and linear regression as

modeling algorithm. The p-values are the results of a t-test between the two distributions.

https://doi.org/10.1371/journal.pcbi.1007803.g007
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drug development stage to learn drug mechanisms and develop predictive models that are ulti-

mately applied to patients is the current state-of-the-art in pharmacological research. With our

analysis, we would therefore like to draw attention to the pitfalls that accompany this concept.

While a computational model might capture perfectly the processes that are initiated during

the drug response in cancer cell lines, this model might not be suitable to predict the therapeu-

tic outcome of patients in the clinic. In order to find reliable in vivo predictors, regularities of

other cases of drug applications in patients should be taken into account to establish an esti-

mate of confidence for the approach.

One concept that transpires in the investigation of translational models in this study is the

superiority of models that are kept simple by for example binarization of the training output

data, feature reduction to landmark genes, input dimensionality reduction by PCA or applica-

tion of simple regression methods. This phenomenon coincides with the KISS principle (keep

it simple, stupid!), a well know principle in engineering and design, which promotes the avoid-

ance of unnecessary redundancy and complexity in order to solve a problem. At the same

time, our investigations demonstrate that the drug-specific processes in patients are not fully

captured in simple translational models of the kind developed with FORESEE. Thus, besides

keeping models simple and focussing on the acquisition of general processes of drug action

and survival in the data, another promising approach could be to integrate profound and

mechanistic knowledge about drug targets and patient-specific characteristics into the models.

Along the way to more insightful models, also other important factors should be consid-

ered; some of which also transpired within this study. One challenge in the development pro-

cess of translational models is the extent of utilizable data. Despite the fact that the generation

of omics data has experienced a tremendous boost over the last years, the availability of patient

data sets that include both molecular data, such as gene expression, and a measure of drug effi-

cacy is limited. Existing patient data sets comprise small sample sizes only, which makes model

training with them susceptible to noise, as apparent from the sample size effect analysis. More-

over, these data sets are highly heterogeneous in terms of the used array technologies, the mea-

sured drug response type, the chosen gene names and the applied normalization method. The

creation of robust models that are easily transferable to other data sets and into other contexts

requires large data sets of the same structure and with the same preprocessing, such that they

are effortlessly comparable. At the same time, models that are trained on data sets of small

sample sizes only, should be thoroughly tested with regard to their randomness and robustness

in more than one context before being purported as reliably predictive. To that effect, this

study accentuates the importance of systematic and unbiased benchmarking of new

approaches.

Another important aspect of the exploration of translational models is the reliability of the

translational principle as such. With the great amount of noise and randomness in the results

of current studies, more focus should be laid onto the investigation to what extent cell lines are

actually predictive of patients and whether or not other model systems, such as organoids

([26]) or patient-derived xenografts ([27]), could be of higher similarity with respect to

patients and therefore more suitable to understand drug mechanisms.

Lastly, missing predictivity of the translational models shown here could be partially

ascribed to the molecular data type that the models were trained on. So far, the investigations

of translational models were mainly focused on gene expression data of microarrays owed to

the absence of patient data sets that comprise more than one omics data type and at least one

measure of drug response. The inclusion of RNASeq data and other data types, such as muta-

tional status, copy number variation, methylation and protein expression could significantly

improve the predictive performance of models, simply by adding more levels of information.

Since not all biomedical mechanisms are fully shown on the gene expression level, other data
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types could provide valuable insights to generate a detailed picture of the disease and drug

mechanisms.

Materials and methods

Analyses of this paper were conducted with the software R [31].

Cell line data

For the training of the translational models in this study, both gene expression data and loga-

rithmized IC50 (half maximal inhibitory concentration) values as drug response measure were

derived from GDSC data [2] and formatted into a ForeseeCell object. The data base contains

pretreatment gene expression data measured with Affymetrix Human Genome U219 arrays of

1,065 different human cancer cell lines stemming from diverse tissues.

Patient data

For the testing of the translational models in this study, information of patients with breast

cancer (GSE6434 [20] and GSE18864 [24]), lung cancer (GSE33072 [28]), ovarian cancer

(GSE51373 [29]) and multiple myeloma (the Bortezomib arms of GSE9782 [30]) was orga-

nized into ForeseePatient objects including gene expression data and one measure of in vivo
drug efficacy, which is summarized in Table 2. Details about the preparation of the data sets

can also be found in the Supplementary File 2 of the FORESEE package [19].

FORESEE

For the systematic comparison of different translational drug response modeling pipelines, the

R-package FORESEE [19] was used. FORESEE, which is short for uniFied translatiOnal dRug

rESponsE prEdcition platform, partitions the general modeling pipeline into defined func-

tional elements in order to enable the user to thoroughly investigate the impact of each of

them on the model performance. The FORESEE modeling routine comprises two major func-

tions: the ForeseeTrain loop, which uses cell line data to train a translational model, and the

ForeseeTest loop, which applies the learned model to new patient data and assesses its perfor-

mance. During training, the cell response data is transformed to serve as model output, while

molecular data is prepared to be used as model input: before the data is fed into a black

box model, training samples are selected, duplicated features are removed, cell line- and

patient data are homogenized by means of batch effect correction methods, and specific fea-

tures are selected, transformed and combined. For model testing, the completed model is

applied to molecular patient data that needs to be preprocessed in the exact same manner as

the cell line data. The predictions can subsequently be compared to the reported patient drug

responses to evaluate the model performance.

Cell response preprocessing. Five different methods to preprocess the cell response data

were chosen. Three options kept the cell response values continuous in order to train regres-

sion models:

1. The method none used the reported cell response values without any preprocessing.

2. The method logarithm applied the natural logarithm to the response values. In case of

negative drug response values, an offset equal to the negative minimum drug response

value plus 1 was added to all response values in order to avoid negative arguments of the

logarithm.
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3. The method powertransform used the R-package car [32] to determine an exponent for a

subsequent power transformation. Again, an offset equal to the negative minimum drug

response value plus 1 was added to all response values, in case of negative drug response

values.

Additionally, two different binarization methods were used for classification settings:

4. The method binarization_cutoff used the package bootnet [33] to split the drug response

values at the median into two classes.

5. The method binarization_kmeans used the package Binarize [34] to define two classes of

responders using k-means clustering.

Patient response preprocessing. While the patient data sets GSE6434 and GSE51373

already contained binary response annotations, all other patient data sets were binarized

before usage to enable an effortless comparison. The GSE33072 data with Erlotinib and Sorafe-

nib response were binarized by splitting the reported months of progression free survival at

the median. For the patient data set GSE18864, patients, whose clinical response had been cate-

gorized as clinical complete response (cCR) or clinical partial response (cPR), were manually

classified as responders, whereas patients, whose clinical response had been categorized as sta-

ble disease (SD) or progressive disease (PD), were classified as non-responders. Similarly, the

responses to Bortezomib of the GSE9782 data set were manually classified into responders, if

the response had been reported as complete response (CR), partial response (PR) or minimal

response (MR), and non-responders, if no change (NC) or progressive disease (PD) had been

reported.

Sample selection. Previous studies have shown an increased predictivity of translational

drug response models whose training sets do not only include cell line samples from the same

tissue of origin as the tumor, but also cell lines originating from diverse other tissues [18].

Therefore, all available cell line samples from various tissues were selected to train the models

in this study.

Duplication handling. In order to provide unique features and avoid any mismatches, all

gene names that occurred more than once were removed from both the training and the test

object.

Homogenization. For the homogenization of the gene expression data and the batch effect

correction between cell line train- and patient test data, seven different methods were chosen:

Table 2. Patient data sets from GEO.

Data Set Cancer Type Drug Samples Responder/ Non-Responder Treatment Status Array

GSE6434 [20] Breast Cancer Docetaxel 24 10/14 Neoadjuvant Therapy U95 Version 2�

GSE18864 [24] Breast Cancer Cisplatin 24 15/9 Neoadjuvant Therapy U133 plus 2.0�

GSE51373 [29] Ovarian Cancer Paclitaxel 28 16/12 Treatment-Naïve U133 plus 2.0�

GSE33072 [28] Non-Small Cell Lung Cancer Erlotinib 25 13/12 Treatment-Experienced 1.0 ST�

GSE33072 [28] Non-Small Cell Lung Cancer Sorafenib 39 20/19 Treatment-Experienced 1.0 ST�

GSE9782 [30] Multiple Myeloma Bortezomib 169 85/84 Relapsed�� U133A�

GSE9782 [30] Multiple Myeloma Bortezomib 169 85/84 Relapsed�� U133B�

�Affymetrix Human Genome

��1-3 Prior Therapies

https://doi.org/10.1371/journal.pcbi.1007803.t002
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1. The method ComBat from the package sva [35] used empirical Bayes frameworks to adjust

data for batch effects.

2. The method limma [36] removed covariate effects by fitting a linear model to the impact of

the different batches.

3. In order to have a thorough investigation of the usefulness of homogenization methods, the

option none offered to employ modeling pipelines without any correction.

4. The method quantile [37] homogenized the data of different origins with quantile

normalization.

5. The method RUV4 [38] homogenized the gene expression data sets with the help of a list of

housekeeping genes [39], which are defined by a constant level of expression across tissues.

In a singular value decomposition, these housekeeping genes were considered as negative

controls to identify and subsequently remove unwanted variation.

6. The method RUV applied a self-implemented function that was inspired by the function

RUV4 [38] and a function by Geeleher et al. [18] in order to remove batch effects. The func-

tion princomp() of the stats package of R applied a principal component analysis on the

gene expression of the housekeeping genes [39] of both data sets and determined the impact

of unwanted variation by training a linear regression model with the function lm() of the

stats package of R on the first 10 principal components. The residual gene expression of all

genes was considered as homogenized data.

7. The method YuGene [40] applied a cumulative proportion approach to make the gene

expression data sets comparable.

Feature selection. Selecting a smaller subset out of the thousands of genes in microarray

data to increase the robustness of biological models is a widely studied topic. In this paper, we

compare four simple approaches:

1. The method landmarkgenes reduced the features to the list of landmark genes that were

determined as being informative to characterize the whole transcriptome [41].

2. The method variance used the function var() of the stats package of R to calculate the vari-

ance of each gene across all samples of the training data set. The 20% least variant genes

were removed from the analysis.

3. The method pvalue calculated a student’s t-test with the function t.test() of the stats package

of R between the most sensitive and the most resistant samples of the training data set. The

20% genes with the highest p-values were removed from the analysis.

4. The option all considered all overlapping genes between the train- and test object without

further feature selection.

Feature preprocessing. For the standardization and transformation of the features, four

different methods were chosen:

1. The method zscore_samplewise transformed the raw gene expression (GEX) value of each

gene, by subtracting the mean GEX of all genes of one sample and subsequently dividing

the resulting value by the standard deviation of the GEX of all genes of that sample.
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2. The method zscore_genewise transformed the raw gene expression (GEX) value of each

gene, by subtracting the mean GEX of this gene in all samples and subsequently dividing

the resulting value by the standard deviation of the GEX of this gene in all samples.

3. The method PCA used the function prcomp() of the stats package of R to convert the possi-

bly correlated raw gene expression features into a set of linearly uncorrelated principal

component features. The first 10 principal components were chosen as a dimensionality-

reduced feature set for the model.

4. The option none included the raw gene expression features without any preprocessing for

the purpose of baseline comparison.

Feature combination. All model pipelines in this study were based on gene expression

data only, since the patient data sets that were chosen for this study did not contain other

molecular features.

BlackBox filtering. For the final step in the model development, seven different algo-

rithms were chosen to train a model that predicts the drug response of cell lines based on base-

line gene expression profiles:

1. The method linear used the function lm() of the stats package of R to fit a linear model to

the training data.

2. The method lasso [42] fitted a generalized linear model with lasso penalty (α = 1) and a reg-

ularization parameter λ determined by a 10-fold cross-validation.

3. The method elasticnet [42, 43] fitted a generalized linear model with an elastic net mixing

parameter of α = 0.5 and a regularization parameter λ determined by a 10-fold cross-

validation

4. The method rf [44] used a random forest algorithm by [45] to fit the training data with 500

trees.

5. The method rf_ranger [46] established a fast implementation of a random forest model on

the training data by training 10,000 trees of unlimited depth.

6. The method ridge [47] fitted a linear ridge regression model to the data, where the ridge

parameter was chosen automatically based on a method by Cule et al. [48].

7. The method svm [49] trained a support vector machine with a radial kernel on the training

data.

Validation. For the investigation of the performance of the different modeling pipelines,

the area under the receiver operating curve between the true and the predicted patient classes

was calculated using the pROC package [50].

Statistics

Significance testing. In order to investigate whether two distributions were significantly

different from each other the function t.test() of the stats package of R applied a two-sided stu-

dent’s t-test to the two distributions.

Enrichment analysis. In order to investigate the enrichment of certain model settings in

the overall distribution of model performances with a hypergeometric function, the method

phyper() of the stats package of R was applied to the data.
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Receiver operating curves. Receiver operating curves were calculated with the roc() func-

tion of the pROC package [50] and plotted with the ggroc() function of the ggplot2 package

[51].

Correlation. In order to determine the linear correlation of the performance distribu-

tions, the method pearson measured the Pearson correlation with the function cor() of the stats
package of R.

Gene labeling. Within the context of collecting the different data sets and enforcing them

into the same ForeseeObject formats for the FORESEE R package [19], the biomaRt package

[22, 23] was applied to convert all gene labels into Entrez IDs.

Plotting

Heatmaps. Heatmaps were plotted with the heatmap.2() function of the R package gplots
[52].

Histograms. All histograms were plotted with the hist() function of the graphics package

of R.

Violin plots. Violin plots were created using the ggplot() + geom_violin() function of the

ggplot2 package [51].

Correlation. The correlation plot was created using the corrplot.mixed() function of the

corrplot package [53].

Supporting information

S1 Fig. FORESEE model performance for other cancer patient data sets. Portrayal of trans-

lational models that used the FORESEE package to train models on GDSC cell line data and

subsequently predicted the drug response of patients from GSE18864, GSE51373, GSE33072

Erlotinib cohort, GSE33072 Sorafenib cohort, GSE9782 GLP96 cohort and GSE9782 GLP97

cohort. The settings for the respective best modeling pipelines can be found in Table 1. The

patient responses were binarized as described in the paragraph “Patient response preprocess-

ing”. (A) Receiver operating curves of the best models. (B) Distinction of true responders and

non-responders obtained from the best FORESEE models, including p-values from t-tests. (C)

Performance distributions of all 3,920 model pipelines.

(TIF)

S2 Fig. Characterization of the underlying data structure of the training and test data sets.

(A) Distributions of the gene expression values of the cell line training data sets. (B) Distribu-

tions of the gene expression values of the patient data sets implemented as ForeseeTest objects.

(C) The cell line training data sets’ composition of tissues of origin. Distributions are shown

for seven different patient data sets: GSE6434, GSE18864, GSE51373, GSE33072 Erlotinib

cohort, GSE33072 Sorafenib cohort, GSE9782 GLP96 cohort and GSE9782 GLP97 cohort.

(TIF)

S3 Fig. Violin plots of the FORESEE performances for cell2cell modeling. Distributions of

the performances of 3,920 cell2cell models trained on GDSC cell line data for six different

drugs: Docetaxel, Cisplatin, Erlotinib, Paclitaxel, Sorafenib and Bortezomib. Each violin plot

shows the performance distribution of 3,920 modeling pipelines trained with cell response

information of the respective drug. The data represents the mean performance resulting from

a 5-fold cross-validation.

(TIF)

S4 Fig. Boxplots of FORESEE performances for cell2cell modeling and cell2patient model-

ing. Boxplots showing the performance distribution of all 3,920 FORESEE pipelines on the in
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vitro validation set (red), the in vitro test set (yellow) and the patient data set (medium blue),

versus the performance distribution of a subset of FORESEE pipelines on that data set, which

were determined by choosing the 300 best pipelines from the in vitro validation set for six dif-

ferent drugs: Docetaxel, Cisplatin, Erlotinib, Paclitaxel, Sorafenib and Bortezomib.

(TIF)

S1 Table. Pipeline settings for the drug specificity analysis. 100 random FORESEE pipelines

were chosen and then trained on all 266 available drugs in the GDSC database to predict the

patient data sets.

(XLSX)

S1 File. Collection of all FORESEE model settings and results. The folder includes all rele-

vant FORESEE model settings and modeling results presented in this manuscript.

(ZIP)
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