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Efficacy of systemic administration 
of riboflavin on a rabbit model 
of corneal alkali burn
Maksym Żuk1*, Ekaterina Lobashova2, Olga Żuk3 & Sławomir Wierzba3

Changes in the barrier mechanisms in the eye should determine the rational route for the 
administration and dosage of each drug in the treatment of traumatic injuries and other pathologies. 
The aim of this study was to examine the efficacy of intra-arterial delivery of 14C-riboflavin (as an 
“indicator”) and compare it with intravenous and intramuscular administration in an animal model of 
chemical eye burn. 14C-riboflavin (14C-I) was administered by intra-arterial (carotid artery), intravenous 
(femoral vein) and intramuscular (femoral muscle) routes. The total radioactivity was determined over 
2 h in the plasma and structures of the rabbit’s eyes using a scintillation counter. The results of the 
study show that intravascular administration of 14C-I gives significantly higher concentrations of total 
radioactivity in the blood and is accompanied by a significant increase in the permeability of the blood-
barrier and barrier in eyes suffering from burns. The highest concentration in the plasma and aqueous 
humour of the anterior chamber of the eye was observed during the first hour with the intra-arterial 
route of administration of 14C-I in either burnt and unburnt eyes. The distribution of total radioactivity 
in the structures of the eye over the 2 h of the experiment showed a higher level of the drug under 
intra-arterial administered in the uveal regions, namely: the iris, ciliary body, choroid, retina and also 
the sclera and cornea. This experimental model shows that intra-arterial administration can increase 
the bioavailability of a drug to the structures of the eye within a short period of time.

Ocular chemical burns are a significant problem and are not only a local process, therefore the treatment applied 
should be complex. This applies to the use of systemic antibiotic therapy to reduce the risk of wound infection, 
the administration of pain relief, and the control and correction of inflammation in the acute phase with  drugs1, 2.

Chemical damage to the eye, especially alkali burns that quickly penetrate the structures of the eye, is a real 
problem and requires immediate evaluation and treatment. In this regard, the assessment of the most effective 
route for drug delivery in the shortest possible time is very important. Ophthalmic pharmacokinetics, although 
based on the fundamental concept of pharmacokinetics, has its own characteristics associated with the barrier 
properties created by the tissues of the eye and the routes of drug administration to the  eyes3–7.

Until now, the question remains unanswered as to which method of drug delivery is the most effective and 
ensures the supply of therapeutic doses of the drug to the eye  tissues8–10.

The least effective route of administration is through enteral preparations, due to the relatively slow absorp-
tion of the active substance into the bloodstream from the gastrointestinal tract and the first-pass effect through 
the  liver11. Instillation into conjunctiva, and intravenous administration are characterized by rapid penetration 
to the eye structures, but, in practice, does not create sufficient therapeutic  concentration12, 13. Thus, systemic 
administration of many drugs, particularly large, or hydrophilic, molecular drugs and their delivery to the 
posterior segment of the eye, is very  limited14, 15. Low molecular weight and lipophilic drugs can penetrate the 
barriers, achieving significant concentrations in the retina and vitreous tissue after systemic  administration16, 17. 
However, this effect is levelled by a large blood volume of distribution. This creates the need for large doses of 
drugs when they are administered systemically, rather than by local injection in order to obtain a sufficient 
concentration gradient in the choroid and retina.

When alkali gets into the eye, it damages not only the tissues directly at the point of contact, but is able to pen-
etrate into the deeperg parts of the eye, and can cause damage to the choroid and retina. In this case, intravitreal 
drug delivery is a very successful method of  delivery18, 19. However, intravitreal administration is fraught with 
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serious complications such as retinal detachment, hemophthalmos, endophthalmitis, sterile endophthalmitis, 
secondary glaucoma, and  cataracts14, 19–21.

By Panahi et al.22 it was shown that a high intravitreal concentration of non-steroidal anti-inflammatory 
drugs in the damaged eye can also be achieved with oral administration, which is a more convenient and less 
traumatic method.

A promising direction in methods of delivering drugs to different parts of the eye in the case of burns can be 
delivery through contact lenses with drugs. This allows for a long-term effect on the damaged  eye23. The search 
for other possible drug carriers  continues24.

Thus, the effective treatment of ophthalmic diseases is a challenging task for scientists and  clinicians21, 24, 25.
This study investigates the efficacy of intra-arterial delivery of 14C-riboflavin (chosen as a "tracer") and com-

pares it with systemic administration approaches: intravenous and intramuscular administration in an animal 
model of ocular chemical burn.

Materials and methods
Chemicals. This study used labelled 14C-riboflavin (14C-I) with a specific activity of mCi mmol−1 (Amer-
sham, USA). In our work riboflavin was used as a model water soluble drug and was introduced in an isotonic 
solution of NaCl.

Animals. The experiments were conducted on 18 Chinchilla breed Rabbits, of both sexes, weighing 2–2.5 kg. 
The animals were obtained from the breeding facility of the Odessa National Medical University (Odessa, 
Ukraine). Before the experiment, all the rabbits were assessed for corneal abnormalities and were confirmed to 
have normal corneas. The investigation was conducted according to the ARVO Statement on the Use of Animals 
in Ophthalmic and Vision Research and the experimental protocols were approved by the Ethics Committee of 
the Odessa National Medical University (approval no. 65B/2016).

Experimental procedure. The 18 rabbits were randomly divided into three groups. In each animal one eye 
was kept as a control (unburnt), the second for the burn. The rabbits were anaesthetised with a combination of 
intramuscular ketamine hydrochloride (50 mg kg−1) and xylazine hydrochloride (5 mg kg−1). The right corneas 
of the anesthetized rabbits were injured by dropping 10% sodium hydroxide (NaOH) on the corneal surface 
(0.1 ml over 10 s. alkali injuring the whole cornea, including the limbal region). Then the eyes were immediately 
rinsed with an excess of 0.9% saline solution. After inducing the chemical burn, the animals were administered 
14C-riboflavin in the volume of 0.2 ml (2.5 106 dpm kg−1): Groups: I—intra-arterially (carotid artery), II—intra-
venously (femoral vein), III—intramuscularly (the femoral muscle).

Aqueous humour samples and blood plasma from the femoral vein were collected for 2 h at intervals of 
10 min. After this, the rabbits were euthanized with intravenous Phenobarbitone sodium (Sigma) (125 mg kg−1). 
This was followed by dissection of both the burnt and healthy eyes. Total radioactivity was determined in biologi-
cal tissue samples using a Tri Carb 2700 liquid scintillation counter (Canberra Packard, USA).

Statistical and Pharmacokinetic analysis. Calculation of total radioactivity in tissues after the injec-
tion of 14C-I (mean ± SEM) was performed using Microsoft Excel. WinNonlin 5.3. (Pharsight, St. Louis, MO, 
USA) was used to conduct the following parameter analyses: maximal plasma concentration (Cmax), time to 
maximal plasma concentration (Tmax), area under the plasma concentration–time curve from time 0 to t and 
to infinite (AUC 0-inf), absorption rate constant (ka), absorption half-life (t1/2a), elimination rate constant (ke), 
and elimination half-life (t1/2e). Mean Residence Time (MRT) was calculated using the moment theory method 
(AUMC/AUC).

Calculation of total area under the first-moment curve (plot of Ct vs t) was performed by combining a trap-
ezoid calculation of AUMC(0-t) and extrapolated area Total AUC  and AUMC computed using exponential terms.

Statistical analysis was performed using the Student’s t test and AVOVA, with p ≤ 0.05 as the minimal level 
of significance.

Results
Distribution of 14C-riboflavin in the rabbit plasma and aqueous humour in healthy and burnt 
eyes. The investigation of the distribution of 14C-I in the rabbit blood under different routes of adminis-
tration (Fig. 1) demonstrated the significant influence of the route of administration on the pharmacokinetic 
parameters of the drug. The highest total radioactivity in plasma was observed with intra-arterial administra-
tion of riboflavin in the initial study period (10–60 min). The smallest radioactive counts were found in plasma 
after intramuscular administration in the research time. The process of plasma distribution in the intra-arterial 
administration is characterized by a two-phase process: α-phase was observed within 10 to 60 min of the experi-
ment, β-phase was from 60 to 120 min.

We noted that for intra-arterial injection of 14C-I after 10 min, total radioactivity in plasma was 4 times higher 
than after intravenous injection and about 16 times higher than with intramuscular administration (Table 1). 
The results show that in the β-phase monoexponential decline of the elimination rate is predominant for all 
routes of administration.

As shown in Table 1, the pharmacokinetics of 14C-I in the α-phase with intra-arterial administration are 
characterized by higher values (p ≤ 0.001) for rate constants of elimination by plasma, but in the β-phase with 
intravascular injection this parameter is identical. Characteristic for the drug pharmacokinetics in the blood 
after the intramuscular route of administration are low levels of total radioactivity (≈ 1.5–2 times lower than 
that of intravascular administration) and the slowest rate of its elimination (an observed steady-state level of 
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concentration over the entire range of the experiment). This result in a longer time required for the elimina-
tion of the drug from the body and accordingly extends its retention time–the half-life is about 4 h, and MRT 
equals ~ 5 h.

Research of absorption and distribution of 14C-I in the aqueous humour of the anterior chamber using intra-
vascular and intramuscular administration shows (Fig. 1) fast delivery of the drug in the aqueous humour of 
the anterior chamber of healthy and burnt eyes. As can be seen from Fig. 1, after the absorption phase a mono-
exponential decline in drug concentration is observed in the central (blood) and peripheral (aqueous humour) 
compartment for all routes of administration.

Intra-arterial administration is characterized by high speed entry into the peripheral compartment (burnt 
eyes) (Table 2).

The maximum level of total radioactivity after 20 min is observed in all the investigated objects, except burnt 
eyes, when administered intra-arterially, wherein the maximum concentration is already observed in the first 
interval of the monitoring—10 min (Tables 2, 3, 4).

Figure 1.  Distribution of the total radioactive material (C, dpm 103 ml−1) in plasma and the aqueous humour of 
anterior chamber in unburnt and burnt eyes after intra–arterial (a), intravenous (b) and intramuscular (c) routes 
of administration of 14C-I. Abbreviations: ah—aqueous humour, (unb)—unburnt eye, (b)—burnt eye.
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Table 1.  Pharmacokinetic parameters of the distribution of 14C-I in plasma of rabbits after intra-arterial, 
intravenous and intramuscular administration. *p < 0.05; **p < 0.01; ***p < 0.001.

Parameters Intra-arterial administration Intravenous administration Intramuscular administration

ke  (min−1) (α-phase) 0.0375 ± 0.007

ke  (min−1) (β-phase) 0.0119 ± 0.002 0.0121 ± 0.0001 0.003 ± 0.0001

t1/2 (h) 0.97 ± 0.094 0.95 ± 0.06 3.61 ± 0.30***

Cmax. (dpm 103 ml−1) 2057 ± 92.2 800 ± 23.4*** 180 ± 24.7***

T max. (min) 10 10 20

Co ( dpm 103 ml−1) (α-phase) 3148.9 ± 198.5

Co (dpm 103 ml−1) (β-phase) 875.6 ± 85.3 945.3 ± 19.1 195.8 ± 9.5***

AUC 0-t ((dpm 103 ml−1) min) 81,975 ± 593.3 55,230 ± 109.7*** 19,595 ± 187.63***

MRT (h) (β-phase) 1.21 ± 0.04 1.40 ± 0.07 5.15 ± 0.19***

Table 2.  Kinetic parameters of the distribution of total radioactivity in anterior chamber fluid in intact and 
burnt eyes after intra-arterial administration of 14C-riboflavin. *p < 0.05; **p < 0.01; ***p < 0.001.

Parameters Alkali—burned eye Unburnt (control) eye

kab  (min−1) – 0.0355 ± 0.006

ke  (min−1) (α-phase) 0.042 ± 0.008 –

ke  (min−1) (β-phase) 0.008 ± 0.001 0.004 ± 0.0005

t1/2 (h) 2.08 ± 0.14 2.62 ± 0.86

Cmax (dpm 103 ml−1) 811 ± 22.4 348 ± 13.4***

Tmax (min) 10 30

Co (dpm 103 ml−1) 588.8 ± 28.5 398.1 ± 19.1***

AUC 0-t ((dpm 103 ml−1) min) 44,435 ± 393.3 31,600 ± 109.7***

MRT (h) 2.1 ± 0.04 4.2 ± 0.17**

Table 3.  Kinetic parameters of the distribution of total radioactivity in anterior chamber fluid in intact and 
burnt eyes after intravenous administration of 14C-riboflavin. *p < 0.05; **p < 0.01; ***p < 0.001.

Parameters Alkali—burned eye Unburt (control) eye

kab  (min−1) 0.0217 ± 0.01 0.0321 ± 0.006

ke  (min−1) (β-phase) 0.008 ± 0.001 0.005 ± 0.0005***

t1/2 (h) 2.06 ± 0.18 2.51 ± 0.30**

Cmax (dpm 103 ml−1) 476 ± 12.1 324 ± 15.4***

Tmax (min) 20 20

Co (dpm 103 ml−1) 532.4 ± 22.32 354.9 ± 19.3**

AUC 0-t ((dpm 103 ml−1) min) 36,625 ± 435.3 29,920 ± 158.3***

MRT (h) 2.2 ± 0.31 4.2 ± 0.12**

Table 4.  Kinetic parameters of the distribution of total radioactivity in anterior chamber fluid in intact and 
burnt eyes after intramuscular administration of 14C-riboflavin. *p < 0.05; **p < 0.01; ***p < 0.001.

Parameters Alkali—burned eye Unburnt (control) eye

kab  (min−1) 0.0172 ± 0.006 0.0279 ± 0.008

ke  (min−1) (β-phase) 0.006 ± 0.0004 0.004 ± 0.0005*

t1/2 (h) 2.73 ± 0.28 2.96 ± 0.37

Cmax (dpm 103 ml−1) 202 ± 8.92 148 ± 14.5**

Tmax (min) 20 20

Co (dpm 103 ml−1) 218.8 ± 13.20 155.9 ± 8.54**

AUC 0-t ((dpm 103 ml−1) min) 18,510 ± 265.7 13,640 ± 178.1***

MRT (h) 2.9 ± 0.21 4.1 ± 0.32*
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This suggests that the α-phase ends during the first interval measurements of concentrations (10–20 min) 
and a further parallel (in semi-logarithmic coordinates) decrease in concentration in the central and one of the 
peripheral compartments is the result of the implementation of the β-phase (elimination phase) 14C-I and its 
metabolites.

The rate of absorption of 14C-I differed significantly only for intramuscular administration to burnt eyes. 
Injection of the preparation into the carotid artery was the most effective route of administration for the rapid 
achievement of the maximum concentration of the drug for unburnt and burnt eyes. The AUC tissue/AUC pl ratio 
over time was linear, with intravenous and intramuscular administration of 14C-I, after intra-arterial adminis-
tration a non-linear process was observed in the first hour of the experiment (α-phase). The constants of elimi-
nation from the aqueous humour of the unburnt eyes had no significant differences (Tables 2, 3, 4). Alkaline 
burns significantly alter the permeability of the blood barrier—ANOVA revealed significant differences in the 
values of total radioactivity (AUC ) in the anterior chamber of burnt eyes using all routes of administration of 
14C-I. The burn led to a significant effect on the concentration rate in the aqueous humour of burnt eyes—the 
elimination rate was in practice twice as high as that for the unburnt eye. Estimation of the distribution kinetics 
parameters after alkaline burns to the eye shows the characteristics of the process: the increase in the extensive 
ophthalmopharmacokinetic parameters—i.e. "maximum concentration" and "area under the concentration–time 
curve" (Tables 2, 3, 4).

Comparative analysis of the level of total radioactivity in anterior chamber fluid with intra-arterial and 
intravenous administration demonstrated a significantly higher level of the drug in the alkali burnt eye when 
injected into the carotid artery.

Contents of 14C-I in the structures of burnt and unburnt rabbit eyes. Our pharmacokinetic meas-
urements demonstrate that using all schemes of its administration 14C-I and its radioactive metabolites are found 
in all investigated tissues of a healthy eye (Fig. 2). In different routes, intravascular administration of riboflavin 
was significantly larger than it was when administered intramuscularly in all tissues of the eye supplied with 
blood vessels, namely: the iris, ciliary body, choroid, retina and the sclera and the vitreous body.

Regardless of the route of administration, the absorption process was characterized by the same regu-
larities—the content of total radioactivity in the tissues of the eye increased in the following order: vitreous 
body < lens < cornea < sclera < ciliary body < iris.

Experimental alkali burns to rabbit eyes cause a change in the distribution of radioactive riboflavin in differ-
ent parts of the rabbit eye and this was dependent on the manner of drug administration (Fig. 2). The equally 
high concentrations of 14C-I found in the iris, ciliary body, sclera and cornea of burnt and unburnt eyes with 
intravenous administration appears to be explained by the significant permeability of the blood-barrier toward 
riboflavin (Fig. 2).

After intra-arterial administration of 14C-riboflavin, the same regularities in the distribution of the study drug 
were detected, as was the case after intravenous injection (Fig. 2). Significant accumulation of total radioactivity 
was observed in the iris, ciliary body, sclera and cornea. After 2 h, the total content of radioactive material in 
these structures of aburnt eye is more than twice that of other means of administration. Burns caused a signifi-
cant (p < 0.0067) (i.e. 3-fold) increase in the concentration of 14C- riboflavin in the cornea and an almost 2-fold 
increase in the sclera.

Figure 2.  Contents of 14C-I in the structures of rabbit eye after intra-arterial, intravenous and intramuscular 
administration. Abbreviations: (ia)—intra-arterial administration; (iv)—intravenous administration; (im)—
intramuscular administration; (unb)—unburnt eye, (b)—burnt eye.
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Using intramuscular administration, a significantly lower drug concentration was found in all investigated 
structures of burnt and unburnt eyes than after intravascular administration.

Discussion
During the first 60 min, the route of administration significantly affected the levels of riboflavin in plasma and 
the aqueous humour of the anterior chamber of the rabbits’ eyes. Our studies demonstrated that, in the initial 
period, the highest total radioactivity levels were noted in the investigated tissues under intra-arterial admin-
istration of riboflavin. Intra-arterial (instantaneous) administration of drugs can increase the effectiveness of 
pharmaceuticals effects, as a result of “first pass effect" through perfused organ (tissue) of whole doses. After 
being administered intravenously, it is carried out “first pass" through the administered dose of the pulmonary 
circulation, which can reduce the effect of the drug. The availability of the first pass effect through the organ 
and the absence of it through pulmonary circulation assumes a large pharmacotherapy efficacy of intra-arterial 
administration of drugs.

In early studies of the effect of eye burns on blood supply, a pronounced decrease in blood supply to the vas-
cular tract in the first hours after injury was noted. In our study, the pharmacokinetic parameters of changes in 
the drug content in blood plasma during the studied time period demonstrated the absence of this phenomenon.

Intra-arterial administration of drugs can be used for other eye injuries/illnesses. This is evidenced by the 
work of Kucherenko et al26, 27 where it was shown that prolonged infusion of a mixture of drugs through the 
superficial temporal artery in patients with various eye diseases (neuritis, endophthalmitis, and burns) was a 
highly effective method of treatment. It has also been shown that, although intravenous administration of drugs 
provides stable retinoblastoma control, intraarterial chemotherapy has been shown to be most effective for 
 retinoblastoma22, 28–30.

Experimental burns cause an increase in the vascular permeability of the endothelium of the eye, which leads 
to an increase in the drug concentrations in almost all the tested sections of the eye, especially in the iris, ciliary 
body and retina with the choroid, sclera. It should be noted that with intra-arterial administration, a fairly high 
concentration of the drug is observed in the burnt cornea, which is the first to undergo changes under chemical 
action. The intravascular route for the administration of 14C-I allows for a significant increase in the content of 
the drug in blood, as well as in the structures of the eye.

Conclusion
These results, taken together with the pharmacokinetic properties of 14C-I, provide an opportunity to offer long-
term use of intra-arterial administration of the drug at a constant rate as a perspective method of administration. 
This route of administration gives an advantage due to the introduction of the first pass effect through the organ 
(eyes) throughout the range of pharmacotherapeutic effects. The slow and steady-state rate of elimination of the 
drug from the plasma and the structures of the eye when administered intramuscularly enables the creation of 
a fixed concentration. This experimental model shows that intra-arterial administration can increase the bio-
availability of a drug to the structures of the eye within a short period of time, which is necessary to provide an 
intense and effective therapeutic effect.
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