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Abstract
α‐Thalassemia represents one of the most important genetic modulators of β‐hemoglobinopathies. During this last decade, the ongoing

interest in characterizing genotype–phenotype relationships has yielded incredible insights into α‐globin gene regulation and its impact

on β‐hemoglobinopathies. In this review, we provide a holistic update on α‐globin gene expression stemming from DNA to RNA to

protein, as well as epigenetic mechanisms that can impact gene expression and potentially influence phenotypic outcomes. Here, we

highlight defined α‐globin targeted strategies and rationalize the use of distinct molecular targets based on the restoration of balanced

α/β‐like globin chain synthesis. Considering the therapies that either increase β‐globin synthesis or reactivate γ‐globin gene expression,

the modulation of α‐globin chains as a disease modifier for β‐hemoglobinopathies still remains largely uncharted in clinical studies.

INTRODUCTION

The β‐hemoglobinopathies are the most prevalent inherited monogenic
disorder, caused by mutations affecting adult β‐globin chain synthesis.1

The most clinically significant phenotypes of β‐hemoglobinopathies are
the β‐thalassemias, HbE, and sickle cell disease (SCD). The World
Health Organization (WHO) has conservatively estimated that 5%–7%
of the world population are carriers of various types of hemoglobino-
pathies and estimated that over 300,000 severely affected patients are
born worldwide each year.1 More than 300 β‐globin gene mutations
have been reported to cause β‐hemoglobinopathies.1 Remarkably,
the global distribution and gene frequency of β‐globin gene
mutations overlap with the geographic distribution of malaria.1 While
several factors can be attributed to their high gene frequency,
the natural selection favoring heterozygous individuals afforded pro-
tection against lethal malaria is the main mechanism.2,3 Although
β‐hemoglobinopathies are most common in African, Mediterranean,
Middle Eastern, and Asian regions, the outcome of historical and recent
immigration trends means these disorders are encountered with in-
creasing frequency in many parts of the world, including Northern
Europe, North America, and Australia.1

In regions where β‐hemoglobinopathies are prevalent, there is also
an increased prevalence of α‐thalassemia, which similarly protects against

malaria.4,5 Considering the high frequency of both α‐ and β‐globin
gene mutations in the malaria‐endemic regions, it is not uncommon to
encounter individuals that co‐inherit both α‐ and β‐globin gene muta-
tions, producing considerable clinical heterogeneity.6 In β‐thalassemia or
SCD patients, the coinheritance of a single α‐globin deletion or in-
activation generally has a minimal impact, but two or three mutated
α‐globin genes can have a profound impact by reducing or even elim-
inating the clinical course on disease.7–10 Although several genetic
modifiers of the disease have been identified, α‐thalassemia remains one
of the most frequent and significant modifiers of β‐hemoglobinopathy
phenotypes globally.7–10

REGULATION OF THE HUMAN α‐GLOBIN
LOCUS

The human α‐globin cluster is located near the telomeric end of the
short arm of chromosome 16 (16p13.3), containing an embryonic
α‐like globin gene ζ‐globin (HBZ) and two adult α‐globin genes (α2 and
α1, HBA2 and HBA1, respectively). Upstream of the α‐globin cluster,
there are four highly conserved enhancer regions identified as mul-
tispecies conserved sequences (MCS) R1‐R4, critical in the regulation
of the α‐like globin genes (Figure 1A). Although the four upstream
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elements are classified as enhancers, they are not functionally
equivalent. Results from chromosome conformation capture (3C)
assays have shown the MCS elements cooperate to interact with the
α‐globin gene to form long‐range chromatin looping in human ery-
throid precursor cells.15,16 Notably, the MCS‐R2 element (previously
known as HS‐40) was identified as the major enhancer capable of
driving high levels of α‐globin gene expression in erythroid cells,
whereas MCS‐R1, R3, and R4 represent weaker enhancers.15,16 The
critical component of the MCS‐R2 is a 260 bp core sequence that
contains several conserved erythroid transcription factor‐binding
sites.17,18 Individually, the transcription factors GATA‐binding factor
1 (GATA1), Krüppel‐like factor 1 (KLF1 or formerly known as EKLF),

nuclear factor‐erythroid 2 (NF‐E2), and stem cell leukemia/T‐cell
acute leukemia 1 (SCL/Tal1) are recruited to MCS‐R2.19,20

Chromatin structure and chromosomal conformation have a cri-
tical role in determining the outcome of gene activity. In conjunction
with the other MCS enhancer regions and recruitment of E2‐alpha
(E2A), LIM domain‐binding protein 1 (LDB1), Lim‐only 2 (LMO2) and
other chromatin architectural proteins such as CCCTC‐binding factor
(CTCF), facilitate chromatin looping into dynamic sub‐topologically
associated domains (TAD) confining α‐globin enhancer interactions
with receptive promoters to control gene activity during erythroid
differentiation (Figure 2).19,21–24 Recent three‐dimensional chromatin
conformation studies of the mouse α‐globin locus have delineated

F IGURE 1 Schematic presentation of the human α‐globin gene cluster depicting functional and topological regulators of α‐globin gene expression. (A) The human

α‐globin gene cluster located proximal to the telomeric end of chromosome 16p (16p13.3), and encodes the embryonic ζ‐globin gene, and two fetal/adult (α2‐ and
α1)‐globin genes. Upstream of the α‐globin genes are four highly conserved multispecies conserved sequences (MCS), called MCS‐R1‐R4, involved in the regulation of

the α‐like globin genes. The scale is in kilobases (kb). (B) Representative ChIP‐seq analysis of transcription factor occupancy and epigenetic landscape of the α‐globin
locus in human erythroid cells. ChIP‐seq profiles for GATA1, KLF1, and TAL1, including ATRX and CTCF, are enriched either within or around the MCS‐R2 site. Also

shown are H3K27ac, H3K4me3, and H3K4me1 binding sites representing epigenetic marks associated with transcriptionally active chromatin. All data sets used in

the analysis for ATACseq, CTCF, H3K27ac, H3K4me1, and H3K4me3 were obtained from King et al.,11 GATA1, KLF1, and TAL1 were obtained from Ulirsch et al.,12

and ATRX from Truch et al.13 (C) Below the α‐gene cluster is shown the most common α‐thalassemia deletions indicated as horizontal bars and subdivided into

common α+‐ and α0‐thalassemia deletions (adapted from Farash et al.)14
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structural re‐organization of chromatin architecture whereby specific
interactions between enhancers and promoters form a dynamic fol-
ded hairpin conformation as chromatin accessibility increases during
early erythroid differentiation.19,21

In addition, epigenetic alterations modify the activation of α‐globin
gene expression. First, the α‐globin gene cluster is in a gene‐dense
region and in an open chromatin conformation. However, in none-
rythroid cells, active epigenetic mechanisms silence α‐globin gene ex-
pression. The polycomb repressive complex 2 (PRC2), which has
histone methyltransferase activity, binds to α‐globin genes and primarily
methylates histone H3 on lysine 27 to increase the histone 3 lysine 27
trimethylation (H3K27me3) chromatin mark, an epigenetic modification
associated with transcriptional repression.25 In erythroid cells, PRC2 is
displaced and the H3K27me3 chromatin marks are removed by histone
lysine demethylases, such as KDM6B/JMJD3, that specifically de-
methylates di‐ or trimethylated K27 of histone H3.26 Importantly, the
interplay between KDM6B and MCS‐R2, located 40 kb upstream from
the ζ‐globin gene, facilitates the removal of repressive H3K27me3
epigenetic marks to upregulate α‐globin gene expression in erythroid
cells.25,26 This interaction is also supported by a naturally occurring
MCS‐R2 deletion, contributing to a dramatic reduction in α‐globin
gene expression, to <5% of regular expressions, thus demonstrating
the crucial role of MCS‐R2 α‐globin gene expression during ery-
thropoiesis.27,28 Of the highly expressed functional α‐like globin genes,
ζ‐globin constitutes the embryonic globin gene, while α1 and α2‐globins
are the dominant α‐globin genes throughout all other stages of devel-
opment. Considering α1 and α2‐globin genes encode identical proteins,
α2‐globin is expressed at levels 2–3‐fold higher than α1‐globin at both
the transcriptional and translational levels.29,30 This is apparently due to
the location of the α2‐globin gene positioned closer to the upstream
MCS R1‐4 enhancer region and the unequal distribution of epigenetic
marks across both α‐globin genes.29,31

α‐THALASSEMIA

The most common genetic defects in α‐thalassemia are deletions of
the α‐globin genes. When α‐globin synthesis is reduced to ~25% or
less, patients experience a moderate to severe hemolytic anemia
caused by the accumulation of excess β‐globin chains and formation
of β‐globin‐tetramers (HbH) within erythrocytes, resulting in HbH

disease.14 Furthermore, the instability of HbH leads to the production
of inclusion bodies in red blood cells and a variable degree of hemolytic
anemia. However, when α‐globin synthesis is abolished during early
intrauterine development, excess γ‐globin chains produce γ‐globin
tetramers (known to as Hb Bart), which has very high oxygen affinity,
resulting in effectively no oxygen delivery.32 Consequently, the pro-
found intrauterine hypoxia and chronic effects on the developing fetus
lead to severe developmental abnormalities and perinatal demise,
known as Hb Bart's hydrops fetalis.14,32 Besides the functional prop-
erties of HbH and Hb Bart, the clinical severity is based on which of the
two α‐globin loci are affected. Over 120 known molecular defects,
both gene mutations and deletions, cause α‐thalassemia.33,34 The most
common forms of α‐thalassemia (‐α3.7 or ‐α4.2), are deletions resulting
from homologous recombination between misaligned chromosomes
involving one or both globin genes (HBA1 and HBA2).14 The overall
distribution of α‐thalassemia follows a similar pattern to that of
β‐thalassemia, extending from Sub‐Saharan Africa, throughout the
Mediterranean region, Middle East, and East and Southeast Asian
countries.14 For instance, the frequency of α‐thalassemia varies from
10% to 20% in some regions of Africa to 40% in some Middle Eastern
countries. In several Southeast Asian countries, the prevalence of
α‐thalassemia can range from 20% in Thailand to 51% in Vietnam.35,36

Remarkably, in the north coastal region of Papua New Guinea, the
α‐thalassemia deletion (‐α4.2) is found in >80% of the indigenous
population.37

Deletions that remove the majority of the α‐globin gene cluster,
including both α‐globin genes such as in Mediterranean (‐‐MED), and
Southeast Asian (‐‐SEA) deletions, result in α°‐thalassemia.14 Intrigu-
ingly, in some cases, persistent expression of the embryonic ζ‐globin
gene has been reported at levels >1% in carriers with ‐‐MED and ‐‐SEA

deletions.38–40 Normally, ζ‐globin is expressed in the yolk sac until
approximately 6 weeks of gestation. It is then silenced and replaced
by α‐globin expression. While substantial efforts have been made to
understand the switch from γ‐ to β‐globin, the expression of ζ‐ to
α‐globin has remained poorly understood. Previous studies have also
shown that ζ‐globin expression in mouse and/or human erythroid
cells may be upregulated when the expression of key transcription
factors such as MYB, KLF1, SOX6, BCL11A, and LRF are
perturbed.11,41 Examining ζ‐globin expression among different
α°‐thalassemia carriers will elucidate the mechanisms underlying
ζ‐globin silencing and facilitate new therapeutic strategies for HbH

F IGURE 2 Schematic diagram of the human α‐globin gene cluster depicting relative CTCF‐binding sites during erythroid differentiation. (A) Delineated chromatin

architecture depicting accessibility and location of CTCF internal and external boundary elements. (B) CTCF‐binding influencing the formation of a dynamic hairpin

conformation and enhancer/promoter interactions at the α‐globin gene cluster. Diagram adapted from the murine α‐globin gene cluster reported by Chiariello et al.21
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patients or Hb Bart's survivors by de‐repressing ζ‐globin expression
to compensate for the loss of α‐globin.42

In the cases of nondeletion α‐thalassemia, a series of over 70 mu-
tations have been identified, including point mutations affecting RNA
splicing, polyadenylation, messenger RNA (mRNA) translation, frameshift
mutations, and chain termination mutations.14,43 Many nondeletion mu-
tants occur in the HBA2 gene and, therefore, have a more severe effect
on α‐globin gene expression. For example, common nondeletional HBA2
mutations, such as Hb Constant Spring (HbCS) and Hb Paksé, result from
α2‐globin stop codon mutations (TAA → CAA) and (TAA → TAT),
respectively, and elongate the α‐globin chain by 31 amino acids before
the next in‐frame termination codon. These α‐Hb variants are extremely
unstable, causing insoluble inclusions and red cell instability. HbCS
appears to be the most prevalent α‐globin chain variant since it has been
identified in higher frequency in several populations from Southeast Asia,
including northeast Thailand (1%–2%) to southern China (5%–8%).43

Several α‐globin mutations have also been identified to restrict
binding to the Alpha‐Hemoglobin Stabilizing Protein (AHSP). AHSP
is an abundant erythroid‐specific molecular chaperon that plays an
important role in maintaining cellular proteostasis by supporting
α‐globin stability, folding, and hemoglobin tetramer assembly.44

After α‐globin synthesis, AHSP binds to a basic and hydrophobic
(BH) interface, forming an αHb‐AHSP complex and protecting
against the deleterious effects arising from α‐globin aggregation and
precipitation.45 AHSP is eventually displaced by β‐globin to form
α1β1 heterodimers, which then bind to another heterodimer to form
a mature HbA tetramer. Interestingly, the two elongated α‐Hb
variants, HbCS and Paksé, have also been reported to impair binding
to AHSP.46 Besides the elongated α‐Hb variants, point mutations
mostly located within the G and H helices (103–124aa), such as
Groene Hart P119S, Foggia F117S, and Questembert S131P, are at
the AHSP binding interface, and play a major role in limiting the
α‐globin‐AHSP interactions and give rise to a mild α‐thalassemia
phenotype.45,47 Conversely, when AHSP gene mutations are co‐
inherited in patients with β‐thalassemia, α‐globin chain instability,
and precipitation are exaggerated, worsening the disease.48,49

Moreover, very rare and unusual cases of α‐thalassemia are
caused by mutations in the α‐thalassemia mental retardation X‐linked
(ATRX) gene.50 Affected individuals are characterized by mild to se-
vere intellectual disability and developmental delay in males.14,51,52

The ATRX gene, located on the long arm (q) of X chromosome
(Xq13.3), encodes for the ATRX protein, belongs to the SWI/SNF2
family of ATP‐dependent chromatin remodeling complexes, which
execute a broad range of biological functions such as transcriptional
regulation, DNA repair, and chromosome segregation.53 More
recently, ATRX mutations have been shown to play a key role in
controlling α‐globin expression by reducing chromatin accessibility
and associated chromatin modifications within the α‐globin reg-
ulatory elements.13 ChIP‐seq data for ATRX occupancy sites revealed
an enriched region within the MCS‐R2 site that overlaps with GATA1,
KLF1, and TAL1 erythroid transcription factors‐binding sites and,
H3K4me1, H3K4me3, and H3K27ac histone modifications (Figure 1).
Consequently, various ATRX mutations have been identified to dis-
rupt α‐globin gene expression to different degrees, which is reflected
in the unusual proportions of red cells containing HbH inclusions and
microcytic hypochromic anemia.14

β‐THALASSEMIA

In β‐thalassemia, the reduction or the absence of β‐globin
synthesis generates the α/β‐globin chain imbalance. More than 300
disease‐causing mutations have been identified, with the vast majority

caused by point mutations, affecting almost every known stage of gene
expression.54 For example, CD41/42(‐TCTT), CD17, and IVS2‐654
represent common β‐mutations located in Southeast Asia, while other
β‐mutation such as CD39, IVS1‐1, and IVS1‐110 represent the most
common splicing mutations in the Mediterranean region.55 Early
symptoms of β‐thalassemia appear soon after birth when the fetal
γ‐globin gene is progressively silenced and replaced by defective
β‐globin gene synthesis. The pathophysiology of the disease can be very
heterogeneous, ranging from nearly asymptomatic to life‐threatening
severe anemia. The latter has major effects on erythroid precursors
resulting in the formation of insoluble α‐globin, α‐hemichromes, and free
iron, which contribute to the generation of reactive oxygen species
(ROS) and apoptosis. Normally, when free α‐globin is in excess, cellular
protein quality control (PQC) pathways help maintain erythroid pro-
teostasis by resolving unpaired α‐globin, decreasing protein misfolding
and aggregation. In particular, the Heat Shock Protein 70 (HSP70)
chaperone system has emerged as playing a vital role in modulating
PQC activities at different stages of erythropoiesis.56 However, in
β‐thalassemia, excess α‐globin inundates the PQC pathways contribut-
ing to proteotoxic stress during erythropoiesis. Under such conditions,
α‐globin sequesters the molecular chaperone HSP70 in the cytoplasm,
preventing it from performing its normal physiological role of protecting
GATA1 from caspase‐3‐mediated proteolytic cleavage.56,57 Conse-
quently, the early degradation of GATA1 drives the expansion of early‐
stage erythroid precursors and is associated with apoptosis of late‐stage
precursors and anemia.56,57 The expansion of erythroid precursors in the
bone marrow results in skeletal deformities, osteoporosis, while extra-
medullary erythropoiesis leads to splenomegaly and hepatomegaly.55,58

Additionally, elevated systemic levels of growth differentiation factor 15
(GDF15) and erythroferrone (ERFE) are released from the large pool of
erythroid progenitor during stress erythropoiesis to suppress hepcidin
expression.59,60 In this situation, dietary iron absorption, and availability
is increased, which contributes to systemic iron overload and increased
ROS production, ultimately causing end‐organ damage.6,61 Treatment
options are limited, consisting mainly of chronic RBC transfusions that
unavoidably exacerbate iron deposition and toxicity, damaging the liver,
heart, pancreas, thyroid, and other endocrine glands and invariably in-
creasing the morbidity and mortality amongst patients. Chelating agents
allow for the active elimination of excess iron; however, chelation
therapy is not sufficient to prevent iron overload‐related complications
in all patients.6,61 Allogeneic hematopoietic stem cell transplantation
(HSCT), and more recently approved gene therapy options, including
gene addition or gene editing, have increased the curative treatment
options available for patients.62–64

STRUCTURAL HEMOGLOBIN VARIANTS

The most frequent and clinically significant structural hemoglobin var-
iants are HbS, HbC, and HbE. These variants differ from normal he-
moglobin (HbA) by a single amino acid residue caused by the point
mutation in the β‐globin gene. HbS results from a glutamic acid to valine
substitution at codon 6 of the β‐globin gene (common in sub‐Saharan
Africa and the Middle East), while HbC is characterized by a glutamic
acid to lysine substitution also at codon 6 (dominant inWest Africa). The
homozygous state for the HbS results in SCD, while the compound
heterozygous state for the HbS and HbC genes results in HbSC disease,
although milder than HbS, still has significant health risks.65 In SCD, the
pathogenesis of the disease is reflected in the tendency for HbS to
polymerize and form intercellular fibers causing red blood cells to adopt
a poorly deformable sickled configuration under hypoxic conditions.
Moreover, HbS is unstable and is almost entirely responsible for ROS
generation inside RBCs.66 Consequently, sickled RBCs are fragile
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contributing to intravascular hemolysis, promoting activation of
endothelial cells and inflammation. These interactions lead to vascular
obstruction, tissue ischemia, and painful vaso‐occlusive events.
Ultimately, the disease progresses to significant end‐organ damage in-
volving the bone marrow, spleen, and kidneys, as well as pulmonary and
neurologic complications.65,67

The HbE variant results from a glutamic acid to lysine substitu-
tion at codon 26 of the β‐globin gene, producing a structurally
abnormal hemoglobin and activating a cryptic splice site, causing
aberrantly spliced β‐globin mRNA. HbE, in its heterozygous and
homozygous states, does not pose major clinical issues but, because
the HbE β‐globin is produced at a reduced level, can interact with
β0‐mutations to produce a condition called HbE/β0‐thalassemia.68

This condition is by far the most common severe form of
β‐thalassemia globally, and is particularly prevalent in India,
Bangladesh, and throughout Southeast Asia, such as inThailand, Laos,
and Cambodia.68 Additionally, structural hemoglobin variants may in-
teract with other β‐thalassemia mutations to produce remarkable
clinical variability, ranging from asymptomatic to life‐threatening ane-
mia requiring transfusions from an early age. Currently, the reasons for
this extraordinary clinical heterogeneity are not fully understood.
However, information on allele frequency and genetic diversity
amongst various populations has been used to identify several genetic
factors that influence the clinical phenotype. For example, several
genome‐wide association studies (GWAS) in different ethnic groups
have identified three major quantitative trait loci (QTLs) with increased
expression of γ‐globin gene: (1) Gγ XmnI polymorphism, (2) HBS1L‐
MYB intergenic region, and (3) BCL11A gene.36,69–71 Polymorphisms in
these three loci were found to be responsible for the variation in HbF
and F‐cell levels, which together account for up to 50% of the genetic
variation affecting HbF levels.36,70 However, among the different
genetic modifications attributed to clinical variability in HbE,
β‐thalassemia or SCD, the high prevalence of α‐thalassemia mutations,
contributing to variable α‐globin gene expression is additionally con-
sidered a major genetic modifier of disease.8,35,36

α‐GLOBIN AS A MAJOR DISEASE MODIFIER
OF β‐HEMOGLOBINOPATHIES

In 1961, Fessas, Stamatoyannopoulos, and Karaklis first reported
α‐globin as a potential modifier gene in the context of β‐thalassemia
and proposed that lowering levels of α‐globin may improve clinical
outcomes.30,72 Subsequently, Kan and Nathan also suggested that
combinations of α‐ and β‐thalassemia genes may be favorable for a
normal hemoglobin phenotype.73 This led the field to further discover
cohorts of β‐thalassemia patients with different combinations of
α/β‐globin gene compositions with decreased disease severity,
thereby demonstrating α‐thalassemia as a significant predictor for a
milder thalassemia phenotype.9,74–77

Similar association studies have been reported for HbE/β0‐
thalassemia, which represents one of the most common β‐thalassemia
subtypes identified throughout parts of Southeast Asia.68 The first de-
scription of HbE/β0‐thalassemia was reported in 1956; however, it was
much later that detailed reports emerged from Thailand describing the
interaction of various forms of α‐thalassemia with HbE/β0‐thalassemia
patients.78,79 Intriguingly, coinheritance of α‐thalassemia appeared to
have a pronounced and beneficial impact on HbE/β0‐thalassemia patient
cohorts. These individuals were either asymptomatic or displayed a very
mild phenotype that did not require medical attention.68 A single α‐globin
gene deletion (‐α/αα) has minimal impact, but two α‐globin gene dele-
tions (‐α/‐α or ‐‐/αα) were found to have a major beneficial impact on the
disease severity by normalizing α:β‐globin chain balance and minimizing

the harmful effects of α‐globin chain precipitation and cell damage to
erythrocytes and their precursors.8,30,58,80 In contrast to the beneficiary
findings of α‐and β‐thalassemia co‐inheritance, the co‐inheritance
of excess of α‐globin genes (α‐globin gene triplication; αα/ααα, and
ααα/ααα) can worsen disease severity by increasing the globin chain
imbalance.8,81–83

Relatedly, α‐thalassemia is also regarded as one major genetic
modifier of SCD. Notably, up to 55% of SCD individuals fromWest Africa
have been reported to co‐inherit α‐thalassemia, which has a protective
role against many disease‐related complications.84 The α‐thalassemia
deletion (‐α3.7) is the most common α‐thalassemia in sub‐Sahara African
populations with varied prevalence reported from different populations
with SCD, including 37% in Cameroon, 43% in Nigeria, and 56% in
Tanzania.85,86 The beneficial effects of α‐thalassemia are from the
reduced intracellular hemoglobin concentration in RBCs, as measured by
a lower mean cell hemoglobin concentration (MCHC), a parameter for
sickle RBC density and better RBC deformability.7,87–93 Notably, co‐
inheritance of α‐thalassemia in SCD improved blood rheology, which was
most apparent in SCD patients carrying one or two ‐α3.7‐thalassemia
mutations (i.e., ‐α/αα; ‐α/‐α), exhibiting reduced intracellular HbS con-
centration, HbS polymerization, and hemolysis.7,87–93 The presence of
α‐thalassemia reduced the adhesion of sickled cells to the endothelium
in vivo,94,95 and consequently, individuals had fewer vaso‐occlusive
complications and reduced pulmonary hypertension, leg ulcers, and
stroke.84,85,96–99 Furthermore, the median age of SCD diagnosis increased
with one or two α‐globin gene deletions and improved the overall survival
rate of SCD patients, which could possibly explain the higher proportion
of α‐thalassemia gene deletions (‐α/αα; ‐α/‐α) among SCD patients than
controls, particularly in Sub‐Saharan Africa.98,100,101 Similarly, a higher
prevalence of α‐thalassemia was found in patients ≥10 years of age than
in the younger group, suggesting a possible advantageous effect of
α‐thalassemia on the survival of patients with SCD in India.102

More recently, in one of the largest single‐center studies conducted
on 614 SCD patients from Brazil, ranging from 8 to 67 years old, de-
scribed the influence of α‐thalassemia ‐α3.7 deletion (αα/‐α and ‐α/‐α) on
clinical outcome.98 In agreement with previous reports, co‐inheritance of
the ‐α3.7 deletion in SCD patients, lowered the degree of hemolysis and
was therefore protective in the development of stroke, priapism, and
cholelithiasis.98 While the impact of co‐inheritance of α‐thalassemia has
been widely studied in SCD, its interaction with individuals with sickle
cell trait (SCT) is now being recognized as a key modifier of recently
accepted clinical complications.103 For example, in a large cohort study
of 2916 African Americans with SCT, α‐thalassemia stratified by ‐α3.7

deletion copy number status, significantly lowered the risk of chronic
kidney disease (CKD) among individuals with SCT, whereas SCT carriers
without α‐thalassemia displayed a 2.6‐fold increased risk of CKD.103–105

Additionally, as an example of evolving genetic complexity, a common
α‐globin regulatory variant located within theMCS‐R2 enhancer element
(rs11865131) was identified to mitigate the protective effect of the ‐α3.7

deletion on stroke among 1139 HbSS patients.103 While the molecular
mechanism by which this SNP increased HBA1/HBA2 expression was
not resolved, it indicates that co‐inheritance of SNPs within key reg-
ulatory elements may have important implications for risk stratification
and clinical management of SCT and SCD patients.103

In contrast to the beneficial effects of α‐globin gene deletions,
excess of α‐globin gene copy number was independently associated
with greater prevalence of CKD and end‐stage kidney disease among
Americans of African descent, thus highlighting the importance of
understanding the role of α‐globin expression in renovascular patho-
physiology, independent of the co‐existing SCT in this population.106

Taken together, these studies highlight the substantial impact α‐globin
gene expression can have on disease. It also emphasizes the im-
portance of understanding the mechanism of α‐globin gene regulation
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and how its expression may be exploited to mitigate many of the
clinically relevant phenotypes in β‐hemoglobin disorders.84,85,96–99

NOVEL THERAPIES TARGETING α‐GLOBIN
EXPRESSION

Modulation of the ubiquitin‐proteasome
system (UPS)

During erythropoiesis, HbA synthesis is intricately coordinated to
minimize the accumulation of free α‐globin. The molecular chaperone,
AHSP, binds to a basic and hydrophobic (BH) domain of free α‐globin
and prevents misfolding and protease digestion prior to HbA assembly,
whereas unpaired or excess α‐globin is selectively eliminated by the
UPS (Figure 3).110–112 The UPS is central to the regulation of all cellular
processes, such as transcriptional regulation, signal transduction, and
stress response, and defects in this system can result in several human
disorders.113 During normal erythroid differentiation, several quality
control factors are upregulated, required for the degradation and

elimination of various intracellular organelles. One such factor is the
ubiquitin‐conjugating enzyme E2O (UBE2O), which displays both E2
ubiquitin‐conjugating enzyme and E3 ubiquitin ligase activities and
determines the flow of ubiquitinated proteins through the 26 S pro-
teasome system (Figure 3B)114 The induction of UBE2O during ery-
thropoiesis remodels the erythroid proteome during the transitional
reticulocyte stage.114 In such a way, UBE2O helps to shape the com-
plex erythroid proteome into an erythrocyte containing predominantly
hemoglobin. Additionally, UBE2O acts as an independent quality
control factor, recognizing misfolded and unassembled proteins, med-
iating a broad ubiquitination program including mono‐ubiquitination
and poly‐ubiquitination of several substrates.112 Notably, UBE2O plays
a pivotal role in targeting excess α‐globin to the proteasome for
degradation.114,115 UBE2O, binds to the exposed BH domain in the
monomeric free α‐globin to mediate its ubiquitination and achieve
globin chain equilibrium during hemoglobin assembly.

In β‐thalassemia, where the level of free α‐globin chain exceeds
the detoxification capacity of the proteasome‐mediated degradation
system, toxic α‐globin aggregates, along with the accumulation of
hemichromes, constitute a major source of intracellular ROS production

F IGURE 3 Model depicting the regulation of free α‐globin by UPS and autophagy pathways. The accumulation of toxic free α‐globin is a major determinant of

β‐thalassemia pathophysiology. (A) During normal erythropoiesis, the molecular chaperone, AHSP, binds to α‐globin and prevents misfolding and protease digestion prior

to HbA assembly. (B) Excess or misfolded α‐globin is recognized by UBE2O and selectively eliminated by the ubiquitin‐proteasome system. (C) Under oxidative stress,

the entire ubiquitin–proteasome system can malfunction by both increasing ubiquitination activity and inhibiting the 26S proteasome system, resulting in the

accumulation of polyubiquitinated proteins.107–109 (D) Reduced autophagic clearance of aggregated α‐globin in erythroblasts induces ineffective erythropoiesis and

apoptosis, whereas the induction of ULK1‐mediated autophagy by rapamycin is associated with reduced hemolysis and enhanced cell survival.110
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and oxidative stress (Figure 3).116–119 Notably, the tightly regulated UPS
is also a target of oxidative stress. Under prolonged oxidative stress, the
entire ubiquitin‐proteasome system can malfunction, by both increasing
ubiquitination activity and inhibiting the 26 S proteasome system,
resulting in the accumulation of polyubiquitinated proteins potentially
affecting virtually all cellular processes (Figure 3C).107–109 Oxidative
stress and oxidative modifications play a significant role in β‐thalassemia
and SCD pathogenesis, contributing to extensive erythroid
ubiquitination.116–119 Intriguingly, the loss of UBE2O expression was
found to lower levels of ubiquitinated α‐globin and mitigate the effects
of excess α‐globin and extramedullary erythropoiesis in a mouse model
of β‐thalassemia.114 These definitive results demonstrate the biological
and clinical relevance of the posttranslational modification (PTM) activity
of UBE2O and suggest the UBE2O‐ubiquitin axis constitutes a potential
therapeutic target. It is, therefore, crucial to precisely delineate how
reduced UBE2O expression and even how components of the ubiquitin
proteolytic pathway may be targeted to influence the clinical phenotype
of β‐thalassemia and SCD. More recently, hydroxyurea (HU) treatment
of SCD patients was found to reverse the oxidative stress‐induced
PTMs in sickle RBCs to levels observed in controls, thus providing novel
insights into the multifaceted therapeutic effects of HU.119

Upregulation of autophagy

In the erythroid lineage, autophagy plays an important role in erythroid
maturation, including the elimination of mitochondria and ribosomes
during the final stages of erythroid differentiation. In addition, autophagy
constitutes a cytoprotective response activated by cells to cope with
cellular stress.120,121 However, if the stress is excessive and the induced
injury irreversible, autophagy can turn into a cell death mechanism and
substitute for apoptosis (Figure 3C).122 Interestingly, enhanced autop-
hagy at the early stage of erythroid differentiation in β‐thalassaemic
mice and β‐thalassemia/HbE patients was associated with decreased
apoptosis.123 Conversely, inhibition of autophagy by chloroquine sig-
nificantly increased erythroblast apoptosis, thus highlighting that au-
tophagy plays a protective role in β‐thalassemia erythroblasts during
stress erythropoiesis.123 Recent studies have shown that rapamycin, a
mammalian target of rapamycin complex 1 (mTORC1) inhibitor, in-
creased clearance of excess α‐globin chains via the induction of Unc‐51‐
like autophagy‐activating kinase 1 (ULK1) (Figure 3D). By stimulating this
pathway, rapamycin improved the terminal maturation of erythroblasts
and anemia in a mouse model of β‐thalassemia.110 However, the loss of
the Ulk1 gene in β‐thalassaemic mice reduced autophagic clearance of
excess α‐globin in erythroblasts and exacerbated disease phenotypes.110

Recent studies have shown that the bicistronic microRNA miR‐144/45,
which is the highest expressed miR locus in terminal erythroid cells, is a
genetic modifier of β‐thalassemia.124 The disruption of the miR‐144/
451, released the mTORC1‐mediated repression of ULK1‐mediated
autophagy of free α‐globin to alleviate ineffective erythropoiesis and
hemolysis in β‐thalassemia mice.124 The identification of ULK1 as a
central regulator of excess α‐globin has drawn attention to the mTORC1
signaling pathway and potential clinical application of mTORC1 inhibitors
to enhance autophagy and decrease ineffective erythropoiesis in
β‐thalassemia patients with substantially residual β‐ or γ‐globin chain
synthesis.110

Additional studies have tested rapamycin in combination with
RAP‐536 in β‐thalassaemic mice.125 RAP‐536, the murine analog of lus-
patercept, selectively binds transforming growth factor‐β (TGF‐β) super-
family ligands to reduce SMAD2/3 signaling and promote erythroid
maturation. Interestingly, combination treatment significantly increased
Hb levels by >40% in β‐thalassaemic mice, while the single agents
achieved modest increases in Hb levels (19.2% with RAP‐536 alone,

13.0% with rapamycin alone).125 Altogether, these encouraging preclinical
results provide a rationale for combining rapamycin and potentially other
mTORC1 inhibitors with luspatercept to treat β‐thalassemia. Moreover,
rapamycin has been reported to increase γ‐globin mRNA expression,126

HbF production in human cell cultures,127 SCD mice and patients.128–130

The ongoing interest in rapamycin as a potential drug candidate for
β‐hemoglobinopathies is related to the fact that it is a Food and Drug
Administration (FDA)‐approved immunosuppressant (also known as
sirolimus) with validated data related to the pharmacokinetic and
pharmacodynamic properties.131 Hence, drug repurposing forms a key
role in identifying new candidate medications for β‐hemoglobinopathies.
Subsequently, sirolimus was granted orphan drug designation by the
European Medicinal Agency (EMA, Europe) and by the FDA (USA) for
both β‐thalassemia and SCD in two ongoing clinical trials (ClinicalTrials.
gov: NCT03877809 and NCT04247750).132,133

Targeting epigenetic regulation of α‐globin gene
expression

The understanding of epigenetic mechanisms and their effect on globin
gene expression has paved the way for the development of new treat-
ments for β‐hemoglobinopathies. Considering that the chromatin en-
vironment of the α‐ and β‐globin locus have very clear differences, it may
be possible to identify drugs with differential effects on α‐ and β‐globin
expression. Interestingly, epigenetic downregulation of α‐globin gene
expression was demonstrated using a derivative of 8‐hydroxyquinoline
(IOX1) in primary human erythroid progenitor cells.134 IOX1, is a broad‐
spectrum 2‐oxoglutarate (2OG)‐dependent oxygenase inhibitor. 2OG‐
oxygenases catalyze a diverse range of reactions involving histone and
nonhistone targets. The largest of these subgroups are the iron‐
dependent histone lysine demethylases (KDMs), that contain the
Jumonji‐C (JmjC) domain, which catalyze lysine demethylation of
histones.135 Histone lysine demethylation is a fundamental process in
epigenetic gene expression, controlling different methylation states and
supporting transcriptional activation or suppression.136 IOX1 was found
to exert its inhibitory effect by chelating Fe (II) ions in the catalytic site of
KDMs.137,138 Previous reports on IOX1 demonstrated that it acts as a
broad‐range inhibitor of histone demethylase enzymes.137,138 Accord-
ingly, IOX1 was demonstrated to increase H3K27me3 and H3K9me3
occupancy at the α‐globin promoter reducing its expression via the
formation or maintenance of key repressive epigenetic marks.134 How-
ever, attempts to evaluate the efficacy of IOX1 in HbE/β0‐thalassemia
erythroid progenitor cells failed to reduce α‐globin gene expression.139

KDM enzymes known to act at the α‐globin promoter include KDM6A
and KDM6B; however, attempts to replicate the effect of IOX1 by
knocking down individual enzymes were not successful, suggesting
α‐globin gene expression, particularly in β‐thalassemia may be regulated
by other KDMs or via alternative pathways.26,134

Further investigations on epigenetic agents tempering α‐globin
gene expression identified the pan‐histone deacetylase inhibitor
(HDACi) Vorinostat (also known as suberoylanilide hydroxamic acid
(SAHA) and approved for the treatment of cutaneous T cell lymphoma),
was able to reduce α‐globin gene expression while inducing γ‐globin
expression.134,140 Moreover, Vorinostat established cellular stability
without affecting erythroid cell viability and differentiation in cord
blood‐derived HSCs.141 Overall, these studies revealed a crucial sy-
nergistic role of Vorinostat and, therefore, has been considered as a
potential therapeutic agent for β‐thalassemia and SCD patients. Notably,
a phase 2 clinical trial assessing the safety and efficacy of Vorinostat in
adult SCD patients resistant to HU was initiated (ClinicalTrials.gov:
NCT01000155). Encouragingly, these findings offer potential new ave-
nues for the modulation of α‐globin expression, which may deliver an
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adaptable approach for fine‐tuning globin gene expression. Considering
the need for lifelong treatment, research examining a range of
therapeutic doses and toxicity profiles for specific agents will become
particularly relevant, as has been demonstrated for HU.142–145

Reducing α‐globin gene expression by genome editing
strategies

The CRISPR‐Cas genome editing tool has also been adapted to manip-
ulate the α‐globin locus and restore α/β‐globin chain imbalance in
β‐thalassemia. In the first instance, CRISPR/Cas9 was used to delete the
MCS‐R2 α‐globin enhancer region to emulate a natural α‐thalassemia
mutation in a β‐thalassemia background.18 The targeted MCS‐R2

deletion ameliorated the α/β‐globin chain ratio without perturbing ery-
throid differentiation or having detectable off‐target events.18 Alter-
natively, genome editing was used to disrupt one of the two α‐globin
genes to recreate an α‐thalassemia trait mutation and correct the pa-
thological phenotype in a cellular model of β‐thalassemia.146 In the same
study, genome editing was also used to replace the α2‐globin gene with
the anti‐sickling βAS3‐globin transgene demonstrating greater potency in
attaining balanced α/β‐globin chain ratios.146 In a similar study, genome
editing was used to replace the α1‐globin gene with the β‐globin
transgene in HSCs. This approach both normalized α/β‐globin chain
imbalance in β‐thalassemia erythroid progenitor cells and restored adult
hemoglobin synthesis in RBCs.147 In both settings, a genome editing
strategy was used to alter the α‐globin expression while increasing
therapeutic β‐globin transgene expression in order to attain equimolar

F IGURE 4 Pharmacological and genetic‐based approaches targeting α‐globin expression. (A) Rapamycin has been demonstrated to clear excess α‐globin
accumulation via the induction of ULK1 and autophagy, whereas epigenetic drugs such as IOX1 and vorinostat down‐regulate α‐globin gene expression via the inhibition

of histone lysine demethylation and histone deacetylation, respectively. (B) Possible applications of CRISPR‐Cas9‐based gene editing strategies include (i) targeting

MCS‐R2, the major regulator of α‐globin gene expression, (ii) targeting individual α‐globin genes, (iii) combined targeting of individual α‐globin genes with β‐globin gene

addition, and (iv) using a modified lentiviral vector expressing the β‐globin gene, while concurrently selectively silencing α2‐globin gene expression by RNAi.
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levels of α‐ and β‐globin chain synthesis and possibly achieve therapeutic
efficacy in β‐hemoglobinopathy patients irrespective of genotype.

RNA interference (RNAi)‐mediated silencing of
α‐globin gene expression

RNAi has also evolved as a plausible approach in the regulation of
α‐globin expression. The reduction of α‐globin expression via a siRNA‐
mediated approach was successfully demonstrated at both mRNA and
protein levels, resulting in a phenotypic correction in murine β‐thalassemia
erythroid cells.80,148 Alternatively, the transduction of HSC with lentiviral
(LV) vectors harboring short hairpin RNA (shRNAs) has emerged as an
effective delivery strategy for the clinical translation of RNAi‐based
therapies.149–152 In this strategy, the artificial miRNA scaffold is used to
express a shRNA in the cell type of interest.151–155 Such a design principle
permits the shRNA to be processed in the same pathway as natural
miRNAs and mediate silencing of target mRNA. These findings signify
important advances in lineage‐specific gene silencing, as this approach can
be used as a flexible tool for the analysis of gene function and the
development of gene‐specific therapeutics.

Recent studies have demonstrated the beneficiary effects
of intronic shRNA expression systems with coordinated β‐globin ex-
pression.151,152 In this context, the generation of a lentiviral gene ther-
apy vector comprised of the therapeutic anti‐sickling βA‐T87Q‐globin
gene was configured with an intronic miR30‐shRNA tailored
to specifically reduce α2‐globin mRNA expression and correct the
α/β‐globin chain imbalance in β‐thalassemia.151 This approach has the
important advantage of not only expressing the therapeutic
β‐globin gene but also reducing excess α‐globin expression. These
findings define a new approach to improve current LVβ gene therapy
vectors and offer new insights into alternative therapeutic approaches
for β‐hemoglobinopathies. It is anticipated that this vector system may
enable improved clinical efficacy in β‐thalassemia patients, particularly
with the most severe β0‐thalassemia genotypes (Figure 4).151

CONCLUSION

Equipped with the increasing understanding regarding the pathophy-
siology of β‐hemoglobinopathies through decades of clinical, genetic,
molecular, and experimental evidence, ongoing efforts in exploring dis-
ease modifiers have gradually shifted to be multi‐dimensional, not solely
limited to a single facet of bioactivity but involve interrelated pathways.
For instance, pharmacological activation of UPS and autophagy path-
ways have further exemplified the role of clearing toxic α‐globin protein
aggregates to alleviate the manifestation of disease.110 Gene therapy/
RNAi/gene editing strategies have been used to alter the expression
of α‐globin while increasing β‐globin expression and reversing the
α/β‐globin chain imbalance in β‐thalassemia.146,147,151 Pharmacological
silencing of α‐globin and induction of γ‐globin gene expression has
demonstrated synergistic activity without affecting erythroid cell viabi-
lity and differentiation in cord blood‐derived HSCs.141 Such studies
provide alternative avenues of investigation in re‐examining available
treatment strategies. The challenge now is to identify tangible phar-
macological and genetic approaches that are suitable for widespread
clinical application, especially for the multitude of patients in developing
countries that have higher incidences of β‐hemoglobinopathies and
persistent social and economic inequalities.
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