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Potassium chloride (KCl) has been commonly used in homogenization buffer and procedures of protein extraction. It is known to
facilitate release of membrane-associated molecules but the higher concentration of KCl may affect the integrity of mitochondria
by breaching the electrostatic force between the lipids and proteins. Therefore, it has been intended to explore the effect of KCl on
mitochondrial proteome.The mitochondria were isolated from the mice liver and sub-fractionated into mitochondrial matrix and
outermitochondrialmembrane fraction.The fractionswere analysed by denaturing polyacrylamide gel electrophoresis (PAGE) and
2D-PAGE. The analysis of ultrastructure and protein profiles by MALDI-MS and data-mining reveals KCl-associated alterations
in the integrity of mitochondria and its proteome. The mitochondrial membrane, cristae, and the matrix proteins appear altered
under the influence of KCl.

1. Introduction

Mitochondria, the power house of the cell, are double mem-
brane-bound organelle. The membranes provide compart-
mentalization to biomolecules and critically regulate phys-
iological functions of organelles and cells. Among macro-
molecules of membranes, both extrinsic (peripheral) and
intrinsic (integral) proteins show more variability. Mostly,
integral proteins serve as transporters or receptors and
their extraction has been facilitated by ionic detergents [1].
Peripheral proteins remain loosely associatedwithmembrane
by ionic or hydrogen bonding and function as specific trans-
porters to regulate homeostasis of metabolites. Convention-
ally, salts (monovalent and divalent) and nonionic or mild-
detergents have been used in the homogenizing medium for
extraction of proteins of plasma membrane and membranes
of cell organelles but they may also induce swelling of lipid
layer [2–4] and change in ionic permeability [5–7]. Since
mitochondria are enriched with proteins regulating several
critical metabolic processes like oxidative phosphorylation,
redox reactions, fatty acid synthesis, 𝛽-oxidation, and citric
acid cycle, the isolation procedure of mitochondria for basic
or clinical studies would bear large impact on the activities

of enzymes and proteins. Therefore, it has been intended to
explore the effect of KCl on integrity of mitochondrial mem-
brane. Results provide insight on KCl-associated influences
on integrity of mitochondria and leakage of mitochondrial
matrix protein.

2. Materials and Methods

2.1. Animals, Materials, and Isolation of Mitochondria and
Mitochondrial Membrane-Bound Fraction. The adult mice
(Musmusculus) ofAKR strainweremaintainedwith standard
mice feed and drinking water at 25 ± 2∘C in animal house
facility of the department as per guidelines of the Institutional
Animal Ethical Committee. Animals were sacrificed to obtain
liver. All analytical grade chemicals were used. The 20%
homogenate of liver was prepared in homogenizing buffer
containing 30mM Tris HCl (pH 7.2), 1mM EDTA, 250mM
Sucrose, 50mM Mannitol, and protease inhibitor cocktail
(Sigma-Aldrich) using a Potter-Elvehjem type glass homoge-
nizer with a motor-driven teflon pestle. Cytosolic and Mito-
chondrial fractions were isolated first without KCl in homog-
enizing medium and mitochondrial pellet was washed with
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Figure 1: (a) demonstrates effect of KCl concentration onmitochondrial membrane. (b) Flowchart describesmethod of fractionation to study
the effect of KCl concentration.

homogenization buffer. Washed mitochondrial pellet was
suspended in different concentrations of KCl (25mM,
50mM, 100mM, 150mM, and 200mM) in homogeniz-
ing medium. Then, mitochondrial outer membrane-bound
fraction (MtMb) and mitochondrial fractions (Mtm) were
separated (Figure 1(b)).These fractions were used for protein

profile analysis. Protein was estimated by the method of
Bradford [8].

2.2. Protein Profile of Mitochondria and Mitochondrial
Membrane-Bound Fractions. In order to analyse the influ-
ence of the concentration of KCl on the integrity of
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Figure 2: Effect of concentration of KCl on protein profile of cytosolic fraction (set 1). The protein profile of cytosolic fraction indicates the
release of the membrane proteins showing increased intensity of bands near to 110 kDa, 97 kDa, 70 kDa, 68 kDa, 44 kDa, 38 kDa, 28 kDa,
25 kDa, and 23 kDa. The increase in intensity of these bands was probably due to protein released from the membrane of mitochondria and
other subcellular organelles.

mitochondria and mitochondrial membrane-bound pro-
teins, two sets of experiments were performed (Figure 1(b)).
In first set (E1), different concentrations of KCl (0, 25mM,
50mM, 100mM, 150mM, and 200mM)were used in homog-
enizing medium, and mitochondrial and cytosolic fractions
were isolated, respectively. In second set (E2), mitochondria
were isolated without KCl in homogenizing medium and
mitochondrial pellet was washed twice with homogenization
buffer to remove any cytosolic fraction. The mitochondrial
pelletwas then suspended in homogenizingmediumcontain-
ing 25mM, 50mM, 100mM, 150mM, and 200mM KCl and
mitochondrialmembrane-bound fraction andmitochondrial
fraction were separated, respectively. Proteins from different
fractions were resolved on 15% denaturing polyacrylamide
gel electrophoresis (SDS-PAGE) and proteins were visualized
by CBB-R250 staining.

2D gel electrophoresis was performed to study the effect
of KCl concentration on mitochondrial protein profile of
the different fractions of the mitochondria. For 2D analysis
the 100mMKCl was selected because this concentration was
foundmoderate and used in various extractionmethods.The
proteins of total mitochondria (before washing with 100mM
KCl), mitochondrial matrix (pellet of mitochondrial matrix
after separating mitochondrial membrane), and mitochon-
drial membrane-bound fraction (supernatant after washing
with 100mMKCl) were precipitated with cold acetone and
centrifuged at 3000×g for 5min.The pellets were air-dried to
remove the acetone.The proteins were solubilised in 0.125mL
of rehydration buffer (Bio-Rad 163-2106) and the sample was
loaded on IPG strips 7 cm, pH 3–10 (Bio-Rad, 163-2000)
gel in a side-down manner. The sample loaded strips were
rehydrated for 12 hrs at 20∘C. The rehydrated strips were
focused in Protean i12 IEF cell (Bio-Rad cat number 1646002).
The focused strips were equilibrated in equilibrating buffers
I and II (Bio-Rad, 163-2107 and 163-2108) for 15min each.
The equilibrated strips were resolved in 10% denaturing-gel
and proteins were visualized by silver staining. The gels were
scanned and protein spots were analyzed by using PDQuest
software version 7.1 (Bio-Rad) that include spot detection,
quantification, background subtraction, and spot matching

between multiple gels. Total spot intensity per gel was used
to normalize spot intensities to compensate for variations
between gel replicates. The relative spot volumes corre-
sponding to total mitochondria (TMt), mitochondrial matrix
(Mtm), and outer mitochondrial membrane-bound fraction
(MtMb) were compared using Student’s 𝑡-test. 𝑝 values less
than 0.05 were considered statistically significant. Likewise,
the SDS-PAGE were analysed by Quantity One software
(Bio-Rad) that includes band detection, quantification, back-
ground subtraction, and molecular weight prediction on the
basis of standard molecular weight markers.

2.3. Analysis of Unique Protein Spot by MALDI/MSMS. The
in-gel trypsin digestion of selected spot was performed
before the MALDI analysis. The selected spot was excised
and destained in washing solution containing 100mM
ammonium bicarbonate and acetonitrile (1 : 1 vol/vol). After
destaining, spot was dehydrated in acetonitrile.The gel pieces
were rehydrated and reduced in 10mMDTT and incubated
at 50∘C for 30min. After reduction, proteins spots were
alkylated with 50mM iodoacetamide in 100mM ammonium
bicarbonate buffer and incubated at room temperature for
30min. Gel pieces were again washed and digested overnight
at 37∘C in trypsin solution (25 ng/𝜇L in 25mM ammonium
bicarbonate buffer).Thepeptideswere extracted in extraction
buffer (100% acetonitrile and 1% TFA in water, 1 : 1 vol/vol),
suitably concentrated and analysed through MALDI MS/
MS. Data generated were screened through MASCOT
database (http://www.matrixscience.com/) and Panther soft-
ware (http://www.pantherdb.org/).

2.4. Ultrastructural Evaluation of Mitochondria. The mito-
chondrial pellets of control (isolated without KCl) and KCl
treated fractions (isolated with 100mMKCl) were fixed in
2.5% glutaraldehyde and 1% paraformaldehyde in phosphate
buffer (pH 7.5) at 4∘C overnight.The fixedmitochondrial pel-
lets were dehydrated through grades of alcohol (30% to abso-
lute alcohol), and the preparation of block, sectioning, and
staining for TEM analysis was executed at AIIMS, NewDelhi.
The images were further analysed by ImageQuant software
(GE healthcare).
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Figure 3: Effect of concentration of KCl on protein profile of mitochondrial fraction (set 1). The mitochondrial fraction shows decrease in
intensity of polypeptides 110 kDa, 97 kDa, 70 kDa, 68 kDa, 66 kDa, 44 kDa, 20 kDa, and 14 kDa with increasing KCl concentration.
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Figure 4: Effect of concentration of KCl on protein profile of mitochondrial matrix fraction (set 2). The protein profile of mitochondrial
fraction shows decrease in intensity of some bands of 110 kDa, 96 kDa, 70 kDa, 23 kDa, and 20 kDa.
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Figure 5: Effect of concentration of KCl on protein profile of membrane-bound fraction (set 2). The protein profile of the mitochondrial
membrane-bound fraction shows polypeptides of 150 kDa, 120 kDa, 100 kDa, 97 kDa, 93 kDa, 88 kDa, 67 kDa, 50 kDa, 48 kDa, 44 kDa, 33 kDa,
23 kDa, and 20 kDa.

3. Results

3.1. The Optimal Level of Widely Used KCl Induces Leakage
of Mitochondrial Proteins. The analysis of protein profile
of the cytosolic and the mitochondrial fractions showed
increased intensities of bands of 110 kDa, 97 kDa, 70 kDa,
68 kDa, 44 kDa, 38 kDa, 28 kDa, 25 kDa, and 23 kDa in the
cytosolic fraction (Figure 2) while lower levels of 110 kDa,
97 kDa, 70 kDa, 68 kDa, 66 kDa, 44 kDa, 20 kDa, and 14 kDa

proteins were observed in the mitochondrial fraction
(Figure 3). In second set of experiment (E2) progressive
decrease in intensities of 110 kDa, 96 kDa, 70 kDa, 23 kDa, and
20 kDa was observed with increasing concentration of KCl
(Figure 4). However, higher intensities of 150 kDa, 120 kDa,
100 kDa, 97 kDa, 93 kDa, 88 kDa, 67 kDa, 50 kDa, 48 kDa,
44 kDa, 33 kDa, 23 kDa, and 20 kDa bands in mitochon-
drial membrane-bound fraction was (Figure 5) evident with
increasing KCl concentration.
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Figure 6: Continued.
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Figure 6: (a) Effect of concentration of KCl on 2D protein profile of total mitochondrial fraction. Selected area in rectangle (upper rectangle
and lower rectangle) shows the variation of spotswith the effect of KCl. (b) Spot intensity analysis of 2Dprotein profile ofmitochondrialmatrix
fraction (MLW) in comparison to protein profile of mitochondrial membrane-bound fraction (MLKCl). (c) Correlation graph analysis of 2D
protein profile of mitochondrial matrix fraction (MLW) in comparison to mitochondrial membrane bound fraction (MLKCl).

The analysis of 2D gel profile (Figures 6–8) revealed that
the intensities of protein spots in matrix fraction were less
than the membrane-bound fractions. Protein spots around
pI3–6 and 44–97 kDa (upper rectangle) were significantly
altered as compared to group of spots below 44 kDa and
pI4–7 (lower rectangle). The number and intensities of spots
were more in the membrane-bound fraction (Figure 8) than
mitochondrial matrix fraction (Figure 7). Similarly, PDQuest
analysis of the total mitochondrial matrix versus KCl solu-
bilised fraction showed only 40%matching of the spots from
the KCl solubilised fraction. However, the analysis of washed
mitochondrial matrix versus KCl showed 60%matching with
control gel. The intensities of several spots in the KCl solu-
bilised fraction were higher by 2-fold in total mitochondrial
and washed mitochondrial matrix fraction. The analysis of
proteins represents translocase of outer mitochondrial mem-
brane complex (TOM) and translocase of inner mitochon-
drial membrane complex (TIM), Bcl2, VDAC, Porins, and
Acyl CoA Synthetase (76 kDa) and Hexokinase I (100 kDa);
inner-membrane space proteins Cytochrome-C oxidase
(14 kDa), inner-mitochondrial membrane proteins such as
Succinate Dehydrogenase (70 kDa and 27 kDa), Aconitase
(44 kDa), ATP Synthatase (56 kDa and 30 kDa), NADH
Dehydrogenase (51 kDa, 30 kDa and 17 kDa), and Carnitine
Acyl transferase I (88 kDa) represent association with mito-
chondrial membrane. However, Citrate Synthetase (44 kDa),
Isocitrate Dehydrogenase (16 kDa), 𝛼-keto Dehydrogenase I

(114 kDa), 𝛼-keto Dehydrogenase II (52 kDa), Fumarate
Dehydrogenase (55 kDa), Malate Dehydrogenase II (33 kDa),
Pyruvate Dehydrogenase (93 kDa), Fructose bisphosphate
aldolase B (48 kDa), and PEPCarboxykinase (75 kDa) belong
to mitochondrial matrix proteins (Figure 8).

3.2. Ultrastructural Changes in the Mitochondrial Integrity.
Theultrastructural analysis by TEM indicates KCl-dependent
swelling of mitochondria and disruption of the outer mito-
chondrial membrane (Figures 9(a)–9(d)). The deformities in
the cristae of KCl-treated mitochondria (Figures 9(c), 9(d),
and 9(e)) were evident as compared to control.

4. Discussion

Observations provide insight into alterations in the integrity
of mitochondria under routinely used concentration of
potassium chloride (KCl). The analysis of unique spots of
mitochondrial membrane-bound fraction and data-mining
of proteins around pI3–6 and 44–97 kDa show significant
alteration of proteins associated with enzymes and proteins
of oxidative phosphorylation, pyruvate oxidation, and 𝛽-
oxidation (Table 1). The observation indicates impact of
KCl on the outer membrane-associated proteins or loosely
associated proteins from 17 kDa to 50 kDa. These proteins
appear to be Porins and transporters proteins. However, the
enrichment of high molecular weight spots and medium to
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Figure 7: Continued.



International Journal of Proteomics 9

2.0-fold down
2.0-fold up

4.5 5.0 5.5 6.0

4.5

5.0

5.5

6.0

M
LW

MLKCL

(c)

Figure 7: (a) Effect of concentration of KCl on 2D protein profile of mitochondrial membrane bound fraction. Selected area in rectangle
(upper rectangle and lower rectangle) shows the variation of spots with the effect of KCl. (b) MS spectra of the unique spot of mitochondrial
membrane-bound fraction. (c) Analysis of biological functions of proteins identified by MALDI/MSMS and their classification represented
as pie chart.

lower molecular weight spots indicates KCl-induced dam-
age of mitochondrial integrity. The 2D analysis shows two
fold increase in the intensity of membrane-bound fraction
(Figure 8) in comparison to total mitochondria (Figure 6)
and mitochondrial matrix (Figure 7). The optimal level of
the KCl has been explained to breach the electrostatic
bonds of the proteins to facilitate solubilization of proteins
(Figure 1(a)) but the higher concentration of KClmay disrupt
integrity of the membrane by modifying polarization of lipid
bilayer, permeabilization of the mitochondrial membrane,
and shrinkage of mitochondrial membrane (Figure 1(b)).
Similarly salt-dependent modulation of Hexokinase-I and
Cytochrome-C [9], integrity of the organelle membrane [2,
10–12], opening of mitochondrial permeability transition
pore [6, 13, 14], and salt-induced pHhomeostasis [7] have also
been explained. The monovalent salts were also suggested to
alter permeability of the membrane characteristics [4, 5, 10].

On data-mining, modulated proteins like translocases,
Porins, and Acyl CoA Synthetase and Hexokinase, Cyto-
chrome-C oxidase, Succinate Dehydrogenase, Aconitase,
ATP Synthatase, and NADH Dehydrogenase represent asso-
ciation with mitochondrial membrane (Figure 8). How-
ever, Citrate Synthetase, Isocitrate Dehydrogenase, 𝛼-keto
Dehydrogenases, Fumarate Dehydrogenase, Malate Dehy-
drogenase, Pyruvate Dehydrogenase, Fructose bisphosphate
aldolase B, and PEP Carboxykinase belong to mitochondrial
matrix. The alteration in the ultrastructure of mitochon-
dria after the treatment of KCl supports mitochondrial
swelling, altered morphology of cristae, and disruption in

outer mitochondrial membrane as compared to control
(Figure 9(a)). The KCl induced damage of mitochondrial
outer membrane and extraction of outer mitochondrial
membrane-associated proteins were also suggested by the
disruption of electrostatic force between lipid and protein
molecules. Similarly, tissue-specific mitochondrial proteome
analysis was also identified [15]. Proteins like Fumarate
hydratase and Fructose 2,6-bisphosphate aldolase B were
modulated significantly by the KCl.

5. Conclusion

Potassium chloride, a monovalent salt and common compo-
nent of different extraction procedures, affects mitochondrial
integrity and proteomics of mitochondria. It affects both
matrix and membrane-bound proteins.
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Figure 8: (a) Effect of concentration of KCl on 2D protein profile of mitochondrial membrane-bound fraction. Selected area in rectangle
(upper rectangle and lower rectangle) shows the variation of spots with the effect of KCl. (b) MS spectra of the unique spot of mitochondrial
membrane-bound fraction. (c) Analysis of biological functions of proteins identified by MALDI/MSMS and their classification represented
as pie chart.
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Figure 9: Transmission electron microscopic analysis of mitochondrial surface before and after the treatment of KCl showed mitochondrial
swelling, altered morphology of cristae, and disruption in outer mitochondrial membrane after KCl treatment. (a) Ultrastructure of control
mitochondria; (b) enlarged micrograph of isolated mitochondria; (c) ultrastructure of KCl treated mitochondria; (d) enlarged micrograph
of KCl treated mitochondria; (e) histogram of % of deformed mitochondria of control and KCl treated mitochondrial fraction (percentage
is calculated by dividing number of deformed mitochondria by total number of mitochondria). ∗ denoted the significance level 𝑝 < 0.05
compared to control.
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