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A B S T R A C T   

COVID-19 has caused worldwide death and economic destruction. The pandemic is the result of the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), which has demonstrated high rates of infectivity leading to 
great morbidity and mortality in vulnerable populations. At present, scientists are exploring various approaches 
to curb this pandemic and alleviate its health consequences, while racing to develop a vaccine. A particularly 
insidious aspect of COVID-19 is the delayed overactivation of the body’s immune system that is manifested as the 
cytokine storm. This unbridled production of pro-inflammatory cytokines and chemokines can directly or indi
rectly cause massive organ damage and failure. Systemic vascular endothelial inflammation and thrombocyto
penia are potential consequences as well. In the case of COVID-19, the cytokine storm often fits the pattern of the 
macrophage activation syndrome with lymphocytopenia. The basis for the imbalance between the innate and 
adaptive immune systems is not clearly defined, but highlights the effect of SARS-CoV-2 on macrophages. Here 
we discuss the potential underlying basis for the impact of SARS-CoV-2 on macrophages, both direct and indirect, 
and potential therapeutic targets. These include granulocyte-macrophage colony-stimulating factor (GM-CSF), 
interleukin 6 (IL-6), interferons, and CXCL10 (IP-10). Various biopharmaceuticals are being repurposed to target 
the cytokine storm in COVID-19 patients. In addition, we discuss the rationale for activating the macrophage 
alpha 7 nicotinic receptors as a therapeutic target. A better understanding of the molecular consequences of 
SARS-CoV-2 infection of macrophages could lead to novel and more effective treatments for COVID-19.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
emerged in Wuhan, China in December of 2019 and quickly wreaked 
havoc around the world in the form of the pandemic COVID-19, causing 
death, undermining economies, overwhelming medical professionals, 
and challenging the scientific community (Liu et al., 2020a). This 

positive-sense single-stranded RNA virus has proven to be highly con
tagious, being spread by symptomatic and likely asymptomatic in
dividuals (Furukawa et al., 2020; Huff and Singh, 2020; Oran and Topol, 
2020). As the name suggests, the primary target of SARS-CoV-2 is the 
lungs, but other organs such as blood vessels, heart, and brain are sus
ceptible as well. All age groups are vulnerable to infection, but generally 
exhibit different degrees or classes of symptoms, with those over 60, 
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male, and with underlying medical conditions more likely to exhibit 
severe symptoms and succumb to viral toxicity (Conti and Younes, 2020; 
Team, 2020). Some 81% exhibit mild, moderate, or no symptoms; 14% 
show severe symptoms; and 5% experience critical disease with high 
mortality (Wu and McGoogan, 2020). An especially alarming compli
cation of COVID-19 is the cytokine storm that develops after a week or 
two of delay in severely infected individuals. 

SARS-CoV-2 has 4 structural proteins, namely the E (envelope), S 
(spike), M (membrane), and N (nucleocapsid) proteins (Guo et al., 
2020). The N protein holds the RNA genome, while the S, E, and M 
proteins form the viral envelope. The virus primarily gains entry into a 
human cell by binding to the exopeptidase angiotensin converting 
enzyme 2 (ACE2). This protein is located on the membrane surface of 
several cell types including alveolar type II and endothelial cells. Pro
teins other than ACE2 may function as receptors for entry as well (Guo 
et al., 2020). Cell entry is facilitated by cleavage of the spike protein by 
the serine protease TMPRSS2 or a furin-like proprotein convertase, 
thereby exposing the fusion peptide. Besides inducing cell death, viral 
infection can initiate an inflammatory response, which with 
SARS-CoV-2 is thought to manifest among other things as widespread 
vascular endothelial dysfunction (Teuwen et al., 2020). Beyond this, 
however, increasing evidence supports the conclusion that SARS-CoV-2 
may exert some of its lethal effects by insidiously compromising the 
body’s immune response. Here we summarize evidence for macrophages 
as targets of SARS-CoV-2 and the implication that has for immuno
modulatory treatments of COVID-19 (Fig. 1). 

2. Cytokine storm 

Progression of COVID-19 in more severe cases is marked by the 
delayed occurrence of a cytokine storm or cytokine release syndrome, 
due to overactivation of the immune system. Although not definitively 
established, this phenomenon is thought to contribute to the acute 

respiratory distress syndrome (ARDS) and widespread organ damage 
that foretells death. Nor is it clear what relationship there is between the 
cytokine storm and thrombocytopenia, which is common in patients 
with COVID-19 and may ultimately contribute to adverse outcome, 
although both enhanced platelet activation/consumption and destruc
tion are likely outcomes of the cytokine storm. Multi-organ (micro-) 
thrombosis seems to characterize severe COVID-19 cases (McFadyen 
et al., 2020; Prieto-Pérez et al., 2020), and likely reflects in part the 
production of pro-inflammatory cytokines, such as IL-1β and TNF-α, by 
macrophages (Conti et al., 2020a). 

Notably, excessive activation or proliferation of macrophages is a 
contributing factor to hemophagocytic histiocytosis (HH) also known as 
secondary hemophagocytic lymphosistiocytosis (Xu et al., 2020). HH 
has been identified as a deregulation of the immune system, character
ized by hemophagocytosis by macrophages, overactivation of cytotoxic 
T cells, and pro-inflammatory cytokine massive release (Ramos-Casals 
et al., 2014). HH is the histological counterpart of the macrophage 
activation syndrome. A clinical study performed on post-mortem bone 
marrow samples taken from patients who died from COVID- 19 showed 
findings highly consistent with the diagnosis of HH (Prieto-Pérez et al., 
2020). Elevated blood ferritin has also been shown to be associated with 
poor outcome in a retrospective study of 150 COVID-19 patients (Mehta 
et al., 2020a). 

From multiple observations, both CD4+ and especially CD8+ (or 
cytotoxic) T-cells appear to be over-activated early-on in COVID-19 
resulting in the excessive production of granulocyte-macrophage col
ony-stimulating factor (GM-CSF), which in turn stimulates monocytes/ 
macrophages to produce interleukin-6 (IL-6) and other inflammatory 
factors. With time, there is a significant decrease in peripheral CD4+ and 
CD8+ T lymphocytes, as well as natural killer (NK cells) in COVID-19 
patients, perhaps secondarily to their sustained activation by 
macrophage-derived interferon gamma-induced protein 10 (IP-10), also 
known as CXCL10. With disease progression, neutrophilia may occur, 

Fig. 1. – Macrophages at the center of the 
cytokine storm. With inflammation, macro
phages, T cells, endothelial cells and a 
number of other immune and mesenchymal 
cells, produce the monomeric glycoprotein 
granulocyte-macrophage colony-stimulating 
factor (GM-CSF) (red arrows). Besides stim
ulating the production of granulocytes and 
monocytes, GM-CSF can serve as a chemo
attractant for the migration of monocytes 
and neutrophils into the tissue (blue ar
rows), and can alter neutrophil receptors. 
GM-CSF signaling promotes a pro- 
inflammatory M1 macrophage phenotype 
and the production of a number of inflam
matory cytokines and chemokines by 
monocyte-derived or tissue macrophages 
(black arrows). Macrophages themselves are 
direct targets of the SARS-CoV-2 via 
expression of the receptor for viral binding 
ACE2, as well as TMPRSS2 or a furin-like 
proprotein convertase. The effect of SARS- 
CoV-2 on macrophage phenotype is not 
defined, although inhibition of protective 
interferon signaling is reported. Lung mac
rophages also express the G protein-coupled 
alpha 7 nicotinic receptors (nAChRs α7) that 
signal through JAK-STAT3 and oppose in
flammatory signaling by blocking the trans
location of p65/p50 NF-κB into the nucleus 
upon IκBα (inhibitor of NF-κB) degradation. 
See text for additional details. Some of the 
content is adapted from Servier Medical Art 
(https://smart.servier.com/).   
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especially in those with severe critical pulmonary conditions (Liu et al., 
2020b). 

3. Macrophage (monocytes) 

3.1. Inflammatory signature 

Human monocytes and macrophages express ACE2, as well as 
TMPRSS2 and furin, and would seem to be a widespread target for SARS- 
CoV-2 infection (Abassi et al., 2020; Wang et al., 2020b). Evidence was 
reported in COVID-19 patients for the infection of macrophages of the 
spleen and lymph nodes with SARS-CoV-2, which was associated with 
severe lymphocyte apoptosis (Wang et al., 2020b). Moreover, infected 
macrophages were shown to produce IL-6, a pro-inflammatory cytokine 
that directly promotes lymphocyte necrosis and would explain in part 
the common characteristic of lymphocytopenia in COVID-19 patients. 
Based on their morphology and ability to produce IL-6, TNF-α, and 
IL-10, as well as surface expression of CD11b, CD14, CD16, CD68, CD80, 
CD163, and CD206, circulating monocytes have an activated or 
pro-inflammatory phenotype. The expression of CD163 and CD206 
suggests a bias towards the intermediate or regulatory phenotype, with 
CD163 expression being a feature of activated monocytes/macrophages 
in hemophagocytic lymphosistiocytosis syndrome (Wang et al., 2020b). 
An increase in the pool size of the intermediate subtype of monocytes 
may be characteristic of severe COVID-19 (Merad and Martin, 2020). 
The activated plasma blood monocyte phenotype and lymphocytopenia 
would seem to persist into the recovery stage as well (Wen et al., 2020). 

Multiple studies have demonstrated that the lungs are a target of 
macrophages in COVID-19 (Chua et al., 2020; Wang et al., 2020b). In
flammatory macrophages are increased with increased levels of 
nonresident macrophages, which in the upper respiratory tract have a 
highly inflammatory phenotype with the expression of a number of 
chemokines and pro-inflammatory cytokines IL-1B, IL-8, IL-18, and 
TNF-α (Chua et al., 2020; Liao et al., 2020). Macrophages in the lower 
airways were found to have an even stronger inflammatory signature 
and overall there was a strong correlation between activation status of 
non-resident macrophages and COVID-19 disease severity (Chua et al., 
2020). Other immune cells, such as mast cells, likely act synergistically 
with macrophages to cause lung damage (Kritas et al., 2020). 

3.2. Interferon suppression 

Although CXCL10, as well as CCL2, are interferon (IFN)-induced 
genes, there is evidence for impaired or delayed Type 1 IFN signaling in 
SARS-CoV-2-infected cells. One ex vivo experiment with lung tissue 
showed that SARS-CoV-2 induced less IFNs and pro-inflammatory me
diators than SARS-CoV (Chu et al., 2020). Single-cell RNA sequencing 
analysis of bronchoalveolar lavage samples from severe and mild 
COVID-19 patients revealed that SARS-CoV-2 mainly infects the 
epithelial and recruited inflammatory macrophage subsets (Bost et al., 
2020). In the latter, a disease severity-associated downregulation of type 
I IFN genes was noted. Notably, IFN is known to exhibit multiple bio
logical functions such as antiviral, antiproliferative, and immunomod
ulatory effects (Nile et al., 2020; Wang et al., 2019). How SARS-CoV-2 
thwarts intrinsic innate immune responses in monocyte-macrophages 
is not defined, although in monocyte-derived dendritic cells (but not 
macrophages) viral antagonism of STAT1 phosphorylation was reported 
(Yang et al., 2020). In contrast, work in Vero cells, indicates that 
SARS-CoV-2-infected cells are still responsive to type I IFN treatment 
unlike SARS-CoV-infected cells (Lokugamage et al., 2020). Of note, 
ACE2 was shown to be an interferon-stimulated gene in human lung 
cells, which is also upregulated by smoking and viral infections (Smith 
et al., 2020). A discussion of possible means by which SARS-CoV-2 at
tenuates the interferon response can be found elsewhere (Paces et al., 
2020). Recently, it was reported that the SARS-CoV-2 viral ORF6, ORF8 
and N proteins were potential inhibitors of the type I interferon signaling 

pathway (Li et al., 2020). 
In light of these observations and urgent need to identify new ther

apies to control COVID-19 severity, IFN approved drugs have emerged 
as a potential treatment for COVID-19 patients. For instance, it has been 
demonstrated that the administration of recombinant IFNs to SARS-CoV 
and SARS-CoV-2 patients decreased viral protein synthesis and repli
cation (Falzarano et al., 2013; Li et al., 2019; Zumla et al., 2016). In 
agreement, a recent published study on MERS-CoV patients reported 
that a combination of remdisevir and IFN beta showed a superior anti
viral effect when compared with lopinavir/ritonavir combination 
(Sheahan et al., 2020). Therefore, testing the efficacy and safety of re
combinant IFNs may be a worthwhile promising approach in the setting 
of COVID-19. Triple antiviral therapy with lopinavir-ritonavir, ribavirin 
and interferon beta-1b was reported to be safe and superior to 
lopinavir-alone in improving symptoms and reducing viral shedding and 
hospitalization in those with mild to moderate COVID-19 (Hung et al., 
2020). On the other hand, there is evidence that IFN might be playing an 
important role in COVID-19 hyper-inflammation, suggesting that timing 
is a consideration (Conti et al., 2020c; Lee et al., 2020). Analysis of 
monocytes by single-cell RNA-seq from patients with severe COVID-19 
exhibited signs of a type I IFN response along with TNF/IL-1β-driven 
inflammation. 

3.3. Possible contribution of nicotine and nicotinic acetylcholine receptors 

Although multiple investigations report a detrimental impact of 
nicotine on COVID-19 patients through up-regulating ACE2 receptors in 
the lungs (Farsalinos et al., 2020; Leung et al., 2020; Russo et al., 2020), 
recently published epidemiological studies reveal that smokers are 
either asymptomatic or show less severe respiratory symptoms 
compared with non-smokers (Covid et al., 2020; Farsalinos et al., 2020b; 
Kloc et al., 2020; Miyara et al., 2020; Petrilli et al., 2020). A disruption 
of the cholinergic anti-inflammatory pathway in COVID-19 patients has 
been noted (Farsalinos et al., 2020a, 2020c). It has been reported that 
over-responsiveness of the immune system, otherwise known as the 
cytokine storm, highly correlates with enhanced severity of COVID-19 
infection, substantially increasing the mortality rate (Wang et al., 
2020a; Ye et al., 2020). In the human lungs, the inflammatory response 
is mainly mediated by lung macrophages with two main types: the 
alveolar and interstitial macrophages (Kloc et al., 2020). Under physi
ological conditions, the alveolar macrophages exhibit anti-inflammatory 
characteristics by dampening the adaptive immune response and sup
pressing pro-inflammatory cytokines release (Kloc et al., 2020). 
Following a viral infection such as COVID-19, the alveolar macrophages 
switch from the anti- to pro-inflammatory phenotype, initiating conse
quently an inflammatory response, then switch back during the resolu
tion phase to the anti-inflammatory phenotype, promoting thereafter 
tissue repair in the site of injury (Hu and Christman, 2019; Hussell and 
Bell, 2014). In the context of COVID-19 infection, an accumulation of 
macrophages in the lungs of COVID-19 patients has been observed 
(Wang et al., 2020a). Besides resident macrophages, monocyte-derived 
and non-resident macrophages have been described in COVID-19 pa
tients (Chua et al., 2020); however, a better understanding of their 
interrelationship is needed. 

Of note, lung macrophages have been shown to express ACE2 re
ceptors, facilitating therefore the entry of SARS-CoV-2 to host cells 
(Tsaytler et al., 2011; Verdecchia et al., 2020). Besides ACE2 receptors, 
lung macrophages express alpha 7 nicotinic receptors (nAChRs α7) 
(Abrial et al., 2012). nAChRs α7 are potentially implicated in attenu
ating the cytokine storm through decreasing pro-inflammatory cytokine 
release (Kalamida et al., 2007; Tracey, 2002). For instance, it has been 
indicated that activation of nAChRs α7 located on lung macrophages by 
acetylcholine and/or nicotine mitigates the hyper-inflammatory 
response mediated disease severity (Lu et al., 2014; Tindle et al., 
2020). Strong evidence reveals that the cholinergic anti-inflammatory 
pathway mediated by nAChRs α7 inhibits the translocation of the 
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pro-inflammatory marker NF-κB to the nucleus and activates the 
JAK2-STAT3 pathway, consequently suppressing the inflammatory 
response and decreasing the cytokine storm in the lungs (Báez-Pagán 
et al., 2015; Changeux et al., 2020; Lu et al., 2014). Given the observed 
lower number of hospitalized COVID-19 patients among smokers, the 
potential role of medicinal nicotine to alleviate COVID-19 progression 
and development should be rapidly studied and clearly distinguished 
from conventional smoking that has no therapeutic effects. 

3.4. Chemokine profile: a possible role for CXCL10 (IP-10) 

Longitudinal profiling of 71 COVID-19 patients identified early 
expression of inhibitory mediators IL-10 and IL-1RA, along with the 
chemokine CCL5 (aka RANTES), in those with mild but not severe dis
ease (Zhao et al., 2020). CCL5 is chemotactic for T cells, as well as eo
sinophils and basophil. On the other hand, the majority of cytokines 
associated with the cytokine storm in viral infections, including IL-6 and 
IFN-γ, were only increased at a late stage in severe illness, with TNF and 
GM-CSF not showing a difference between mild and severe cases. 

Multiple studies have documented the upregulation of not only in
flammatory cytokines but also chemokines in COVID-19 patients. Che
mokines are low molecular weight proteins that act largely as 
chemoattractants for immune cell recruitment during inflammation, as 
well as modulators of immune cell homeostasis and angiogenesis 
(Coperchini et al., 2020). Compared to non-ICU patients, COVID-19 
patients admitted to the ICU, exhibited higher plasma levels of IL2, 
IL7, IL10, GSCF, CXCL10 (IP-10), CCL2 (MCP1), CCL3 (MIP1A), and 
TNFα, indicating activation of T-helper 1 (Th1) cell function (Huang 
et al., 2020), although increased circulating levels of Th2-immune 
related cytokines IL-4 and IL-10 implicated in inflammation suppres
sion are noted as well (Han et al., 2020). Transcriptomic analysis of 
bronchoalveolar lavage fluid of COVID-19 patients revealed an upre
gulation of CXCL1, CXCL2, CXCL6, CXCL8 (IL8), CXCL10 (IP-10), CCL2 
(MCP-1), CCL3 (MIP-1A), and CCL4 (MIP1B) (Xiong et al., 2020). 
CXCL10 (IP-10) is a chemoattractant for monocytes/macrophages, 
dendritic cells, NK cells, and T cells; CCL2 (MCP-1) is a chemoattractant 
for monocytes, dendritic cells, and memory T cells. CXCL2 and CXCL8, 
which are secreted by monocytes/macrophage, serve as potent chemo
attractants for neutrophils. Single cell RNA sequencing of nasopharyn
geal and bronchial samples from COVID-19 patients identified increased 
inflammatory macrophages that express CCL2, CCL3 (MIP-1A), CCL20, 
CXCL1, CXCL3, CXCL10 (IP-10), CXCL8 (IL8), IL1B and TNF-α (Chua 
et al., 2020). Levels correlated with disease severity. CXCL10 (IP-10) 
levels were previously associated with the severe acute respiratory 
syndrome (SARS) disease progression and resolution due to the 
SARS-CoV virus (Altara et al., 2016; Jiang et al., 2005), and develop
ment of ARDS in preclinical models (Coperchini et al., 2020). The 
elevated nasopharyngeal levels of CXCL10 with COVID-19 may permit 
this chemokine to be used in widespread immunoassay testing for early 
detection of SARS-CoV-2-infection (Cheemarla et al., 2020). 

3.5. Possible contribution of GM-CSF 

Mounting evidence suggests that immunomodulatory agents, 
including GM-CSF, could be a promising therapy for COVID-19 (Lang 
et al., 2020; Mehta et al., 2020a). GM-CSF is known to be implicated in 
the production of granulocytes, monocytes, macrophages, and dendritic 
cells from progenitor cells, a process known as myelopoiesis (Egea et al., 
2010; Fleetwood et al., 2007). It has been demonstrated that GM-CSF is 
secreted by different cell types including alveolar type II epithelial cells, 
playing therefore a key role in the integrity of alveolar barriers and 
maturation of alveolar macrophages (Cakarova et al., 2009; Rösler and 
Herold, 2016). Multiple investigations have considered GM-CSF as a 
pivotal cytokine that activates both the innate and adaptive immune 
response. For instance, GM-CSF can polarize myeloid cells into a 
pro-inflammatory phenotype, releasing subsequently reactive oxygen 

species and pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and 
chemokines including CCL17, CCL2, and IL8, which can attract lym
phocytes, monocytes, and neutrophils to the site of inflammation 
(Hamilton, 2020). It has also been reported that GM-CSF can prime 
dendritic cells to activate T cells, boosting thereafter the immune 
response by enhancing the recruitment of myeloid cells to the site of 
injury (Cao et al., 2015; Komuczki et al., 2019; Zhang et al., 2013). Since 
the goal of enhancing lung tissues integrity and dampening hyper-active 
immune response may lead to a drastic decrease in morbidity and 
mortality rate in COVID-19 patients, administration of GM-CSF as a 
promising therapy is being clinically investigated (Lang et al., 2020). 
Pre-clinical investigations revealed that overexpression of GM-CSF 
decreased apoptosis in alveolar wall cells, consequently preventing 
hyperoxia-induced lung damage (Baleeiro et al., 2006; Paine et al., 
2003). A clinical study performed by Matute-Bello et al. reported that in 
ARDS patients, increased GM-CSF in bronchoalveolar lavage fluid was 
associated with decreased mortality rate through potentially improved 
alveolar macrophage survival (Matute-Bello et al., 2000). This obser
vation was further strengthened with a clinical study completed by 
Herold et al. showing that administration of inhaled GM-CSF to patients 
with pneumonia-associated ARDS enhanced oxygenation and lung 
compliance (Herold et al., 2014). Currently, a clinical study is assessing 
the potential beneficial effect of using inhaled and intravenous GM-CSF 
agonist in respiratory failure COVID-19 patients (NCT04400929). 

The potential benefits of administrating GM-CSF agonist in the 
context of COVID-19 patients, however, should be carefully studied, 
particularly in the late stage of COVID-19 where lung injury is thought to 
be driven by the cytokine storm rather than viral overload (Siddiqi and 
Mehra, 2020). Paradoxically, considerable interest in administrating 
anti-GM-CSF is gaining interest in the setting of COVID-19, given that a 
marked increase in GM-CSF expressing natural killer, B cells, and CD+ 4 
and CD+ 8 T cells was observed in COVID-19 ICU patients when 
compared to mild cases (Zhou et al., 2020). However, given the role of 
GM-CSF in boosting the immune response to remove pathogen and 
enhancing lung repair, it is important to consider that the observed in
crease could be a result of exacerbated COVID-19 severity and related 
comorbidities. The rational is that during COVID-19 infection, 
over-activation of myeloid cells could be a critical mediator of enhanced 
cytokine storm, consequently aggravating tissue damage. Therefore, 
anti-GM-CSF therapy may decrease the detrimental immune response, 
and thus exert beneficial effects (Barnes et al., 2020; Mehta et al., 2020a; 
Merad and Martin, 2020), a hypothesis that was supported by a pre
clinical study of SARS-CoV infection animal model, showing that 
GM-CSF mediated the infiltration of inflammatory mono
cytes/macrophages into the lungs (Channappanavar et al., 2016). Tak
ing together, these findings suggest that GM-CSF is a key player in 
regulating myeloid cell induced hyper-inflammation in many tissues 
including the lungs. Anti-GM-CSF approach in patients with COVID-19, 
however, should be well monitored, given the critical contribution of 
GM-CSF in alveolar macrophage function and pathogen clearance. 

As of the start of May 2020, there were some 49 clinical trials un
derway targeting the cytokine storm in COVID-19 patients (Wang et al., 
2020b). The vast majority involve biologicals. Besides those involving 
GM-CSF, prominent among them are a number of studies involving 
anti-IL-6 strategies. In addition, antagonistic antibodies directed against 
TNF, IL-1, IL-1R, and IL-8 are being investigated for attenuating exces
sive immune activation and the cytokine storm (Conti et al., 2020b). The 
rationale behind those targeting the actions of GM-CSF latter in 
COVID-19 is that this cytokine constitutes an autocrine/paracrine pos
itive feedback loop that helps drive the cytokine storm (Mehta et al., 
2020b). In a preliminary study, dexamethasone showed promise in 
reducing mortality of hospitalized COVID-19 patients if they were 
receiving respiratory support (mechanical ventilation or oxygen) (Group 
et al., 2020), but targeting the cytokine storm via broad-spectrum 
immunosuppression does raise a number of concerns (Theoharides and 
Conti, 2020). 
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3.6. Possible contribution of the renin angiotensin system 

SRS-CoV-2 can gain entry into monocytes/macrophages via ACE2, 
although the virus is not thought to replicate in these cells. In this way, 
macrophages may act as a sort of “Trojan horse”, allowing for the de
livery of the virus to lung and other tissue parenchyma (Abassi et al., 
2020). ACE2 is a protease that forms part of the beneficial counterpoint 
to the renin-angiotensin system (Forrester et al., 2018). By removing the 
carboxy-terminus amino acid, it converts the vasoconstrictive and 
pro-inflammatory octapeptide angiotensin II (Ang II) to Ang (1–7), 
which has beneficial effects including vasodilation and 
anti-inflammation actions via the Mas receptor. 

An additional consequence of virus-mediated ACE2 loss might be 
increased Ang II inflammatory effects via the Ang II type 1 (AT1) re
ceptor or diminished protective signaling via the Mas receptor (Abassi 
et al., 2020). Although multiple studies reported increased ACE2 
expression in COVID-19 patients who are on angiotensin converting 
enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) 
(Ferrario et al., 2005; Igase et al., 2008), recent emerging investigations 
suggested that ACEIs and ARBs could exert protective effects through 
up-regulating ACE2, modulating negatively therefore the severity of 
COVID-19 (Kuba et al., 2005) and reversing the marked increase in Ang 
II levels, decreasing consequently its deleterious effects on the cardio
pulmonary system (Danser et al., 2020; Sommerstein et al., 2020; Zheng 
et al., 2020). A study done by Kuba et al. showed that the administration 
of exogenous ACE2 to ARDS animal model substantially decreased 
inflammation and enhanced oxygenation (Kuba et al., 2005). Similarly, 
epidemiological studies revealed that ACEIs and ARBs decreased the risk 
of pneumonia in general population (Liu et al., 2013; Shinohara and 
Origasa, 2012). Therefore, investigation aimed at testing the potential 
beneficial or detrimental effects of ACEIs and ARBs in the context of 
COVID-19 is being undertaken (Buckley et al., 2020). 

4. Conclusions 

Substantial evidence indicates that pro-inflammatory macrophages 
play a critical role in the pathological consequences of COVID-19. 
Additional evidence is needed concerning the phenotype of these cells. 
Nor is it clear what the relationship is between SARS-CoV-2 infection 
and monocyte/macrophage activation status, namely whether these 
immune cells are simply responding to the viral infection or are hijacked 
by the virus to act in an uncontrolled rogue manner. Emerging evidence 
indicates that targeting the cytokines and chemokines associated with 
their activation or restoring their innate immunity control may provide 
the means to successfully combat COVID-19. 
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