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Simple Summary: Ribosome biogenesis takes place in nucleoli and is essential for cellular survival
and proliferation. In case this function is disturbed, either due to defects in regulatory factors or the
structure of the nucleolus, nucleolar stress is provoked. Consequently, cells classically undergo cell
cycle arrest and apoptosis. Induction of nucleolar stress is known to eliminate cells in the background
of cancer therapy and paradoxically is also associated with increased cancer formation. Recent
reports demonstrated that nucleolar stress triggers autophagy, a conserved pathway responsible for
recycling endogenous material. Thus, it was suggested that autophagy might serve as compensatory
pro-survival response. However, the mechanisms how nucleolar stress triggers autophagy are poorly
understood. Here we show that induction of nucleolar stress by depleting ribosome biogenesis
factors or by interfering with RNA polymerase I function, triggers expression of various key au-
tophagy regulators. Moreover, we demonstrate that RNA pol I inhibition by CX-5461 correlates
with increased ATG7 and ATGL16L1 levels, essential factors for generating autophagosomes, and
stimulates autophagic flux.

Abstract: Ribosome biogenesis is essential for protein synthesis, cell growth and survival. The process
takes places in nucleoli and is orchestrated by various proteins, among them RNA polymerases I–III
as well as ribosome biogenesis factors. Perturbation of ribosome biogenesis activates the nucleolar
stress response, which classically triggers cell cycle arrest and apoptosis. Nucleolar stress is utilized
in modern anti-cancer therapies, however, also contributes to the development of various pathologies,
including cancer. Growing evidence suggests that nucleolar stress stimulates compensatory cascades,
for instance bulk autophagy. However, underlying mechanisms are poorly understood. Here we
demonstrate that induction of nucleolar stress activates expression of key autophagic regulators
such as ATG7 and ATG16L1, essential for generation of autophagosomes. We show that knockdown
of the ribosomopathy factor SBDS, or of key ribosome biogenesis factors (PPAN, NPM, PES1) is
associated with enhanced levels of ATG7 in cancer cells. The same holds true when interfering
with RNA polymerase I function by either pharmacological inhibition (CX-5461) or depletion of
the transcription factor UBF-1. Moreover, we demonstrate that RNA pol I inhibition by CX-5461
stimulates autophagic flux. Together, our data establish that nucleolar stress affects transcriptional
regulation of autophagy. Given the contribution of both axes in propagation or cure of cancer, our
data uncover a connection that might be targeted in future.

Keywords: autophagy; ATG7; ATG16L1; nucleolus; nucleolar stress; CX-5461; PPAN; NPM; SBDS;
PES1; UBF-1; ribosome biogenesis

1. Introduction

Ribosome biogenesis is essential for growth and survival of cells. It occurs in sub-
nuclear compartments, the nucleoli, which accommodate a plethora of processing factors
to mediate maturation of rRNA [1]. The dynamic process involves transcription of the 47S
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rRNA precursor by RNA polymerase I (RNA pol I), followed by cleavage and maturation of
the transcript by processing factors and assembly of mature rRNAs with ribosomal proteins
to form the two ribosomal subunits [2]. Moreover, the nucleolus functions as critical cellular
stress sensor and central hub in the nucleolar stress response. The term nucleolar stress
denotes a key response to non-functional ribosome biogenesis or nucleolar disruption.
Triggers can either be cellular or drug-induced stress that interfere with nucleolar structure
or integrity, as well as loss or mutation of factors implicated in ribosome biogenesis.
Nucleolar stress classically results in stabilization of the tumor suppressor and “guardian
of the genome” p53, which in turn mediates cell cycle arrest, senescence or apoptosis [3].

Meanwhile, inducing nucleolar stress-mediated apoptosis has gained tremendous in-
terest for developing modern anti-cancer strategies. Thereby, already established chemother-
apeutics such as ActinomycinD, Methotrexate or 5-Fluorouracil interfere with nucleolar
function and aim to trigger apoptotic cell death of cancer cells [4]. The small-molecule drug
of the newer generation, CX-5461, specifically interferes with RNA pol I activity and thus
triggers nucleolar stress, without affecting RNA pol II function [5].

Note that nucleolar stress can also stimulate p53-independent, pro-apoptotic re-
sponses [6,7]. These mechanisms are of particular relevance for anti-tumor therapies [8],
given the common inactivation of the tumor suppressor p53 in diverse cancers [9]. Be-
sides its impact on apoptosis and cell cycle progression, as previously demonstrated in
aggressive acute myeloid leukemia (AML), CX-5461 has been shown to induce senescence
and stimulate autophagy in solid tumors independently of functional p53 [10,11]. Thus,
CX-5461 possesses multiple aspects, which contribute to its anti-tumor activity, previously
demonstrated in phase I clinical trials [12].

Strikingly, induction of nucleolar stress is not always connected to cell death but can
have even counter-intuitive effects such as cancer formation. In so-called ribosomopathy
syndromes, which are characterized by haploinsufficiency of ribosome biogenesis factors
or ribosomal proteins, an increased cancer incidence is observed [13,14]. This reflects an
unsolved paradoxon, termed “Dameshek’s riddle”, given the fact that hyper-proliferating
cells possess a high demand of ribosomes [15]. Ribosomopathy patients commonly develop
AML as well as diverse solid tumor types such as cervical cancer, osteosarcoma or colon
cancer [16–18]. Null mutations in ribosomopathy syndromes are not found, given the
fact that a complete loss is embryonically lethal due to a reduced ribosome number [15].
Examples include Shwachman-Bodian-Diamond-Syndrome (SBDS) in which the SBDS
protein is mutated [19].

In addition, mutation of the nucleolar factor Nucleophosmin (NPM) is frequently
found in AML and aberrant expression of the ribosome biogenesis factors Peter Pan (PPAN)
or Pescadillo (PES1) have been connected to tumorigenesis [15,20–23]. Importantly, a con-
stantly increasing repertoire of responses is being uncovered as consequence of nucleolar
malfunction that might account at least for some of the observed phenotypes. For in-
stance, nucleolar stress has recently been identified as upstream trigger of certain signaling
cascades, such as the pro-proliferative Wnt/β-Catenin pathway or autophagy [15,24,25].
However, further research is essential to decipher the cellular mechanisms underlying the
consequences of nucleolar stress induction.

Autophagy is stimulated by various types of stress, for instance nutrient deprivation,
lack of energy—and as recently found—also nucleolar stress. Macro-autophagy, commonly
referred to as autophagy, is a highly conserved and essential mechanism that orchestrates
degradation or recycling of cellular material. Key to autophagy is the formation of double-
membranous autophagosomes, which function in the sequestration and engulfment of
material destined for degradation [26]. Autophagosomes are built with the help of au-
tophagy related proteins (ATGs). ATG7, for instance, functions as an essential initiation
factor and E1-like enzyme required for assembly of the autophagosomal membrane [27–29].
Together with other ATGs, ATG7 facilitates lipidation of Atg8/LC3. Also, ATG16L1 is
crucial for autophagosome biogenesis and lipidation of LC3. This modified version, termed
LC3-II, gets incorporated into the autophagosomal membrane through addition of its
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phosphaditylethanolamine anchor [30]. This step is essential for establishment, maturation
and expansion of the autophagosomal membrane. The degradation of the material is
in turn mediated by acidic lysosomes, which fuse with autophagosomes containing the
engulfed cargo.

Besides nucleolar stress induction by CX-5461, the chemotherapeutic ActinomycinD
also has been shown to stimulate autophagy in cancer cells [24,31,32]. Moreover, loss of
key nucleolar ribosome biogenesis factors connected to nucleolar stress induction, such as
PPAN, NPM or the ribosomopathy factor SBDS have been linked to autophagy [15,31,33,34].
Overall, the increase of autophagic flux in the context of nucleolar stress is believed to
initially possess compensatory anti-apoptotic effects. However, after continuous stress
cells can still commit apoptosis at a point of no return [24]. This is in line with the fact that
similar upstream mechanisms can trigger both, apoptosis and autophagy [35].

Given the neccessity of cellular clearance for sustaining cellular homeostasis, it is quite
obvious that autophagy is connected to diverse pathological conditions. Autophagy has
been extensively studied in cancer and was considered to play a dual role in tumorigenesis,
depending on the context. On the one hand it is protective for the integrity of tumor cells,
but on the other hand also prevents against tumor initiation: Whereas a stress-induced
increase in autophagy is noticed as mechanism of drug-resistance in e.g. AML and against
chemotherapy-induced apoptosis, inhibition of autophagy emerges as attractive mecha-
nism for fighting cancer [36]. Note that inhibition of autophagy early in the development
of cancer formation and tumor initiation can even promote tumorigenesis. At later stages
tumors become more dependent on the process of autophagy, for instance in response to
chemotherapy treatment [36]. The use of hydroxy-chloroquine, an inhibitor of lysosomal
function and autophagy, has shown benefit in anti-cancer therapy by counteracting drug-
resistance, and in particular a combined therapy together with apoptosis inducers resulted
in robust cell death of cancer cells in clinical studies [37].

Whereas the rather novel link of nucleoli and bulk autophagy is emerging, the under-
lying causes remain largely elusive and require more mechanistical investigation. Here, we
demonstrate that induction of nucleolar stress by multiple mechanisms, such as treating
cancer cells with the RNA pol I inhibitor CX-5461 or interfering with the transcription
factor of RNA pol I, Upstream-binding factor 1 (UBF-1; UBTF), induces expression of the
key regulator of autophagy, ATG7. Moreover, the effect can be reproduced by depletion of
PPAN, SBDS, NPM and PES1 thereby strongly suggesting a common mechanism of action.
Thus, our data establish the nucleolar stress response as upstream trigger for transcrip-
tional regulation of autophagy. Given the contribution of both axes, nucleolar stress and
autophagy, in propagation or cure of cancer our data unravel a link that might be a feasible
target for future therapies.

2. Materials and Methods
2.1. siRNA Sequences

The following siRNAs were Flexitube siRNAs from Qiagen (Hilden, Germany): si PPAN-
A (SI00125545) [25,34,38,39], si SBDS-C (SI00711144) and si SBDS-D (SI03246390) [25], si UBF-A
(SI00754992) and si UBF-B (SI04290839). Following custom si RNA sequences were previously
reported [25,34,38,39] and were obtained from Horizon Discovery (Lafayette, CO, USA). The
respective si RNA sequences are listed below:

si control: 5′-GCUACCUGUUCCAUGGCCA-3′

si PPAN-B: 5′-GGACGAUGAUGAACAGGAA-3′

si NPM-A: 5′-UGAUGAAAAUGAGCACCAG-3′

si NPM-B: 5′-GAAUUGCUUCCGGAUGACU-3′

si PES1: 5′-CCAGAGGACCUAAGUGUGA-3′

2.2. Antibodies and Dyes

Commercial antibodies were obtained from following companies: Abnova (Taipei City,
Taiwan): UBTF (H00007343-M01), Cell Signaling (Danvers, MA, USA): GAPDH (1410C),
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p21 (2946); Proteintech (Rosemont, CA, USA): PPAN (11006-1-AP), ATG7 (67341-1-Ig)
and SBDS (67200-1-Ig); Sigma (Steinheim, Germany): PES1 (SAB1400457); Thermo Fisher
Scientific (Dreieich, Germany): NPM (FC-61991); Roche (Mannheim, Germany): GFP
(11814460001); Santa Cruz (Dallas, TX, USA): p53 (sc-126). Secondary antibodies for West-
ern blotting were IRDye conjugates 800CW and 680CW from Li-COR (Lincoln, NE, USA)
or Alexa Fluor 594 (Dianova, Hamburg, Germany) for immunofluorescence experiments.
DAPI mounting medium were purchased from Dianova (Hamburg, Germany).

2.3. Cell Culture, Transfections and Drug Treatments

Cells were grown in DMEM (high glucose) supplemented with penicillin and strepto-
mycin, 10% FCS and were cultured at 37 ◦C and 5% CO2. U2OS cells were purchased from
ATCC and HeLa cells were kindly provided by M. Kühl and were purchased from Sigma
(Steinheim, Germany). HEK293A GFP-LC3 cells (ECACC 14050801) were purchased from
Sigma (Steinheim, Germany) and were cultured in medium supplemented with 0.4 mg/mL
G418 (Sigma, Steinheim, Germany) [34,40]. Cell lines were regularly tested for absence of
mycoplasma and were used in low passage numbers.

HeLa and U2OS cells were seeded in 6-wells and were transfected with 45 nM si
RNAs for 48 h using Oligofectamine according to the manufacturer´s instructions. For
drug treatment, cells were seeded in 6-wells and grown over night prior administration of
DMSO (Sigma) or 1 µM CX-5461 (Caymen, Ann Arbor, MI, USA) for 24 h as indicated. For
flux assays in HEK293A GFP-LC3, cells were incubated with DMSO or 1 µM CX-5461 for
20.5 h followed by 50 µM chloroquine (CQ; Sigma, Steinheim, Germany) for 3.5 h.

2.4. Cell Lysates, Western Blots and Densitometry

Cells were rinsed in 1× PBS, afterwards lysed with RIPA buffer (50 mM Tris-HCl
pH 8.0, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate) for 10 min on ice
and cleared by centrifugation for 10 min at 13,000 rpm and 4 ◦C as previously [25].

Bradford assay, SDS-PAGE and Western blotting were performed using the Bio-Rad
system. Nitrocellulose membranes were incubated over night with primary antibodies
(dilutions 1:500 to 1:3000) followed by secondary antibody incubation for 2 h at room
temperature (1:10,000). Protein levels were quantified using a Li-COR CLX Imager and
Image Studio Light software as previously described [25]. For normalization, respective
GAPDH signals of the same sample and blot were used.

2.5. qRT-PCR Analysis

Total RNA was isolated using the RNeasy Mini Kit provided by Qiagen (Hilden,
Germany). RNA samples were treated with DNAse (Roche, Mannheim, Germany) prior
reverse transcription into cDNA using random hexamer primers and SuperScriptII (Invit-
rogen, Carlsbad, CA, USA). Thereby, samples without reverse transcriptase served as a
contamination control. For qRT-PCR analysis, the QuantiTect SYBR Green PCR Kit (Qiagen,
Hilden, Germany) was used with the CFX Connect Real Time System (BioRad, Hercules,
CA, USA). Each experiment was measured in technical triplicates and was performed
at least four times. The relative expression R was calculated according to the efficiency
corrected method for HeLa cells as previously [25]. For U2OS, non-transfected HeLa as
well as HEK293A GFP-LC3 cells an efficiency of E = 2 was assumed. The PPAN, NPM1,
PES1, SBDS, CDKN1A and 47S rRNA qRT-PCR primers were synthesized by biomers.net
GmbH (Ulm, Germany) and were as previously reported [25,39]. The qRT-PCR primer
sequences newly utilized in the present study were:

ATG4A-fw: 5′-CCTTCAGTTGCATTGGGATT-3′

ATG4A-rv: 5′-TTCCTTCTGAACAAGGCTACAC-3′

ATG5-fw: 5′-GGCCATCAATCGGAAACTC-3′

ATG5-rv: 5′-GGTCTTTCAGTCGTTGTCTG-3′

ATG7-fw: 5′-CATGAGTTGACCCAGAAGAAG-3′

ATG7-rv: 5′-CAGCAGAGTCACCATTGTAG-3′
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ATG9A-fw: 5′-CACCGGCTTATCAAGTTCATC-3′

ATG9A-rv: 5′-ATACGGAAGGGCAGACATAG-3′

ATG16L1-fw: 5′-GTTTCTGGGACATTCGATCAG-3′

ATG16L1-rv: 5′-CTCAGTCCTTTCTGGGTTTAAG-3′

UBTF-fw: 5′-GACCGTGCAGCATATAAAG-3′

UBTF-rv: 5′-ACTTGGACTGCAGAGTAG-3′

ULK1-fw: 5′-CTGGTTATGGAGTACTGCAAC-3′

ULK1-rv: 5′-AGGAAGAGCCTGATGGTGTC-3′

Resulting ATG4A, ATG5, ATG7, ATG9A, ATG16L1, UBTF and ULK1 qRT-PCR am-
plicons were verified by gel electrophoresis as well as sequencing (Eurofins Genomics,
Ebersberg, Germany).

For screening of alterations concerning autophagy related genes, si control or si PPAN-
B cDNA samples derived from HeLa cells were initially tested for PPAN knockdown and
subsequently subjected to the predesigned 96-well panel Autophagy (SAB Target List) H96
(BioRad, Hercules, CA, USA) according to the manufacturer´s protocol. The expression of
target genes was normalized to the four stable reference genes ACTB, GAPDH, HPRT1 and
TBP. The respective runs passed all internal controls as depicted in the following Table 1.

Table 1. Overview of internal controls concerning the predesigned 96-well panel Autophagy (SAB
Target List) H96 (BioRad).

si Control si PPAN-B

presence of gDNA n.d. n.d.

PCR inhibition
(CT < 30) CT = 22.9 CT = 23.09

RNA degradation
|RQ2 CT|− |RQ1 CT| < 3.0

RQ1 CT = 19.33
RQ2 CT = 20.52

=1.19

RQ1 CT = 19.49
RQ2 CT = 20.82

=1.33

RT control
(CT < 30) CT = 26.51 CT = 27.07

2.6. Immunofluorescence

HEK293A GFP-LC3 cells were grown on coverslips overnight and treated with drugs
as indicated. Cells were fixed with ice-cold methanol for 10 min at−20 ◦C and subsequently
permeabilized with 0.5% Triton X-100 for 15 min at RT. Cells were blocked in 0.5% BSA (in
1× PBS) for 45 min at RT, incubated with GAPDH antibody (1:100) for 2 h at RT followed
by incubation with Alexa Fluor 594 (1:1000) for 1 h at RT and finally mounted in DAPI
mounting medium.

2.7. Image Acquisition and GFP-LC3 Assay

GFP-LC3 puncta analysis was performed as previously described [34]. Shortly, z-stack
images were taken with the Zeiss Axio Observer 7 microscope using the 63× objective
with the Apotome.2 function. Slices in the z-plane were taken with an interval of 0.24 µm
through the entire cell monolayer. Five images per condition were taken in random
optical fields, thereby imaging approximately 50 cells per n. Subsequently, the z-stack
images were processed with the z project module from ImageJ using the Max intensity
projection type, providing a composite image of all planes. For quantitative analysis
CellProfilerTM (version 3.1.9) was used [41,42]. Samples of the same assay were imaged
and processed equally.

2.8. Statistical Analysis

Statistical analysis was performed with GraphPad Prism software version 9 using
at least four independent experiments (n) as described previously [25,34,39]. Statistical
analysis of relative data such as Western blotting or qRT-PCR experiments was calculated



Cancers 2021, 13, 6220 6 of 17

using the one-tailed paired t-test and a normal distribution was assumed as reported [43].
GFP-LC3 puncta experiments were calculated by unpaired t-test. Normalization was
performed for si control or DMSO treated cells as indicated in the figure legends. Error
bars indicate S.D., statistically significant differences are indicated by asterisks.

3. Results
3.1. Depletion of the Key Ribosome Biogenesis Factor PPAN Stimulates Transcription of ATG7 and
ATG16L1 and Results in Increased Protein Levels of ATG7

We previously found that knockdown of the ribosome biogenesis factor PPAN induced
nucleolar stress, which triggered cell cycle arrest and apoptosis [38,39]. Moreover, PPAN
knockdown activated autophagic flux in cancer cells [34]. To elucidate a feasible molecular
mechanism possibly underlying activation of autophagy, a commercially available qRT-
PCR screen for autophagy-related genes was initially performed. Besides other targets,
siRNA mediated knockdown of PPAN resulted in upregulation of the autophagy factor
ATG7 in HeLa cervical cancer cells when using the functional PPAN si RNA, termed si
PPAN-B (Figure 1, Figures S1 and S4) as previously [34,38]. Note that HeLa cells are
considered a p53-negative cell line, which is important with respect to nucleolar stress
induction in response to PPAN depletion [38].
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Figure 1. Knockdown of PPAN results in transcriptional alterations of autophagy related genes. HeLa
cells were transfected with si PPAN-B for 48 h and subsequently analyzed by qRT-PCR. (A) Relative
expression (R) of PPAN normalized to GAPDH is depicted. (B) The cDNA samples of (A) were
subjected to a predesigned PrimePCRTM Autophagy panel (BioRad) and the respective genes were
normalized to ACTB, GAPDH, HPRT1 as well as TBP (compare Figure S4). (Left) The normalized log2

relative expression upon PPAN knockdown in comparison to control transfected cells is depicted as a
heatmap, (right) whereas right next to it the investigated genes are denoted. Thereby, the highlighted
genes in black reflect targets, which were subsequently investigated.

Given the key role of ATG7 in the process of autophagy, we aimed to verify these
initial findings in more detail. In addition, we also determined levels of other hits of the
screen, such as ATG16L1. Indeed, the effect on both factors could be reproduced by two
independent and functional PPAN siRNAs (si PPAN-A and -B) [25,34,38,39] in the cervical
cancer cell line HeLa (Figure 2A–C). Both siRNAs have earlier been used to demonstrate
effects of PPAN depletion on activation of autophagic flux [34]. As a basis for its functional
role in autophagy, we next determined whether ATG7 is stabilized on protein level. To
address this question, we performed quantitative Western blotting and analyzed protein
levels of ATG7 in HeLa cells upon knockdown of PPAN. In compliance with the mRNA
data, we found significantly increased ATG7 protein levels after PPAN knockdown by two
independent siRNAs (Figure 2D,E).
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Figure 2. Depletion of PPAN leads to elevated amounts of ATG7 and ATG16L1 on mRNA and
ATG7 on protein level. HeLa cells were transfected with PPAN siRNAs for 48 h as indicated and
subsequently analyzed by qRT-PCR (A–C) and Western blotting (D,E). (A–C) The relative expression
(R) of PPAN (A), ATG7 (B) and ATG16L1 (C) normalized to GAPDH is depicted. (D,E) RIPA whole
cell lysates were subjected to Western blotting. Membranes were incubated with ATG7 and GAPDH
antibodies. (E) Quantification of ATG7 normalized to GAPDH by densitometry as shown in (D).
The si control was set to 1. Error bars represent S.D., p values were calculated by t-test. *, p < 0.05,
**, p < 0.01, ***, p < 0.001, ****, p < 0.0001. n = number of independent experiments. The raw Western
Blot can be found in Figure S5.

3.2. Depletion of the Key Ribosome Biogenesis Factors NPM, SBDS or PES1 and the Transcription
Factor UBF-1 Stimulates Transcription of ATG7 and ATG16L1

Given the emerging role of nucleolar stress in autophagy, we investigated if knock-
down of additional nucleolar factors such as NPM, SBDS or PES1, well known to trigger
the nucleolar stress response, can recapitulate these findings. Moreover, we analyzed
knockdown of Upstream-binding factor 1 (UBF-1, UBTF), the transcription factor of RNA
pol I to investigate if the effect on ATG7 may represent a general result of nucleolar
stress induction.

As previously, two siRNAs each were used for NPM and SBDS depletion, while PES1
knockdown was determined with one earlier published functional siRNA [25,44]. For
UBF-1 we tested two siRNAs in this study. Knockdown of all factors was verified by
qRT-PCR in HeLa cells (Figure 3A,D,G,J). At the same time, each knockdown condition was
accompanied by significantly increased ATG7 levels in HeLa, with exception of one UBF
siRNA (Figure 3B,E,H,K). In addition, also ATG16L1 levels were significantly increased in
all knockdown cells (Figure 3C,F,I,L).

Moreover, we measured mRNA levels of additional autophagy regulators and targets
of the initial autophagy screen panel (compare Figure 1), such as ATG4A, ATG5, ATG9A
and ULK1 after PPAN, NPM, SBDS, UBF-1 and PES1 knockdown in Hela cells (Figure S1).
Overall, each knockdown condition showed increased levels of further candidates. SBDS
knockdown even showed increased levels of all analyzed genes (Figure S1I–L).

ATG7 induction was also determined in the p53-positive osteosarcoma cell line U2OS
and was chosen as an independent cellular model previously connected to autophagy in
response to nucleolar stress [24,32,34]. Indeed, the effects on ATG7 were also apparent in
U2OS cells after depletion of nucleolar factors PPAN, NPM, SBDS, UBF-1 or PES1 (Figure 4).
Together, this suggested that the observed transcriptional elevation of ATG7 mRNA may
represent a general mechanism of nucleolar stress induction.
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Figure 3. Knockdown of NPM, SBDS, UBF-1 or PES1 activates transcription of ATG7 and ATG16L1
in HeLa cells. HeLa cells were transfected with NPM (A–C), SBDS (D–F), UBF (G–I) or PES1 (J–L)
si RNAs for 48 h as indicated and subsequently analyzed by qRT-PCR. Relative expression (R) of
NPM1 (A), SBDS (D), UBTF (G), PES1 (J), ATG7 (B,E,H,K) or ATG16L1 (C,F,I,L) normalized to
GAPDH is shown. The si control was set to 1. Error bars represent S.D., p values were calculated
by t-test. *, p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001, ns, non-significant. n = number of
independent experiments.
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Figure 4. Knockdown of PPAN, NPM, SBDS, UBF-1 or PES1 activates transcription of ATG7 in U2OS
cells. U2OS cells were transfected with PPAN (A,B), NPM (C,D), SBDS (E,F), UBF (G,H) or PES1
(I,J) si RNAs for 48 h as indicated and subsequently analyzed by qRT-PCR. Relative expression (R)
of PPAN (A), NPM1 (C), SBDS (E), UBTF (G), PES1 (I) or ATG7 (B,D,F,H,J) normalized to GAPDH
is shown. The si control was set to 1. Error bars represent S.D., p values were calculated by t-test.
*, p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001. n = number of independent experiments.

3.3. Depletion of the Key Ribosome Biogenesis Factors NPM, SBDS, PES1 or UBF-1 Results in
Increased Protein Levels of ATG7

NPM and SBDS have earlier also been linked to autophagy [24,31,33]. Thus, we next
determined, whether ATG7 is stabilized on protein level, similar as observed after PPAN
depletion. To do so, we analyzed protein levels of ATG7 in HeLa cells upon knockdown of
NPM and SBDS. In addition, we tested knockdown of UBF-1 and PES1. Correlating with the
qRT-PCR data, we found significantly increased ATG7 protein levels after NPM knockdown
by two independent siRNAs (Figure 5A–C). The same was true after knockdown of SBDS
(Figure 5D–F), UBF-1 (Figure 5G–I) or PES1 (Figure 5J–L). Taken together depletion of key
nucleolar factors, well associated with nucleolar stress induction, results in elevated protein
levels of ATG7.

3.4. Interfering with RNA pol I Function by CX-5461 Stimulates Transcription of ATG7
and ATG16L1

Next, we impaired nucleolar function by use of a small-molecule drug to investigate if
the effect on ATG7 and other candidates may present a general mechanism of nucleolar
stress induction. Thus, we used pharmacological inhibition of RNA pol I by application of
the specific inhibitor CX-5461 as previously [25] to interfere with the very upstream event
in ribosome biogenesis, transcription of the 47S rRNA precursor, similar as after UBF-1
knockdown. Efficient induction of nucleolar stress was detected in HeLa and U2OS cells
by qRT-PCR analysis for the 47S rRNA precursor, which is expected to be decreased upon
block of RNA pol I function (Figure 6A,C). As an independent approach to demonstrate
efficient nucleolar stress induction, subcellular de-localization of the nucleolar factors NPM
and the UBF-1 from nucleoli had earlier been demonstrated by immunohistochemistry in
the utilized settings [25]. In HeLa cells exposed to CX-5461 we found that ATG7 (Figure 6B)
and ATG16L1 expression was likewise upregulated, whereas the other candidates were
not increased in this condition (Figure S2). We also found a significant, albeit weaker effect
on ATG7 in U2OS cells (Figure 6D), which correlated with decreased RNA pol I inhibition
when compared to HeLa (compare Figure 6A,C). We also monitored protein levels of ATG7
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in HeLa cells in response to CX-5461 and found a significant increase by Western blotting
(Figure 6E,F). Protein levels of p53 were not stabilized in HeLa after CX-5461 treatment
(Figure 6E,G). Consistently, the p53 target p21 was not increased, but rather decreased
(Figure 6E,H), thereby suggesting p53-independent effects.
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Figure 5. Knockdown of NPM, SBDS, UBF-1 or PES1 results in increased ATG7 protein levels.
HeLa cells were transfected with the indicated si RNAs for 48 h. RIPA whole cell lysates were
subjected to Western blotting, membranes were probed with NPM (A), SBDS (D), UBF (G), PES1
(J) as well as ATG7 and GAPDH antibodies as indicated. (A–C) Knockdown of NPM increases ATG7.
Quantification of NPM (B) and ATG7 (C) normalized to GAPDH as shown in (A). (D–F) Knockdown
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of SBDS increases ATG7. Quantification of SBDS (E) and ATG7 (F) normalized to GAPDH as shown in
(D). (G–I) Knockdown of UBF-1 increases ATG7. Quantification of UBF (H) and ATG7 (I) normalized
to GAPDH as shown in (G). (J–L) Knockdown of PES1 increases ATG7. Quantification of PES1
(K) and ATG7 (L) normalized to GAPDH as shown in (J). Representative Western blots are shown,
numbers indicate kDa. The si control was set to 1. Error bars represent S.D., p values were calculated
by t-test. *, p < 0.05, ***, p < 0.001, ****, p < 0.0001. n = number of independent experiments. The raw
Western Blots can be found in Figures S7–S9.
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Figure 6. Inhibition of RNA pol I by CX-5461 leads to increased expression of ATG7. HeLa
(A,B,E–H) or U2OS cells (C,D) were incubated with 1 µM CX-5461 for 24 h. (A–D) Relative ex-
pression (R) of 47S rRNA (A,C) and ATG7 (B,D) as determined by qRT-PCR normalized to GAPDH
is shown. (E–H) RIPA whole cell lysates were subjected to Western blotting and membranes were
incubated with ATG7, p53, p21 and GAPDH antibodies as indicated. Quantification of ATG7 (F),
p53 (G) and p21 (H) normalized to GAPDH as shown in (E). DMSO treated cells served as control
and were set to 1. Error bars represent S.D., p values were calculated by t-test. *, p < 0.05, **, p < 0.01,
****, p < 0.0001, ns, non-significant. n = number of independent experiments. The raw Western Blots
can be found in Figure S10.

Given the increase of ATG7 and other autophagy factors exposed to nucleolar stress,
we determined autophagic flux in response to CX-5461. Of note, CX-5461 has earlier
been connected to activation of autophagy [11,24,32,45], however, flux studies have not
been performed in detail, at least to our knowledge. We used well-established, stable
HEK293A GFP-LC3 cells, which reflect a common model to monitor accumulation of
GFP-positive autophagosomes and the state of lipidation of LC3 as readout for autophagy
activation [30,40]. As a basis for our studies, we first verified functionality of CX-5461
in the cells by decrease in 47S rRNA in presence and absence of the autophagy inhibitor
chloroquine (CQ) (Figure 7A). Interestingly, we noticed that CQ treatment per se led
to a decrease in 47S rRNA. We also measured levels of ATG7 (Figure 7B) and ATG16L1
(Figure 7C) under these conditions. Whereas expression was not increased upon CX-5461
treatment in absence of CQ, we noticed a significant increase in response to CQ for all
targets. The same was true for further autophagy factors ATG5, ATG9A and ULK1, with
exception that ATG4 was already induced in absence of CQ (Figure S3). Importantly,
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protein levels of lipidated GFP tagged LC3-II were significantly increased in flux assays
with CQ in response to CX-5461 (Figure 7D,E) and correlated with increased ATG7 protein
levels (Figure 7D,F), thereby suggesting activation of autophagic activity.
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Figure 7. Induction of nucleolar stress by CX-5461 leads to increased expression of ATG7 and
enhances basal autophagic flux in HEK293A GFP-LC3 cells. HEK293A GFP-LC3 cells were incubated
with 1 µM CX-5461 for 20.5 h and were subsequently exposed to chloroquine (CQ) for 3.5 h as
indicated. (A–C) Relative expression (R) of 47S rRNA (A), ATG7 (B) and ATG16L1 (C) as determined
by qRT-PCR normalized to GAPDH is shown. DMSO treated cells served as control and were set to
1. Error bars represent S.D., p values were calculated by t-test. *, p < 0.05, **, p < 0.01, ***, p < 0.001,
****, p < 0.0001, ns, non-significant. n = number of independent experiments. (D–F) GFP-LC3-II
protein levels increase upon treatment with CX-5461. RIPA whole cell lysates were subjected to
Western blotting and membranes were probed with ATG7, GFP as well as GAPDH antibodies as
indicated. Quantification of GFP-LC3-II upon CQ (E) and ATG7 (F) normalized to GAPDH as shown
in (D). DMSO treated cells served as control and were set to 1. Error bars represent S.D., p values were
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calculated by t-test. *, p < 0.05, **, p < 0.01, ns, non-significant. n = number of independent experiments.
(G,H) Inhibition of RNA polymerase I by CX-5461 increases accumulation of GFP-LC3 puncta
in flux studies. Representative image stacks of randomly chosen optical fields are depicted in
(H). Cells were stained with GAPDH antibody, nuclei with DAPI and GFP-LC3 was detected by
fluorescence. The lower panels show the merged images of all channels. The arrowhead points
towards representative GFP-LC3 foci in CX-5461 samples, which are magnified in the boxed inset.
Scale bar, 50 µm. (G) Random image stacks as shown in (H) were counted for GFP-LC3 positive
puncta per cell, indicating autophagosome accumulation. DMSO treated cells served as control. Error
bars represent S.D., p values were calculated by unpaired t-test. ****, p < 0.0001. N = number of
independently counted cells, n = number of independent experiments used for single cell counting.
The raw Western Blot can be found in Figure S11.

Quantification of GFP-LC3 positive puncta per cell by immunohistochemistry revealed
accumulation of GFP-positive autophagosomes in CX-5461 treated samples. The number
was increased in response to CQ in DMSO treated controls, in line with efficient block of
autophagy (Figure 7G,H). We noticed a further increase in GFP puncta number per cell in
response to CX-5461 in presence of CQ. Altogether the data show activation of autophagic
flux in response to nucleolar stress by CX-5461, in line with previous reports.

In summary, knockdown of key ribosome biogenesis factors (PPAN, NPM, SBDS and
PES1) or alternatively interference with RNA pol I function by depletion of the transcrip-
tion factor UBF-1 or pharmacological inhibition by CX-5461 increased expression of the
autophagy related genes ATG7 and ATG16 L1 in cancer cells. These findings strongly sug-
gest that perturbation of ribosome biogenesis increases transcription of certain autophagy
related factors as a general nucleolar stress response to possibly induce autophagy.

4. Discussion

The nucleolus has been established as critical stress sensor that reacts with a multitude
of responses, such as p53 stabilization, cell cycle arrest, senescence, genome instability and
apoptosis [3,46]. More recently, nucleolar stress has been found to function as upstream
trigger for autophagy. Whereas several nucleolar factors and chemical compounds have
been shown to participate in the regulation of autophagy, the underlying mechanisms have
remained largely elusive. Involvement of p53-dependency and a contribution of mTOR
signaling has been shown, at least under certain conditions [24].

In this study we provide novel evidence that depletion of key nucleolar factors pre-
viously linked to nucleolar stress induction (PPAN, NPM, SBDS and PES1) over-activate
expression of the autophagy related genes ATG7 and ATG16L1. The findings were reca-
pitulated when interfering with the activity of RNA pol I by treatment with the specific
small-molecule inhibitor CX-5461 [12] or when depleting the nucleolar RNA pol I transcrip-
tion factor UBF-1. Given the independent approaches used, the data strongly argue for a
transcriptional regulation of ATG7 and ATG16L1 in response to perturbation of ribosome
biogenesis. Moreover, we also noticed upregulation of further ATG genes, such as ATG4A,
ATG5, ATG9 as well as ULK1 after knockdown of nucleolar factors, all of which are required
for early steps of autophagy and autophagosome biogenesis.

We focused on ATG7 and showed accumulation of ATG7 on protein level in response
to nucleolar stress in various cell lines. ATG7 resembles an essential E1-like enzyme being
involved in initiation of the autophagic pathway to mediate formation of the autophagoso-
mal membrane. With help of several other ATGs, ATG7 is essential to generate the lipidated
form of LC3-I, the activated LC3-II that is in turn incorporated into the autophagosomal
membrane. Whereas loss of ATG7 is well established to fully block autophagy [30], it was
shown that enhanced expression of ATG7 per se is capable of increasing the autophagic
flux [47]. Further studies in diverse models supported a connection of increased ATG7
levels, thereby positively correlating with LC3-II and autophagosome formation [48–50].
However, it should be noted that increased levels of ATG7 are currently under debate
to serve as a reliable readout for activation of autophagy. Nevertheless, together with
the increase in autophagic flux studies earlier observed in PPAN knockdown cells [34],
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the data presented here suggest an autophagic regulation that might already occur at
transcriptional level. The same mechanistic principle might likewise account for effects
previously observed on autophagy, for instance in cells exposed to CX-5461 or other nu-
cleolar factors such as NPM and SBDS that have been linked to autophagy [24,31–33].
Indeed, we found enhanced levels of lipidated LC3-II in autophagy flux assays as well as
increased number of GFP-positive autophagosomes after CX-5461 treatment. Interestingly,
CQ treatment in HEK293A GFP-LC3 cells demonstrated synergistic effects by elevating
transcript levels of ATG7 and ATG16L1. This might well suggest that nucleolar stress
activates autophagy already at transcriptional level by providing the factors required for
early steps of autophagosome biogenesis. Note that NPM depletion, however, has earlier
been shown to actually counteract autophagy activation in response to depletion of the
RNA pol I transcription factor TIFIA in breast cancer cells [31]. Thus, different mechanisms
might as well account for the effects observed in various settings, which should be further
investigated in future.

Interestingly, also p53 is implicated in the regulation of autophagy at multiple levels.
The ATG7 promoter was previously shown to be bound by p53. Therefore, the effect
on autophagy might as well depend on p53 and its transactivation of autophagy-related
genes [51,52]. The induction of ATG7 in this study was found in cancer cells that are
considered both, p53-negative (HeLa) and p53-positive (U2OS). Hence, the effect seems
to occur either irrespective of p53 status or at least different scenarios exist. In agreement
with latter, effects on autophagy in response to nucleolar stress have also been found to
occur both in p53-dependent and independent manner [24]. For instance, loss of NPM or
SBDS has been shown to promote autophagy independently of p53, whereas CX-5461 was
considered to function dependently and independently of functional p53 [11,24,31–33]. In
principle, the family members p63 and p73 are capable of compensating for the loss of
p53 with respect to ATG7 expression [51,52]. Moreover, also in the p53-negative HeLa cell
line an increase in p53 levels was detected in the context of PPAN depletion [38]. Thus, a
dependency on the p53 family for the transcriptional regulation of ATG7 cannot be fully
excluded yet, at least for the conditions tested in this study. However, as we did not
detect stabilization of p53 or its target p21 in response to CX-5461 in HeLa cells under the
experimental setups used, the findings suggest p53-independent effects in this context.
Besides p53, several unrelated transcription factors have been linked to the activation
of ATG7 expression [51]. Thus, further research is mandatory to unravel the precise
mechanisms that drive the transcriptional activation of ATG7 and further ATG genes in
response to nucleolar stress.

Given the fact that nucleolar impairment by multiple triggers similarly induced expres-
sion of autophagy related factors, our findings suggest a novel nucleolar stress response
that might globally be activated as compensatory mechanism to inhibit or delay apoptosis
in the cells. Note that enhanced levels of ATG7, for instance, have been reported in diverse
cancer types and were shown to promote cancer survival and resistance to chemotherapy,
whereas a downregulation could counteract cancer development, progression and resis-
tance [53,54]. Whether ATG7 upregulation indeed represents a cause for diverse diseases
associated with nucleolar stress needs to be further investigated. If so, we propose that
interfering with ATG7 function, and with-it autophagy, might represent a novel strategy
to consider in future in background of nucleolar-stress mediated malignancies. The same
holds true for further autophagy regulators identified in this study. Moreover, autophagy
inhibitors and activators should be tested in combination when applying novel anti-tumor
strategies, such as CX-5461.

5. Conclusions

Nucleolar stress has recently been linked to induction of autophagy [24]. The data
provided in this study argue for a regulation that occurs already at transcriptional level.
Together with our previous observations that nucleolar stress also over-activates Wnt
target gene expression [25], our data add compelling evidence that the nucleolar stress



Cancers 2021, 13, 6220 15 of 17

response can function at RNA level to induce diverse pro-proliferative and pro-survival
mechanisms. Depending on the context and intensity of the insult, nucleolar stress can
either induce diverse pathogenic conditions linked to pro-proliferative diseases such as
cancer or on the contrary to increased apoptosis as observed in neurodegeneration [15,24].
Likewise, nucleolar stress induction can be used as beneficial strategy to induce cell death
in anti-cancer therapies in case of continuous and severe stress. Of note, over-activation
of autophagy as well as inhibition are both capable of triggering apoptosis. Hence, an
understanding of the multiple facettes of the nucleolar stress response will be beneficial to
further optimize therapies underlying disturbed ribosome biogenesis.
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390/cancers13246220/s1, Figure S1. Impact of PPAN, NPM, SBDS, UBF-1 or PES1 depletion on mRNA
levels of ATG4A, ATG5, ATG9A and ULK1 in HeLa cells. Figure S2. Influence of CX-5461 treatment on
mRNA levels of ATG4A, ATG5, ATG9A, ATG16L1 and ULK1 in HeLa cells. Figure S3. Inhibition of RNA
pol I by CX-5461 results in increased expression of CDKN1A, ATG4A, ATG5, ATG9A and ULK1 upon CQ
treatment. Figure S4. Stability of reference genes investigated in the background of PPAN knockdown
qRT-PCR experiments. Figure S5. Raw Western blot data corresponding to Figure 2D. Figure S6. Raw
Western blot data corresponding to Figure 5A. Figure S7. Raw Western blot data corresponding to
Figure 5D. Figure S8. Raw Western blot data corresponding to Figure 5G. Figure S9. Raw Western
blot data corresponding to Figure 5J. Figure S10. Raw Western blot data corresponding to Figure 6E.
Figure S11. Raw Western blot data corresponding to Figure 7D.
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