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Angiogenesis in NENs,
with a focus on
gastroenteropancreatic NENs:
from biology to current and
future therapeutic implications
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Gaetano Pezzicoli 1, Nada Chaoul1,
Camillo Porta1,2† and Mauro Cives1,2*†

1Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy, 2Division of
Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
Neuroendocrine neoplasms (NENs) are highly vascularized malignancies

arising from cells of the diffuse neuroendocrine system. An intricated cross-

talk exists between NEN cells and the tumormicroenvironment, and threemain

molecular circuits (VEGF/VEGFR pathway, FGF-dependent signaling and

PDGF/PDGFR axis) have been shown to regulate angiogenesis in these

neoplasms. Multiple randomized trials have investigated antiangiogenic

agents over the past two decades, and sunitinib is currently approved for the

treatment of advanced, progressive, G1/G2 pancreatic NENs. In recent years,

two phase III clinical trials have demonstrated the efficacy and safety of

surufatinib, a multi-tyrosine kinase angioimmune inhibitor, in patients with

well-differentiated pancreatic and extrapancreatic NENs, and two studies of

this agent are currently underway in Europe and US. The HIF-2a inhibitor

belzutifan has recently received regulatory approval for the treatment of

tumors arising in the context of Von-Hippel Lindau syndrome including

pancreatic NENs, and a study of this drug in patients with sporadic tumors is

presently ongoing. Combinations of antiangiogenic agents with

chemotherapeutics and targeted drugs have been tested, with accumulating

toxicities being a matter of concern. The potential of antiangiogenic agents in

fine-tuning the immune microenvironment of NENs to enhance the activity of

immune checkpoint inhibitors has been only partially elucidated, and further

research should be carried out at this regard. Here, we review the current

understanding of the biology of angiogenesis in NENs and provide a summary

of the latest clinical investigations on antiangiogenic drugs in this malignancy.
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Introduction

Neuroendocrine neoplasms (NENs) are heterogeneous

malignancies arising from cells of the diffuse neuroendocrine

system. They are often characterized by an indolent behavior

and the ability to secrete a variety of peptide hormones and

biogenic amines (1). The incidence of NENs has steadily

increased in the last four decades, and NENs currently

constitute the second most prevalent cancer of the

gastroenteropancreatic (GEP) tract (2). According to the 2019

WHO classification (3), GEP-NENs can be subdivided in well-

differentiated neuroendocrine tumors (NETs) and poorly

di fferent iated neuroendocrine carcinomas (NECs) .

Neuroendocrine tumors can be further subdivided in low-

grade (G1), intermediate-grade (G2) and high-grade (G3)

tumors according to their proliferative activity, and large series

have proven the prognostic relevance of such a classification

(4, 5).

Neuroendocrine tumors are highly vascularized

malignancies, and their intratumor vessel density is estimated

to be approximately 10-fold higher than in carcinomas (6, 7).

This feature is not particularly surprising, as it recapitulates the

microscopic architecture of normal endocrine glands which are

characterized by a dense vascular network facilitating hormone

secretion. In this context, evidence demonstrates that the

aberrant activation of the hypoxia-inducible factor-1 (HIF-1)

transcriptional program is a frequent event in NETs, driving the

production of large amounts of proangiogenic molecules such as

vascular endothelial growth factor (VEGF), platelet-derived

growth factor (PDGF), fibroblast growth factor (FGF),

semaphorins and angiopoietins (8).

Clinical strategies encompassing angiogenesis inhibition

have a definite place in the therapeutic armamentarium

against NETs. The oral tyrosine kinase inhibitor (TKI)

sunitinib is currently approved for pancreatic NETs

(panNETs) (9), and a variety of new antiangiogenic agents are

presently under clinical scrutiny for both GEP and

bronchopulmonary (BP) NETs (10). In this review, we provide

an overview of the current understanding of the molecular

events driving neoangiogenesis in NENs, also discussing

present and future therapeutic applications of antiangiogenic

agents in the clinical arena.
Angiogenesis in NETs

Tumor angiogenesis is a complex process through which a

neoplasm creates its own vascularization, essential for obtaining

the oxygen and nutrients necessary to grow beyond a certain,

and well defined, volume. Moreover, this vascularization

provides an access to the bloodstream that the tumor uses to

metastasize. This is true for almost all malignancies, including
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NETs (7). Angiogenesis is tightly regulated by a complex balance

between pro- and anti-angiogenic molecules, and a cross-talk

exists between endothelial cells, pericytes and tumor cells.

Indeed, while anti-apoptotic factors supporting the tumor

growth are released by activated endothelial cells of the newly

formed vessels, pro-angiogenic molecules are produced in turn

by tumor cells, thereby sustaining the so called “angiogenic

switch” and engaging neovascularization (11). In this context,

pericytes can stimulate an autocrine VEGF-mediated

prosurvival signaling in endothelial cells, further promoting

neovascular sprouting and, indirectly, tumor growth (12).

Influenced by the same family of molecular cues driving

angiogenesis, tumor lymphangiogenesis has also a key role in

metastasis formation, and possibly resistance to antiangiogenic

therapy. In this context, VEGFs other than VEGF-A have been

described to mediate the outgrowth of lymphatic vessels in NETs

thereby leading to progression to stages of greater malignancy

(13–15).

The vascular alterations observed in NETs are both

quantitative and qualitative. Extensive neovascularization in

the presence of low endothelial proliferation is indeed a

hallmark of well-differentiated NETs, while a lower intratumor

microvascular density is typically observed in poorly

differentiated carcinomas (8, 16). Such a phenomenon, named

as “neuroendocrine paradox”, is possibly related to the capability

of well-differentiated NET cells to retain their normal

precursors’ ability to stimulate the formation of a dense

vascular network, with the angiogenesis of poorly

differentiated neoplasms being instead primarily dependent on

proliferation-induced hypoxia. The newly formed blood vessels

are structurally and functionally aberrant in NETs (7). In

particular, endothelial cells appear to contain multiple

fenestrations (which are also typical of normal endocrine

glands) and trans-endothelial channels while basement

membranes are discontinuous and lack pericyte coverage, thus

resulting in increased interstitial fluid pressure, vessel tortuosity

and leakiness, as well as frequent hemorrhage.

As depicted in Figure 1, three main molecular circuits

regulate angiogenesis in NETs: the VEGF/VEGFR pathway,

the FGF-dependent signaling and the PDGF/PDGFR axis (17).

Vascular endothelial growth factor is constitutively expressed by

normal neuroendocrine cells. Its expression is retained in up to

80% of GEP-NETs, where it drives angiogenesis through

interaction with VEGFR-1 and VEGFR-2. The expression of

VEGF is higher in well-differentiated malignancies with respect

to poorly differentiated NENs, and parallels the expression of its

receptors on both tumor and endothelial cells (8, 18–20). Tumor

and stromal cells are not the only sources of VEGF in NETs, as

tumor-infiltrating neutrophils have been shown to mobilize

latent VEGF from the extracellular matrix through the release

of metalloproteinase 9 (MMP-9), at least in mice (21).

Mechanistically, VEGF acts in an autocrine or paracrine

fashion triggering both vascular endothelial mitogenesis and
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permeability via activation of the Notch signaling in endothelial

cells (18, 20, 22, 23). Evidence from the RIP1-Tag2 transgenic

mouse model demonstrates that VEGF exerts a critical role

throughout the whole course of the multistage process of

pancreatic endocrine tumorigenesis (19). In particular, the

selective knockout of VEGF in b cells of RIP1-Tag2 mice

dampens both angiogenic switch and neovasculature

formation in dysplastic islets, thus preventing the growth of

panNETs (24). As in other cancers, the production of VEGF by

NET cells is primarily regulated by local oxygen availability

through the sensing activity of HIF-1 (23, 25). In this context,

evidence demonstrates that panNETs arising in patients with

Von-Hippel Lindau disease, a condition characterized by

uncoupled oxygen levels/HIF-1 activity, show a distinct

proangiogenic molecular signature when compared with

sporadic panNETs, thus suggesting that different evolutionary

trajectories are followed by these two entities (26).

A second angiogenic pathway modulating the progression of

NETs involves FGF and its cognate receptors. The family of FGF

is known to comprise 23 members (although there are only 18

FGFR ligands) and exerts multiple functions through the

activation of FGFRs (27). This pathway has both direct and

indirect effects on angiogenesis. Indeed, while directly

stimulating endothelial cell migration, proliferation and

differentiation as well as vessel formation and maturation, FGF

also acts as a key regulator of proangiogenic molecules including

VEGF and angiopoietins (28, 29). Fibroblast growth factor-1 and

fibroblast growth factor-2 are expressed in approximately 40%

and 100% of GEP-NENs respectively, while fibroblast growth

factor receptor (FGFR) 1-4 are expressed by the 68-88% of these
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malignancies (30, 31). Fibroblast growth factor has a key role in

maintaining tumor angiogenesis after an initiation phase

primarily guided by the VEGF signaling, and the inhibition of

the FGF/FGFR axis suppresses neoangiogenesis and tumor

growth in the RIP1-Tag2 transgenic mouse model (32).

Evidence demonstrates that FGF is a critical driver of VEGF-

independent revascularization of panNETs and can therefore

mediate evasive resistance to antioangiogenic therapy (33, 34).

The PDGF/PDGFR axis is another crucial mediator of NET

progression. Platelet-derived growth factor contributes to the

angiogenic process by stimulating the recruitment of pericytes

and the resulting vessel coverage (35). Expression of PDGFR-a
and PDGFR-b has been described in approximately 75% and 60%

of GEP-NETs respectively (36, 37). In particular, while PDGFR-a is

predominantly expressed by tumor cells, PDGFR-b is mainly

expressed by pericytes and stromal cells. A positive association

between PDGFR-a expression and tumor grade as well as between

PDGFR-b expression and tumor microvascular density has been

documented (36, 37), and the paracrine secretion of PDGF-DD by

endothelial cells has been shown to stimulate NET proliferation

(38). In this context, experiments in the RIP1-Tag2-PDGFD

knockout model demonstrate that the disruption of the PDGF-

DD signaling significantly delays panNET growth (7).

Mounting evidence indicates that semaphorins and

angiopoietins contribute to neoangiogenesis in NETs.

Semaphorins have shown both pro- and anti-angiogenic effects in

NETs, and their activity is the result of the interaction with

neuropilin and plexin receptors (7). Neuropilin receptors have

been found in both pancreatic, intestinal and pulmonary NETs

(39–41), while data on the expression of plexin receptors in NETs
FIGURE 1

Schematic overview of the main pathways regulating angiogenesis in NETs. By acting on endothelial cells, VEGF stimulates both vascular
endothelial mitogenesis and permeability. FGFs trigger endothelial cell migration, proliferation and differentiation as well as vessel formation.
PDGF contributes to the angiogenic process by stimulating the recruitment of pericytes and the resulting vessel coverage. Multiple TKIs can
interfere with the angiogenic process in NETs.
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are currently lacking. Experiments in RIP1-Tag2 mice have shown

that the expression of semaphorin 3A (SEMA3A) is progressively

lost during tumor progression and that the inhibition of SEMA3A

during the angiogenic switch may enhance tumor formation. Of

note, re-expression of SEMA3A by viral gene transfer during late

stages of pancreatic endocrine tumorigenesis leads to normalization

of the tumor vasculature, increased pericyte coverage and inhibition

of tumor progression (42, 43). Similar antiangiogenic effects have

been also documented for SEMA3F in ileal NETs (44). On the other

hand, protumorigenic activities have been attributed to SEMA4D

and SEMA5A. In particular, inhibition of SEMA4D has been

recently associated with impaired tumor growth via pericyte

coverage alteration and vascular function modification in RIP1-

Tag2 mice (45). SEMA5A can elicit angiogenesis, tumor growth,

invasion and metastasis by activating c-met downstream its

interaction with Plexin-B3 (46). Angiopoietins and angiopoietins

receptors are widely expressed in NETs (47, 48). The overexpression

of Angiopoietin-2 (Ang-2) in orthothopic NET xenografts in nude

mice drives increased microvascular density and enhanced

metastatic spread through lymphatic vessels (49). The blockade of

the interaction between Ang-2 and its cognate receptor TIE2

determines regression of the tumor vasculature and inhibition of

tumor progression in the RIP1-Tag2 mouse model of pancreatic

endocrine cancerogenesis (50).
Molecular mechanisms of resistance
to antiangiogenic therapies in NETs

Inhibition of angiogenesis has revealed therapeutic efficacy

in NET patients. Nevertheless, resistance to antiangiogenic
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therapies inevitably occurs, and the biological events leading to

such a phenomenon have been only partly elucidated. While

primary resistance refers to an intrinsic unresponsiveness to

antiangiogenic treatments, secondary (or acquired) resistance

stems from tumor adaption to therapy, mostly as result of the

activation of alternative proangiogenic circuits (51). Figure 2

depicts the main biological events driving resistance to

antiangiogenic therapies in NETs.

An established cause of resistance to antiangiogenic agents

primarily acting through VEGF suppression is tumor hypoxia.

Tumor hypoxia can stimulate HIF-1 activation, thus triggering

neoangiogenesis through VEGF-independent mechanisms

involving FGF, angiopoietins, and ephrins (33, 52). Evidence

from the RIP1-Tag2 model demonstrates that inhibition of both

VEGF and FGF signaling at the time of VEGF-independent tumor

revascularization attenuates both revascularization and tumor

growth (33). In this context, brivanib, a first-in-class, dual FGF-

VEGF inhibitor has shown superior preclinical antitumor activity

against panNETs when compared with single VEGF suppression or

single FGF inhibition (34). A marked upregulation of Ang-2 and

TIE2 has been observed in tumors from late-stage RIP1-Tag2 mice

resistant to VEGFR blockade (53). In this context, dual Ang-2/

VEGFR inhibition was shown to suppress tumor revascularization

and progression, suggesting that the adaptive enforcement of Ang2-

TIE2 signaling plays a key role in the establishment of evasive tumor

resistance to anti-VEGF therapy. The upregulation of c-Met is

another consequence of the chronic HIF-1 activation induced by

tumor hypoxia. In RIP1-Tag2 mice, VEGFR blockade results in c-

Met overexpression, leading to increased tumor growth,

proliferation and invasion (54). Concurrent inhibition of VEGF

and c-Met signaling is able to revert such effects in vivo (55).
FIGURE 2

Intrinsic and acquired resistance to angiogenesis blockade: an overview on molecular determinants. While some tumors may show primary
resistance to antiangiogenic agents, other may develop resistance upon blockade of the VEGF/VEGFR pathway. One of the main mechanisms
leading to secondary resistance is the activation of HIF-1 as result of antiangiogenesis-induced hypoxia. Among other important events, there
are the recruitment and/or activation of pro-angiogenic cells including TIE-2 expressing macrophages and the activation of the epithelial-to-
mesenchymal transcriptional program in NEN cells.
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The recruitment of bone marrow derived cells such as

endothelial progenitor cells, pro-angiogenic monocytic cells or

TIE2-expressing macrophages has been described in panNETs

as a result of the hypoxic environment generated by VEGFR

inhibition (13, 53). These cells promote the sprouting of new

vessels, maintaining the high-demanded blood supply of tumor

cells, while concurring to the generation of new premetastatic

niches. A progressive increase in the number of tumor-

associated macrophages has been described during the

sequential progression from hyperplastic islets to angiogenic

islets and ultimately invasive tumors in the RIP1-Tag2 model

(56). A possible involvement of these cells in the establishment

of adaptive resistance to VEGFR blockade through the

exploitation of alternative proangiogenic pathways has

been inferred.

An increased pericyte coverage has been detected in murine

panNETs resistant to VEGFR2 inhibition as compared to those

responsive to antiangiogenic therapy (57). Such a phenomenon

has been related to a non-angiogenic mechanism of tumor

vascularization named vascular co-option. When vascular co-

option is activated, cancer cells grow around normal vessels pre-

existing in the adjacent “normal” tissue, without the need of

generating new vessels. Evidence demonstrates that this process

contributes to the emergence of resistance to VEGFR inhibition

in the RIP1-Tag2 model (33). Another non-angiogenic

mechanism driving resistance to antiangiogenic therapy in

panNETs is named “vascular mimicry”, and consists of cancer

cells forming vascular channels to autonomously sustain their

growth (58). An increased expression of Snail, vimentin and N-

cadherin as well as a concurrent downregulation of E-cadherin

has been observed in tumors treated with sunitinib, and the

hypoxia-driven epithelial-to-mesenchymal transition can be

therefore listed as an additional mechanism of resistance to

angiogenesis blockade and tumor aggressiveness (43, 59).

Ion trapping and degradation of hydrophobic TKIs within

the acidic lysosomal compartment is another mechanism

leading to resistance to antiangiogenic therapy. Chloroquine,

an agent able to permeabilize the lysosomal membrane, has been

shown to enhance the antitumor activity of sunitinib in murine

models of pancreatic endocrine carcinogenesis by stimulating

the release of the TKI in the cytoplasm (60).
Targeting angiogenesis in NETs:
established and investigational
agents

Proangiogenic pathways can be blocked at different levels in

NETs. Both direct suppression of proangiogenic molecules such

as VEGF and inhibition of receptors tyrosine kinase including

VEGFR and FGFR through TKIs (i.e., sunitinib) or mAb (i.e.,

ramucirumab) have been exploited in clinical trials. Table 1
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provides an overview of the clinical investigations of

antiangiogenic agents in patients with NETs. Being the targets

of TKIs usually multiple, it is currently difficult to precisely

determine to what extent their therapeutic effects are related to

anti-angiogenesis, antiproliferative activity against tumor cells

per se, or interference in the mechanisms of cross-talk between

tumor cells and their microenvironment.
VEGF/VEGFR-targeting agents

Bevacizumab is a mAb against VEGF and preliminary

evidence suggested the antitumor activity of the drug in

patients with NETs (69, 72, 73). However, no benefit in PFS

was recorded in a randomized phase 3 trial comparing

bevacizumab plus octreotide versus interferon plus octreotide

in 427 patients who had high-risk NETs (74). In recent years,

bevacizumab has been investigated in combination with

chemotherapy, targeted agents or immunotherapy. In 2

separate phase 2 studies, bevacizumab has been tested in

association with the capecitabine-oxaliplatin or FOLFOX

regimens (75) in 40 and 36 patients with progressive NETs or

NECs. Neither study met its primary endpoint, leading to

objective responses in 18% and 25% of patients respectively.

Another phase 2 trial investigated bevacizumab with 5-FU and

streptozocin in 34 patients with progressive, well-differentiated

panNETs. A median PFS of 23.7 months was observed, in the

presence of an ORR of 56% (76). In a phase 2 trial, 150 patients

with advanced panNETs were randomized to receive the mTOR

inhibitor everolimus plus octreotide with or without

bevacizumab (70). Of note, preclinical evidence suggests that

the antitumor activity of mTOR inhibition in NETs results from

a combination of antiproliferative and antiangiogenic effects

(77). The treatment arm containing the antiangiogenic agent

resulted in improved PFS compared to the control arm (16.7

months compared to 14 months; hazard ratio, 0.8; p=0.10), with

objective responses seen in 31% and 12% of patients treated with

or without bevacizumab respectively (p=0.005). Despite the

encouraging efficacy outcomes, the higher rate of treatment-

related toxicities observed in the investigational arm may limit

further investigations on this combination. Similar results were

achieved in a phase II study evaluating the combination of

bevacizumab and sorafenib in 44 patients with advanced NETs

(78). Despite a median PFS of 12.4 months, grade 3/4 toxicities

were described in the 63% of the enrolled patients. Based on the

evidence that anti-angiogenic agents such as bevacizumab may

modulate the tumor immune microenvironment and decrease

the expression of regulatory checkpoints on tumor-infiltrating

lymphocytes (79), a single-arm, open-label, nonrandomized

study has recently evaluated the association of bevacizumab

with the anti-PD-L1 Ab atezolizumab in patients with advanced,

progressive, well-differentiated NETs (71). Overall, 20 patients

with panNETs and 20 patients with extra-pancreatic NETs have
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TABLE 1 An overview of completed studies with antiangiogenic agents in patients with NENs.

Study agent
(s)

Main
molecular
targets

Study design
and phase

Patient population Enrolled
patients

mPFS of the
investigational

agent/
combination

Grade 3/4 AEs
(frequency)

Sunitinib (9) VEGFR-1,-2,-
3, PDGFR

Double-blind,
placebo-controlled,
randomized phase 3
study

G1/G2 advanced progressive
panNENs

171 11.1 months Neutropenia (12%)
Hypertension (10%)
Palmar-plantar
erythrodysesthesia
Ashtenia (5%)
Diarrhea (5%)

Surufatinib
(61, 62)

VEGFR-1,-2,-
3
FGFR-1
CSF-1R

Double-blind
placebo- controlled,
randomized phase 3
studies

Well-differentiated advanced
progressive pancreatic (SANET-p)
and extra pancreatic (SANET-ep)
NENs

SANET-p trial: 172
SANET-ep trial: 198

SANET-p trial: 10.9
months
SANET-ep trial: 9.2
months

SANET-p trial:
Hypertension (38%)
Proteinuria (10%)
Hypertrigliceridemia (7%)
SANET-ep trial:
Hypertension (36%)
Proteinuria (19%) Anemia
(7%)

Lenvatinib
(63)

VEGFR-1,-2,-
3
FGFR-1,-2,-
3,-4
PDGFRa
c-KIT
RET

Open-label phase 2
study

Advanced progressive panNENs
and gastrointestinal NENs

PanNENs:
55
Gastrointestinal
NENs:
56

panNENs: 15
months
Gastrointestinal
NENs: 15 months

Hypertension (22%)
Fatigue (11%)
Diarrhea (11%)

Axitinib (64) VEGFR-1,-2,-
3

Open-label phase 2
study

G1/G2 advanced progressive
extrapancreatic NENs

30 27 months Hypertension (63%)

Axitinib +
Octreotide
LAR (65)

VEGFR-1,-2,-
3

Double-blind
randomized phase 2/
3 study

G1/G2 advanced progressive
extrapancreatic NENs

256 17.2 months Hypertension (21%)
Cardiac disorders (3%)
Fatigue (9%)
Diarrhea (13%) Nausea
(2%)

Cabozantinib
(66)

MET
VEGFR2
c-KIT
RET
AXL
TIE2
FLT3

Open-label phase 2
study

Well-differentiated advanced
progressive pancreatic and
extrapancreatic NENs

PanNENs:
20
ExtrapancreaticNENs:
41

PanNENs: 21.8
months
Extrapancreatic
NENs: 31.4 months

Hypertension (13%)
Hypophosphatemia (10%)
Diarrhea (10%) Fatigue
(5%)

Pazopanib
(67)

VEGFR-1,-2,-
3
FGFR-1,-3,-4
PDGFR-a, -b
c-KIT

Randomized,
placebo-controlled
phase 2 study

Well-differentiated advanced
progressive extrapancreatic NENs

171 12 months Diarrhea (5%)
Fatigue (8%)
Nausea (5%)
Hypertension (27%)
Transaminase elevation
(18%)

Belzutifan (68) HIF-2a Open-label phase 2
study

Advanced panNENs arising in the
context of VHL syndrome

22 – Anemia (8%)*
Hypertension (8%)*
Fatigue (5%)*

Evofosfasmide
+ Sunitinib
(69)

DNA cross
links
VEGFR-1,-2,-
3, PDGFR

Open-label, phase 2
study

Advanced progressive panNENs 17 10.4 months Neutropenia (35%)
Fatigue (18%)
Thrombocytopenia (12%)

Everolimus ±
Bevacizumab
(70)

mTOR
VEGF

Randomized phase 2
study

G1/G2 advanced progressive
panNENs

150 16.7 months Diarrhea (14%)
Hyponatremia (12%)
Hypophosphatemia (11%)
Proteinuria (16%)
Hypertension (41%)

(Continued)
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been enrolled, and an ORR of 20% and 15% has been recorded in

the two cohorts. A median PFS of 14.9 months and 14.2 months

has been reported in the pancreatic and extra-pancreatic cohort,

suggesting the potential efficacy of this combination.

Hypertension and proteinuria have been described as the most

common treatment-emergent toxicities. Bevacizumab is

current ly be ing invest igated in combinat ion with

chemotherapy or chemo-immunotherapy in multiple trials of

patients with extrapulmonary NECs (80).

Ramucirumab, a humanized mAb targeting VEGFR2, has

demonstrated preliminary evidence of efficacy when used in

combination with chemotherapy in patients with gastric NEC

(81). A prospective, multicenter, single-arm study is currently

investigating ramucirumab plus dacarbazine in patients with

advanced, progressive, well-differentiated panNETs (82).

The VEGF trap aflibercept has been investigated in a phase

II, single-arm trial of 21 patients with advanced panNETs (83).

An ORR of 9% has been reported, a finding consistent with other

antiangiogenic agents in panNETs.
Sunitinib

Sunitinib is the only antiangiogenic agent currently

approved for the treatment of NETs. Sunitinib is an oral TKI

targeting, among a number of different kinases, VEGFR-1, -2, -3

and PDFGR, and has demonstrated efficacy in the treatment of

advanced, progressive panNETs. A double-blind, placebo-

controlled, phase 3 study evaluated sunitinib 37.5 mg daily in

171 patients with low-to-intermediate grade, progressive

panNETs (9). The trial demonstrated a statistically significant

improvement in median PFS from 5.5 months on the placebo

arm to 11.1 months on the sunitinib arm (hazard ratio, 0.42;

p<0.001). A nonsignificant overall survival (OS) improvement of

approximately 10 months was observed in the sunitinib arm

compared with the placebo arm (84). Nausea, diarrhea, fatigue,

cytopenia, hypertension and palmar-plantar erythrodydesthesia

were the main treatment-related toxicities. A similar toxicity

profile has been described in a recent phase IV study (85).
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Other multikinase inhibitors

Dual inhibitors of the VEGF/FGF signaling carry the

promise of overcoming the mechanisms leading to adaptive

resistance to sunitinib, and recent clinical research has focused

on agents including surufatinib, lenvatinib, axitinib,

cabozantinib and pazopanib. Surufatinib is an oral, selective

inhibitor of VEGFR-1, -2, -3, FGFR-1 and colony stimulating

factor-1 receptor (CSF-1R). The TKI has been tested at a dosage

of 300 mg daily in a single-arm, multicenter, phase 1b/2 trial of

81 patients with low-to-intermediate grade advanced NETs (86).

A median PFS of 21.2 months and 13.4 months was reported in

42 patients with panNETs and 39 patients with extrapancreatic

NETs respectively. Two randomized, double-blind, placebo-

controlled, phase 3 studies have recently investigated the safety

and efficacy of surufatinib in Chinese patients with well-

differentiated, progressive, advanced pancreatic (SANET-p

trial) and extrapancreatic NETs (SANET-ep trial). The

SANET-p trial (61) randomized 172 patients with panNETs to

receive surufatinib or placebo in a 2:1 ratio. The investigator-

assessed median PFS was 10.9 months for surufatinib versus 3.7

months for placebo (hazard ratio: 0.49; p=0.001), with an

investigator-assessed overall response rate (ORR) of 19% in

the investigational arm. The SANET-ep trial (62) randomized

198 patients with extrapancreatic NETs to receive surufatinib or

placebo in a 2:1 ratio. The investigator-assessed median PFS was

9.2 and 3.8 months in the surufatinib and placebo arms

respectively (hazard ratio: 0.33; p<0.0001). The ORR was 15%,

and the majority of enrolled patients (84%) had G2 tumors.

Overall, hypertension, proteinuria, hypertriglyceridemia and

diarrhea were reported as the most frequent treatment-related

grade 3 or worse adverse events. The occurrence of treatment-

related adverse events including hypertension, proteinuria and

hemorrhage in the first 4 weeks of treatment has been recently

described to predict the antitumor efficacy of surufatinib (87).

The efficacy and safety of surufatinib are being currently

evaluated in two ongoing trials in the US (NCT02549937) and

Europe (NCT04579679), and their results might lead to the

approval of the drug in Western countries. It remains currently
TABLE 1 Continued

Study agent
(s)

Main
molecular
targets

Study design
and phase

Patient population Enrolled
patients

mPFS of the
investigational

agent/
combination

Grade 3/4 AEs
(frequency)

Atezolizumab
+
Bevacizumab
(71)

PD-L1
VEGF

Open-label, phase 2
study

G1/G2 advanced progressive
pancreatic and extrapancreatic
NENs

PanNENs:
20
Extrapancreatic
NENs:
20

PanNENs: 14.9
months
Extrapancreatic
NENs: 14.2 months

Hypertension (20%)
Proteinuria (8%)
*In the safety cohort (n=61 patients).
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unclear whether surufatinib may be active in patients

progressing to prior antiangiogenic therapy, and current

investigations exclude from enrollment patients who have

received prior VEGF/VEGFR targeted therapy.

Lenvatinib is an oral TKI targeting VEGFR-1, -2, -3, FGFR-

1, -2, -3, -4, platelet-derived growth factor receptor a
(PDGFRa), KIT and RET. The drug has been recently

investigated in the phase 2 TALENT study at a dosage of 24

mg daily (63). A total of 55 patients with advanced panNETs and

56 patients with advanced gastrointestinal NETs have been

enrolled. All patients had progressive disease according to

RECIST criteria, and prior therapy with targeted agents was

mandatory for inclusion in the panNET cohort. By central

radiology review, the ORR was 44% and 16% for panNETs

and gastrointestinal NETs respectively, and the median duration

of response was 20 and 34 months in the two cohorts

respectively. After a median follow-up of 23 months, the

median PFS was 15 months for either panNETs and

gastrointestinal NETs. Hypertension, fatigue and diarrhea were

the most frequent G3/4 treatment-emergent adverse events.

Dose reductions or interruptions were required in the 94% of

patients. Although the ORR observed in the TALENT study is

the highest reported to date with a TKI in advanced NETs,

further clinical investigations of this agent in NETs have not

been planned so far.

Axitinib is a TKI that selectively targets VEGFR-1, -2 and -3.

In an open-label phase 2 study, axitinib 5 mg twice daily was

investigated in 30 patients with progressive, advanced, low-to-

intermediate grade NETs of extra-pancreatic origin (64). After a

median follow-up of 29 months, a median PFS of 27 months was

observed. Grade 3/4 hypertension was recorded in the 63% of the

cohort, leading to treatment discontinuation in one fifth of

enrolled patients. The double-blind, phase 2/3 AXINET trial

has recently randomized 256 patients with advanced, low-to-

intermediate grade, progressive, extra-pancreatic NETs to

receive axitinib plus octreotide LAR or placebo plus octreotide

LAR (65). Per blinded independent central review, the median

PFS was 16.6 and 9.9 months in the axitinib and placebo arms

respectively (HR: 0.69; p=0.01). An ORR of 13% and 3% has

been reported in the investigational and control group

respectively (p=0.004). Grade 3 or worse adverse events

occurred in the 52% of the enrolled patients and included

hypertension, cardiac disorders, fatigue, diarrhea and nausea/

vomiting. One treatment-emergent death was reported in the

axitinib arm. Overall, axitinib appears a promising candidate for

future regulatory approval in patients with NETs.

Cabozantinib is an oral, potent inhibitor of MET, VEGFR2,

KIT, RET, AXL, TIE2 and FLT3. The TKI has been tested at 60

mg daily in a two-cohort, phase 2 study enrolling 20 patients

with panNETs and 41 patients with extra-pancreatic NETs (66).

All patients had well-differentiated tumors and progressive
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disease according to RECIST 1.1 criteria. The ORR was 15% in

either cohort, while a median PFS of 21.8 and 31.4 months was

recorded in patients with pancreatic and extra-pancreatic

neoplasms respectively. Hypertension, hypophosphatemia,

diarrhea and fatigue were among the most common grade 3/4

adverse events. Dose reductions were required in the 80% of

patients. The phase 3 CABINET trial (NCT03375320) is

currently randomizing patients with well-differentiated,

advanced, progressive, pancreatic or extra-pancreatic NET to

receive cabozantinib 60 mg daily or placebo. Combinations of

cabozantinib plus temozolomide (NCT04893785), lanreotide

(NCT04427787) or 177Lu-DOTATATE (NCT05249114) are

presently under scrutiny in phase 2 studies.

Pazopanib is an oral TKI targeting VEGFR -1, -2, -3, FGFR-1,

-3, -4, PDGFR-a and -b and c-KIT. The drug has been investigated

in the open-label, phase 2 PAZONET trial (88). In 44 patients with

advanced, progressive, well-differentiated NETs, the TKI was

associated with a median PFS of 9 months. The most common

grade 3/4 toxicities of pazopanib included diarrhea, fatigue and

hypertension, and drug dosage reductions were required in

approximately one fifth of enrolled patients. More recently,

pazopanib has been tested at 800 mg daily in the phase 2

Alliance A021202 study (67). The trial randomized 171 patients

with well-differentiated, progressive, extrapancreatic NETs to

receive pazopanib or placebo. After a median follow-up of 31

months, a median PFS of 12 and 8 months was recorded in

patients treated with pazopanib or placebo respectively (HR: 0.53;

p=0.0005). Pazopanib was associated with an ORR of only 2%.

Among pazopanib-treated patients, treatment-related grade 3/4

adverse events were reported in 61% of cases, and hypertension,

fatigue, nausea, diarrhea and transaminases elevation were the most

common toxicities. Pazopanib has also demonstrated clinical

activity against panNETs arising in the context of von Hippel-

Lindau syndrome. In a single-arm study enrolling 31 patients with

this inherited syndrome, the drug induced objective responses in

53% of 17 pancreatic lesions (89).

Nintedanib is an oral inhibitor of FGFR1-3, VEGFR1-3 and

PDGFR. The drug has been tested in a phase II study of 32

patients with extra-pancreatic NETs on a stable dose of

somatostatin analog (90). A median PFS of 11 months has

been observed, and toxicities were manageable.
HIF inhibitors and hypoxia-activated
prodrugs

Novel antiangiogenic compounds investigated in patients

with NETs comprise the HIF-2a inhibitor belzutifan and the

hypoxia-activated prodrug evofosfamide. Belzutifan has been

recently tested at 120 mg daily in an open-label, phase 2 trial of
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61 patients with von Hippel-Lindau syndrome. Among 22

patients harboring a panNET, objective responses were seen in

90% of cases, with complete responses in 14% of the cohort (68).

Anemia and fatigue were the most common adverse events,

being reported in 90% and 66% of patients respectively. On this

basis, belzutifan has received regulatory approval for the

treatment of tumors arising in the context of Von-Hippel

Lindau syndrome. An international phase 2 study of belzutifan

in patients with sporadic panNETs is currently ongoing

(NCT04924075). Evofosfamide is a prodrug of the alkylating

agent bromoisophosphoramide mustard. The release of the

active drug occurs exclusively under hypoxic conditions, and

results in intra- and inter-strand DNA cross links in tumor cells.

Given the well-known ability of sunitinib in inducing intratumor

hypoxia, evofosfamide has been recently investigated in

combination with sunitinib in the open-label, Simon’s two-

stage design, phase II SUNEVO trial (69). The study enrolled

17 patients with advanced panNETs, and only prior therapy with

somatostatin analogs was permitted. After a median follow-up of

16 months, three objective responses were recorded, in the

presence of a median PFS of 10.4 months. Grade 3 or worse

treatment-related adverse events were reported in the 65% of the

cohort, the most frequent being neutropenia, fatigue and

thrombocytopenia. Overall, treatment discontinuation due to

toxicity was required in 88% of the patients. In light of the

unfavorable safety profile and the modest efficacy shown by

sunitinib and evofosfamide in this study, further clinical

investigations of this combination have not been planned.
Future directions for angiogenesis
blockade in NETs

Developing new antiangiogenic agents, testing new

combinations of antiangiogenic agents with targeted drugs or

immunotherapy and defining the correct positioning of

antiangiogenic therapies in the context of treatment sequences

are among the main priorities for future research on

angiogenesis blockade in NETs.

Angiogenesis is a complex process involving distinct biological

mechanisms. Mechanistically, endothelial cell proliferation, vessel

guidance, vessel maturation, stabilization and quiescence are driven

by different families of molecular cues, and angiogenic processes can

be thereby inhibited at different levels. There is a need to identify

and characterize additional molecular regulators of angiogenesis in

NETs in order to develop the next generation of antiangiogenic

drugs to be tested (alone or in combination) in clinical trials.

Moreover, since evidence demonstrates that different angiogenic

molecules may be expressed differently during tumor progression, a

precise understanding of the molecular events driving
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neoangiogenesis during NET evolution might be instrumental to

provide molecular-level guidance on the correct positioning of

angiogenesis blockade throughout the treatment journey of NET

patients. Combinatorial strategies aimed at concurrently disrupting

key pathways operating in NET progression (i.e., concurrent

inhibition of angiogenesis and mTOR signaling) have been only

partially investigated. In a phase II study of bevacizumab and

temsirolimus, an ORR of 41% and a median PFS of 13.2 months

were observed among 58 patients with panNETs, in the presence of

toxicities leading to treatment discontinuation in approximately one

third of the cohort (91). While the efficacy/toxicity ratio of

combinatorial treatments should be always carefully scrutinized in

relatively indolent tumors such as NETs, clinical trials should

explore the impact of targeted agent combinations in disease

settings where tumor shrinkage is the goal of treatment (i.e.,

neoadjuvant setting). Accumulating evidence indicates that a tight

link exists between aberrant tumor angiogenesis and the immune

microenvironment, and antiangiogenic agents have been shown to

synergize with immune checkpoint inhibitors in malignancies

including renal cell carcinoma, endometrial cancer and

hepatocellular carcinoma (92). Future studies should assess the

potential of antiangiogenic agents in tuning the microenvironment

of NETs from an immune-suppressive to an immune-supportive

one, thus enhancing the efficacy of immunotherapy.
Conclusions

The concept of angiogenesis inhibition as a potential weapon

against cancer was first proposed by Folkman in the 70s (93).

After the initial skepticism of the scientific community, multiple

lines of evidence have demonstrated that antiangiogenic agents

can be clinically effective in controlling tumor growth. Sunitinib

is the only antiangiogenic drug approved for the treatment of

NETs, and its use is restricted to pancreatic primaries. Newer

TKIs including surufatinib, cabozantinib, axitinib and lenvatinib

seem to possess more potent antitumor activity, probably as

result of their multi-targeting potential, and might be utilized as

monotherapy or as backbone for combinatorial treatment of

both pancreatic and extra-pancreatic NETs in the near future.

While it is currently unclear whether combinations of

antiangiogenic agents with chemotherapeutics, targeted agents

or immunotherapy are more effective than the monotherapy, the

results of the first study comparing the efficacy of sunitinib

versus PRRT in patients with progressive panNETs are awaited

soon (NCT02230176). In the absence of predictors of response

and given the lack of high-level evidence on optimal treatment

sequences, clinical wisdom continues to be critical in defining

the timing of antiangiogenic therapy in patients with NETs.
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Lozano M, et al. Antitumor effects of anti-semaphorin 4D antibody unravel a novel
proinvasive mechanism of vascular-targeting agents. Cancer Res (2019) 79
(20):5328–41. doi: 10.1158/0008-5472.CAN-18-3436

46. Saxena S, Hayashi Y, Wu L, Awaji M, Atri P, Varney ML, et al. Pathological
and functional significance of semaphorin-5A in pancreatic cancer progression and
metastasis. Oncotarget (2017) 9(5):5931–43. doi: 10.18632/oncotarget.23644

47. Figueroa-Vega N, Dıáz A, Adrados M, Alvarez-Escolá C, Paniagua A,
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R, et al. Sorafenib and bevacizumab combination targeted therapy in advanced
neuroendocrine tumour: a phase II study of Spanish neuroendocrine tumour group
(GETNE0801). Eur J Cancer (2013) 49:3780–7. doi: 10.1016/j.ejca.2013.06.042

79. Yi M, Jiao D, Qin S, Chu Q, Wu K, Li A. Synergistic effect of immune
checkpoint blockade and anti-angiogenesis in cancer treatment.Mol Cancer (2019)
18(1):60. doi: 10.1186/s12943-019-0974-6

80. Frizziero M, Kilgour E, Simpson KL, Rothwell DG, Moore DA, Frese KK,
et al. Expanding therapeutic opportunities for extrapulmonary neuroendocrine
carcinoma. Clin Cancer Res (2022) 28(10):1999–2019. doi: 10.1158/1078-
0432.CCR-21-3058

81. Mishima S, Kawazoe A, Matsumoto H, Kuboki Y, Bando H, Kojima T, et al.
Efficacy and safety of ramucirumab-containing chemotherapy in patients with
Frontiers in Oncology 12
pretreated metastatic gastric neuroendocrine carcinoma. ESMO Open (2018) 3(7):
e000443. doi: 10.1136/esmoopen-2018-000443

82. Krug S, Kegel T, Gress TM, Rinke A, Apostolidis L, Jann H, et al.
Ramucirumab in combination with dacarbazine in patients with progressive
well-differentiated metastatic pancreatic neuroendocrine tumors (RamuNET):
study protocol for a multicenter single-arm trial. BMC Cancer (2021) 21(1):1206.
doi: 10.1186/s12885-021-08900-7

83. Halperin MD, Lee JJ, Ng CS, Strosberg JR, Estrella JS, Dagohoy CG, et al. A
phase II trial of ziv-afliberecept in patients with advanced pancreatic
neuroendocrine tumors. Pancreas (2019) 48(3):381–6. doi: 10.1097/
MPA.0000000000001258

84. Faivre S, Niccoli P, Castellano D, Valle JW, Hammel P, Raoul JL, et al.
Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival
and final overall survival from a phase III randomized study. Ann Oncol (2017) 28
(2):339–43. doi: 10.1093/annonc/mdw561

85. Fazio N, Kulke M, Rosbrook B, Fernandez K, Raymond E. Updated efficacy
and safety outcomes for patients with well-differentiated pancreatic
neuroendocrine tumors treated with sunitinib. Target Oncol (2021) 16(1):27–35.
doi: 10.1007/s11523-020-00784-0

86. Xu J, Li J, Bai C, Xu N, Zhou Z, Li Z, et al. Surufatinib in advanced well-
differentiated neuroendocrine tumors: A multicenter, single-arm, open-label, phase
Ib/II trial. Clin Cancer Res (2019) 25:3486–94. doi: 10.1158/1078-0432.CCR-18-
2994

87. Li J, Cheng Y, Bai C, Xu J, Shen L, Li J, et al. Treatment-related adverse
events as predictive biomarkers of efficacy in patients with advanced
neuroendocrine tumors treated with surufatinib: results from two phase III
studies. ESMO Open (2022) 7(2):100453. doi: 10.1016/j.esmoop.2022.100453

88. Grande E, Capdevila J, Castellano D, Teulé A, Durán I, Fuster J, et al.
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