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Psychiatric illnesses characterized by disorganized cognition, such as schizophrenia, have
been described in terms of fragmentation and hence understood as reduction in functional
brain connectivity, particularly in prefrontal and parietal areas. However, as graph theory
shows, relatively small numbers of nonlocal connections are sufficient to ensure global
coherence in the modular small-world network structure of the brain. We reconsider
fragmentation in this perspective. Computational studies have shown that for a given
level of connectivity in a model of coupled nonlinear oscillators, modular small-world
networks evolve from an initially random organization. Here we demonstrate that with
decreasing connectivity, the probability of evolving into a modular small-world network
breaks down at a critical point, which scales to the percolation function of random
networks with a universal exponent of α = 1.17. Thus, according to the model, local
modularity systematically breaks down before there is loss of global coherence in network
connectivity. We, therefore, propose that fragmentation may involve, at least in its initial
stages, the inability of a dynamically evolving network to sustain a modular small-world
structure. The result is in a shift in the balance in schizophrenia from local to global
functional connectivity.
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INTRODUCTION
Connectivity is key to understanding activity in neural systems
(Sporns et al., 2000). Network connectivity in science and in
engineering fields as diverse as mechanics, communication tech-
nology, public health, geography and town planning, is studied
mathematically using the concepts of graph theory (Bollobas,
1998). Recently, graph theory is being applied to brain connec-
tivity (Sporns and Zwi, 2004; Bullmore and Sporns, 2009) and
its pathologies in Alzheimer’s disease (Stam, 2004; Stam et al.,
2007), brain tumors (Bartolomei et al., 2006), epilepsy (Ponten
et al., 2007) and, in particular, schizophrenia (Bleuler, 1911/1950;
Friston and Frith, 1995; Andreasen, 1999; Micheloyannis et al.,
2006; Rubinov et al., 2009a).

Applying graph-theoretic concepts to the brain sheds new light
on the basic principles of integration and segregation underlying
adaptive cognitive processes, and on their disruption in mal-
adaptive states. Schizophrenia has been understood as a cognitive
disorder (Bleuler, 1911/1950) based on the breakdown of large-
scale cortico-cerebellar-thalamic-cortical (Andreasen, 1999) or
prefronto-temporal circuits (Friston and Frith, 1995; Goldman-
Rakic and Selemon, 1997), or more generally the inability to
integrate neural processes in different brain areas, a syndrome
termed dysconnectivity (Stephan et al., 2006, 2009). The density
of dendritic spines is reduced in the brains of subjects with

schizophrenia. This condition may pare down, in particular,
the input to pyramidal cells of the dorsolateral prefrontal and
temporal cortex (Garey et al., 1998; Glantz and Lewis, 2000).
These cells are glutamatergic and receive projections from the
thalamus and widespread cortical areas, and hence are likely
to be involved in higher-level cognition. Reduced connectivity
may thus lead to fragmentation, a loss of coherence in cognitive
activity.

The relevant graph-theoretical notion is the loss of network
connectivity. Graph theory enables us to model the loss of con-
nectivity in simulated neuronal networks and predict the time
course of fragmentation. On the face of it, a crucial factor appears
to be percolation. Percolation plays an important role in the
evolution, growth, and maintenance of a large variety of natu-
ral, technological, and social systems (Ben Avraham and Havlin,
2000). It refers to the probability of existence of a path between
every pair of nodes in a graph, or equivalently, the graph being
“connected” (Bollobas, 1998; Kesten, 2006). Whilst many pre-
vious studies have examined cortical network connectivity in
schizophrenia and other disorders, none to our knowledge have
employed the concept of percolation, an issue that we presently
redress.

The percolation function is the cumulative density function
(CDF) of percolation as a function of connectivity. It is possible,
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in principle, to measure the percolation function in living neural
tissue, by using progressive lesioning, for instance through the
administration of inhibitory neurotransmitters (Breskin et al.,
2006)—clearly something not feasible in humans. Observations
on human brain functional connectivity may be compared to
the theoretical percolation function for random networks (Erdös
and Rényi, 1959). The percolation function Cp(n) of a random

graph of n vertices and E edges is given by Cp(n) = e−e−k1(E−k2)

(Erdös and Rényi, 1959), in which k1 = 2/n and k2 = Arand(n) =
½ × n × ln(n) representing the anchor point of the random graph.
Arand(n) is where the sigmoidal curve Cp(n) shows the greatest
inflection. This critical point indicates the percolation threshold:
if the number of connections in the graph is gradually reduced,
a sudden breakdown of percolation occurs, and the network
decomposes into several disconnected fragments.

The presence of a critical threshold motivates us to revisit
the notion of cortical dysconnectivity as a sudden breakdown
of percolation. There are, however, reasons to assume that the
percolation threshold is neither the first, nor the most predom-
inant, critical transition in the development of schizophrenia:
brains are not random networks. In both the structural (Sporns
and Zwi, 2004) and functional (Salvador et al., 2005; Achard
et al., 2006; Bassett et al., 2006) domains, the hallmarks of brain
organization include local clustering as expressed in high values
for the Clustering Coefficient (CC), high global connectedness
as specified by a short Characteristic Path Length (CPL) (Watts
and Strogatz, 1998), and modularity (Murre and Sturdy, 1995)—
a combination characteristic of modular small-world networks
(He et al., 2009). Graph-theoretical studies (Murre and Sturdy,
1995; Watts and Strogatz, 1998) showed that small-world and
modular networks can secure global connectivity with a small
number of connections. For brains configured as modular small-
worlds, a few connections will suffice to ensure percolation. Most
likely, therefore, percolation is not the crucial bottleneck for brain
pathologies such as schizophrenia.

We will propose as an alternative theoretical possibility that,
instead, brain pathologies are associated with a breakdown in the
local organization. In schizophrenia patients, functional connec-
tivity in scalp EEG channels appears to reflect a loss of clustering
after correcting for differences in the density of functional con-
nections (Micheloyannis et al., 2006; Rubinov et al., 2009a). The
question, therefore, arises, whether fragmentation can be under-
stood as a critical breakdown in the ability of the brain to establish
and maintain a modular small-world functional architecture.
Here we show by numerical simulations that in neural activity
networks, with loss of connectivity a self-organizing small-world
neural network cannot sustain its local clustering, well before
global connectivity breaks down.

METHODS
The iterated logistic map f (x) = 1 − ax2 is unimodal on
[−1;1] → [−1;1] and capable of both periodic and chaotic
behavior depending on its control parameter a. In this study, we
construct networks of coupled logistic maps, all with parameter
a = 1.7 such that the dynamics of a single unit are chaotic under
iteration of a randomly chosen initial activation value. A unit xi

is coupled with coupling strength ε = 0.4 to any number Mi of

other units in the network such that its activation value xi
n+1 at

iteration n + 1 depends on the activation value of itself and all
adjacent units at iteration n:

xi
n+1 = (1 − ε) f

(
xi

n

)
+ ε

Mi

∑
j

j ∈ B(i) f
(

x
j
n

)
(1)

In this equation, B(i) is the set of units adjacent to unit i, Mi is
the number of units adjacent to unit i. The coupling strength ε

is divided by Mi, and has a compensation term (1 − ε) to make
sure that logistic map of an individual unit retains its mapping
[−1:1] → [−1:1], and thus functions properly for any numbers
of adjacent units.

A network of this type can be used to study the buildup
and breakdown of modularity resulting from Hebbian adaptive
structural self-organization. It implements a simple rewiring rule
based on synchronization of chaotic activity and rewires at most
one connection per iteration, carefully keeping the network’s total
number of connections constant throughout the process. A sin-
gle iteration of the network consists of four steps, to be repeated
several times after an initial random inception:

1. Initialize the network. Randomly establish e connections
between v units to create a (v, e) random network, and initial-
ize every unit with a random activation value [−1:1]. Though
values of v and e are chosen such that a network has a high
probability of being connected, this is not required.

2. Update units. Synchronously update every unit’s activation
value from its own and all its adjacent units’ activation values
according to Equation (1).

3. Select pivot and candidate. Randomly select one unit from
the network (the pivot). From all other units, select the one
whose activation value is closest to the pivot’s. This unit is the
candidate.

4. Rewire if possible. Establish a connection between the pivot and
the candidate if there is none. Then, from the units already
adjacent to the pivot, select the one whose activation value is
farthest from the pivot’s, and cut its connection to keep the
number of connections constant. If there is already a connec-
tion between the pivot and the candidate, or if the pivot has
zero connections, nothing happens and this step is skipped.

5. Iteration completed. Go back to step 1.

Networks implementing these iterative steps exhibit develop-
ment from an initial random configuration to modular small-
world configurations (Gong and van Leeuwen, 2003; van den Berg
and van Leeuwen, 2004; Rubinov et al., 2009b) But as it turns out,
both the consistent build-up of connective modularity on one
hand, or the loss of structural coherence due to functional frag-
mentation on the other, are a result of changing dynamic activity
depending critically on the number of connections in the net-
work. The influence of these numbers shows a close relationship
to the percolation function of random graphs.

RESULTS
EVOLVING NETWORKS
A common principle for neural network evolution is preferential
attachment (Barabási and Albert, 1999). This mechanism leads to
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networks that are scale-free, but not modular small-worlds. Only
by combining preferential attachment with adaptive, Hebbian
rewiring, does a network emerge that is scale-free and also has
modular small-world network structure (Gong and van Leeuwen,
2003). An adaptive rewiring scenario for evolving networks allows
networks with initially random or regular structures to develop
into modular small-world structures (Gong and van Leeuwen,
2004; Rubinov et al., 2009b). The scenario requires network
units (edges) that produce ongoing, non-random, non-periodic
oscillatory activity. These could, for instance, be represented
by spiking model neurons (Kwok et al., 2007) or by nonlinear
maps as an extremely simplified model of neural mass activity
(Breakspear et al., 2003a,b). With these simple units as edges,
the vertices of the network represents the couplings of a coupled
nonlinear map (Kaneko, 1989). Adaptive rewiring operates on
this activity according to the general Hebbian principle of “what
fires together wires together” (Paulsen and Sejnowski, 2000).
At successive points during the systems ongoing spontaneous
activity, connections are added between pairs of synchronously
active but hitherto unconnected units, while connections between
desynchronized units are removed (see Methods). Over time the
network gradually assumes a modular, small-world structure
(Figure 1).

Meanwhile a mixture of regular and irregular behavior is estab-
lished in the network activity that is itself optimal for sustain-
ing the small-world structure. Crucially, whilst low dimensional,
ordered, and synchronized activity dominates within modular
communities, high dimensional unsynchronized activity in con-
nector hubs ensures that the system does not fragment (Rubinov
et al., 2009b). The resulting systems can thus be thought of

FIGURE 1 | Adaptive rewiring leads from an initial random network

(left), to modular small-world structure (right) in small iterative steps.

Coupled chaotic oscillators intermittently synchronize and desynchronize
their activity spontaneously in patterns of great variability. After some time
a momentarily synchronized pair of units that are not connected receive a
connection, which is removed from a pair that are connected but not
synchronized. As this process continues, a modular, small-world structure
emerges from an initially random configuration. To obtain a more detailed
view of this phase transition, we use the adaptive rewiring scenario with
coupled nonlinear maps (Kaneko, 1989) with initially randomly structured
graphs, for a range of different numbers of vertices v : v = 300,

400, 500, . . . , 1000 vertices and numbers of edges E that differ by small
steps of 20. For each combination of v, E, across four million iterations we
measured the CC and the CPL every one thousand iterations, resulting in a
4000 point record for each of five runs. The maximum, minimum, and mean
values of the last 2000 points in each run were averaged over the five runs
as illustrated in Figure 3.

as “attractors” in the space of possible systems (Gong and van
Leeuwen, 2004), which offers a potential explanation for their
ubiquity in biological neural networks at different scales, includ-
ing the entire brain (Barabási and Albert, 1999).

In this scenario, connectivity constitutes a critical limit for the
evolution to small-world structure (Figure 2). When the number
of edges is large enough, adaptive rewiring guarantees a robust
evolution from random to small-world connectivity. Below this
limit, this evolution is frustrated, and fails to reach a stable asymp-
totic state. With reduced connectivity levels, we first encounter
critical fluctuation: intermittently during some episodes, cluster-
ings are formed intermittently, which are annihilated in other
episodes. This may reflect the intermittent occurrence of cer-
tain symptoms (e.g., delusions) as the brain disease first becomes
manifest. For still lower connectivity levels, adaptive rewiring
becomes completely ineffective; this may reflect the advanced
state of the disease.

PERCOLATION AND SELF-ORGANIZATION IN SMALL-WORLDS
We compared the critical limit on the evolution to small-world
structures to percolation thresholds of random networks with
the same numbers of edges and vertices. Figure 4 shows that the
observed minimum CC can be modeled as a linear function of
Cp(n), with k3 for offset and k4 for amplitude: CCpred = k3 +
k4Cp(n). Parameter k3 was in the range [0.107:0.196], parameter
k4 in [0.392:0.459] and parameter k1 in [0.001:0.006]. The behav-
ior of these parameters across network sizes was not monotonic
(Figure 4). Parameter k2 however, the horizontal position of the
anchor point, showed a universal scaling law to the anchor point
in the percolation function of random graphs, namely (Table 1):
ASWN(n) = Arand(n)1.17.

DISCUSSION
We propose that important insights into cortical activity and
architecture can be obtained by modeling the activity-dependent
rewiring of neural connections during development (Gong and
van Leeuwen, 2003; Rubinov et al., 2009b). In our model, net-
work connections evolve in accordance with the principle that the

FIGURE 2 | Self-organization from random to small-world critically in a

network of 700 vertices. The self-organization occurs through adaptive
rewiring. Whether a small-world emerges depends on the number of
edges.
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FIGURE 3 | Evolution under adaptive rewiring of maximum, minimum,

and average cluster coefficient and characteristic path length. (A) The
values of minimum, maximum and average CC for networks of 700 vertices
and edges ranging from [7000, 7020, 7040, . . . , 10,000] after extensive
adaptive rewiring. Note that beyond 9000 edges, CC-values tighten to a
narrow range, indicating strong and consistent clustering behavior. (B) The
values of minimum, maximum, and average CPL for networks of 700
vertices and edges ranging from [7000, 7020, 7040, . . . , 10,000] after
extensive adaptive rewiring. Beyond 9000 edges, CPL-values also tighten to
a narrow range of low values. Thus, for 700 vertices, at least 9000 edges
are needed for adaptive rewiring to converge to small-world structure.

structure rewires in adaptation to spontaneous, on-going activity.
Network structure thus evolves toward a modular small-world.
This evolution, however, is only guaranteed if there are sufficiently
many connections available. If connectivity is reduced below this
number, the structure shifts toward randomness; in particular,
local clustering is reduced.

Andreasen (1999) and Friston and Frith (1995) considered
schizophrenia as fragmentation, understood as the breakdown
of integration between widely distributed brain areas (Stephan
et al., 2006, 2009). This breakdown can be associated with the
loss of connectivity (Zalesky et al., 2011), in particular of input
to Layer 3 pyramidal cells, an effect which is well-documented
(e.g., Garey et al., 1998; Glantz and Lewis, 2000). Zalesky et al.
(2011) observed widespread impairment in structural connec-
tivity in schizophrenic patients, involving medial frontal, pari-
etal/occipital and left frontal cortex. It should be observed that the
loss of connectivity that may lead to the onset of schizophrenia
can be relatively subtle. Across the population, inputs to layer 3
pyramidal cells are substantially reduced during late adolescence,
the typical period for the onset of schizophrenia (Bourgeois et al.,

1994). Given that brain connectivity is costly, it may well be that in
normals, its density hovers just above the critical level (the anchor
point in Figure 4), but in early schizophrenia it may fall just below
this point.

The graph-theoretical concept of percolation tells us that a
small decline in connectivity can lead to a sudden breakdown
of global network coherence. Based on our results, however, we
argue that fragmentation in brain pathologies such as schizophre-
nia may be considered theoretically as a breakdown in the local
connectivity structure, prior to the loss of global coherence. The
number minimally needed to secure local modularity, and hence
to prevent it from shifting toward randomness in structure, is
systematically related to, and greater than, that needed to secure
global connectivity, even if the system has fallen into entirely
random connectivity. This result is of potential importance for
understanding the pathophysiological processes that give rise to
this disorder.

The loss of local clustering in our model is in accordance
with observations in schizophrenic patients by Micheloyannis
et al. (2006) and Rubinov et al. (2009a). In Micheloyannis et al.
(2006), the clinical group also showed longer path lengths than
the controls, whereas in Rubinov et al. (2009a), the opposite
was observed. We would have predicted path length to remain
comparatively stable. Differences in methods limit the value of
a direct comparison between these data. Nevertheless, we might
attribute the discrepancy to the fact that in both studies com-
parisons were made, for statistical reasons, between networks
that were thresholded to have identical connectivity. Whereas
the above-mentioned effects of clustering remain relatively unaf-
fected by threshold setting, the differences in path length rapidly
disappear for lower thresholds (Figure 1 in Micheloyannis et al.,
2006). Rubinov et al. (2009a) observed larger, but looser clusters
in their networks. Similarly, Breakspear et al. (2003b) reported
that although there were no significant increases in the occur-
rence of nonlinear interdependence between pairs of electrodes in
schizophrenia, there was an increase in the co-occurrence in mul-
tiple (widespread) instances of nonlinear interdependence. This
means that a relatively large number of global connections will
have survived thresholding in Rubinov’s study, leading to their
observation of path length shortening.

It cannot be concluded from Rubinov’s study, therefore, that
global connectivity is stronger in schizophrenics than in nor-
mals; it could, however, be concluded that the global connectivity
becomes stronger in schizophrenia relatively to their local connec-
tivity. Such a conclusion would entirely be in accordance with the
modularity breakdown observed in our model. Along the lines
set out here, a shift in the balance from local to global connec-
tivity is perfectly consistent with an overall loss of connectivity
in early schizophrenia. Lee et al. (2003) introduced the notion
of “overbinding”—the formation of excessive connections that
are effectively random—and, as such, do not enable distinguish-
ing external from internal sources, thus providing conditions
favorable for phenomena such as hallucination.

A possible objection to our findings is the specific choice of our
rewiring algorithm. Note, however, that in the present paper we
sought to establish the principled possibility using the simplest
possible model, rather than to establish the empirical validity

Frontiers in Systems Neuroscience www.frontiersin.org March 2012 | Volume 6 | Article 20 | 4

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


van den Berg et al. Fragmentation as modularity breakdown

FIGURE 4 | Universal scaling in the clustering threshold for

self-organized small-world networks. Gray lines represent minimal,
maximal and average observed values for clustering coefficient, the dotted
line is the predicted clustering coefficient, CCpred, a linear function of the

percolation function Cp(n) of a random graph of n vertices:
CCpred = k3 + k4 × Cp(n) fitted with parameters k3 and k4 to the minimum
observed clustering; the arrow indicates its anchor point ASWN(n) with the
corresponding number of edges in parentheses.

through the most realistic model possible. Note that, as a conse-
quence, the model contains only generic dynamical and adaptive
principles. We have discussed elsewhere the robustness of this
model (Gong and van Leeuwen, 2003, 2004; van den Berg and
van Leeuwen, 2004; Kwok et al., 2007; Rubinov et al., 2009b).

An important limitation is that the model inevitably makes
over-simplifying assumptions. In particular, it ignores the spa-
tial embedding of the system. Inter-modular connections are
physically of longer range than intra-modular ones and, there-
fore, have a higher metabolic cost and a greater vulnerability.
They also originate from different cortical layers and involve
different cell types. Preliminary analysis of models with more
realistic constraints does not appear, however, to affect our con-
clusions. Clearly, a more differentiated model is needed to address
empirical datasets such as (Rubinov et al., 2009a), an impor-
tant goal of future work. However, it should also be noted
that uncovering universal principles—such as those reported

here—has the advantage of being “detail invariant”—that is,
robust across a range of potential constraints, whereas findings
arising in detailed models may not be robust to changes in those
details.

We observed universal scaling behavior in adaptive self-
organization of clustered small-world networks: the connectivity
needed for these network properties to emerge under Hebbian
rewiring scales with a universal power α = 1.17 to the percolation
function in random networks. Note, first, that α > 1 might have
been expected, given that the requirement to observe clustering
and small-world structure are constraints additional to percola-
tion. What is surprising is that these requirements are met with
alpha very close to unity; near-linear scaling implies that these
additional constraints can be realized with great efficiency.

In terms of Kolmogorov-complexity, small-worlds are com-
pressible, whereas almost every possible network of n nodes and
E edges (or equivalently a bit string of length L = ½n(n − 1) with
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Table 1 | Anchor points for random graphs and small-world networks.

#vertices Arand(n) ASWIN(n) Chi-Square Scaling power

p-value

300 856 2737 0.0245904 1.1722

400 1198 4042 0.0376061 1.1715

500 1554 5405 0.060586 1.1697

600 1919 6957 0.0816264 1.1704

700 2293 8562 0.0978013 1.1703

800 2674 10,246 0.113233 1.1702

900 3061 11,996 0.0800191 1.1702

1000 3454 13,824 0.173335 1.1702

Note: Anchor point Arand (n) = ½ × n × ln(n) for classic random graphs of n

vertices; this anchor point indicates the percolation threshold, where the per-

colation function Cp(n) shows the greatest inflection. ASWN(n): anchor point

for the small-world networks fitted according to Figure 4. p-values result from

the fitting procedure using the Levenberg–Marquardt algorithm implemented in

Fityk. Scaling power: the value of h in the equation ASWN (n) = Arand (n)h.

E ones and L-E zeros) will be incompressible (Li and Vitányi,
1993). In this perspective, the ubiquity of small-world struc-
ture in real-world networks is quite astonishing: within human
brains (Sporns and Zwi, 2004; Stam, 2004; Eguíluz et al., 2005;
Salvador et al., 2005; Achard et al., 2006; Bartolomei et al., 2006;
Micheloyannis et al., 2006; Ponten et al., 2007; Stam et al., 2007;
Rubinov et al., 2009a; Bassett et al., 2010), as well as between
them: networks of scientific co-authorship (Newman, 2001), col-
laborating movie actors (Watts and Strogatz, 1998; Amaral et al.,
2000), social networks in general (Wasserman and Faust, 1994).
Here we showed how such a network could arise with minimal
connectivity close to random network percolation

What is the reason for the universality of the scaling expo-
nent? We may wonder whether the same exponent found in
other domains, could help us understand the principle. A study
of class graphs in open-source, object-oriented software systems
ranging from simple paint programs, peer-to-peer downloaders,
racing games, database management software to a complete oper-
ating system, showed that the number of links between classes
scales to the number of classes with an exact power α = 1.17.
The authors found that class graphs are small-world networks
at the critical threshold for the breakdown of modularity, which
happens when developments to the system are widely dispersed
and affect many unrelated classes in apparently distant modules
(Valverde and Solé, 2007). The similarity of this finding to ours
supports the view that the scaling exponent reflects a general
feature in the emergence and breakdown of modular network
structure.

The study of self-organizing modular small-world networks
casts a new perspective on psychiatric illnesses characterized
by disorganized cognition, such as schizophrenia, of which the
expression has been attributed to fragmentation—a “subtle but
pernicious disconnection” (Friston, 1996, p. 644). Rather than a
breakdown in global connectivity, we propose that fragmentation
is to be understood as a failure to organize the functional connec-
tivity of the brain into a modular small-world structure. This is
in accordance with the observed “random shift” in schizophrenic

(Micheloyannis et al., 2006; Rubinov et al., 2009a) and Alzheimer
patients (de Haan et al., 2009).

There are reasons why such a shift toward randomness is
undesirable. Random networks are considered extremely uneco-
nomical; in terms of cable length, an optimal configuration
combines local modules with a limited number of large-scale con-
nections (Murre and Sturdy, 1995). Even though our model does
not consider distance, in terms of network topology it is still the
case that information travels efficiently both within locally con-
nected circuits of modular small-world graphs and between their
circuits, which makes these networks efficient for transport or
communication (Latora and Marchiori, 2001; Bassett et al., 2010).

The scaling observations tell us that fragmentation is a result
of a breakdown in local, rather than global structure. With pro-
gressive loss of connectivity, the breakdown of modularity occurs
before the breakdown of percolation. Ultimately, it may not mat-
ter which connections are lost first, the result may be a cascade
of changes that lead to the network falling apart. For diagnosis,
however, a proper understanding of the early stages of the disease
is crucial; loss of modularity might offer a new perspective on the
origins of the disease.

DATA
One simulation consists of one network of v units and e con-
nections, which is randomly initialized and then iterated exactly
4,000,000 times, simultaneously rearranging its connections and
activity patterns, according to the adaptive rewiring scenario. The
smallest simulation we adopt has v = 300 units and e = 2400
connections. During iteration, its CPL and its CC are taken
every 1000th iteration (1000, 2000, . . . , 40,00,000) resulting in a
4000 point record, with a value for CC and a value for CPL at
each point. Although the speed of convergence depends on the
size of a network, 4, 000, 000 iterations prove to be enough to
clearly discern asymptotic behavior for all simulations used in this
investigation (Figure 3).

From the 4000 point record, the maximum, minimum, and
average values for both CPL and CC are calculated from the last
2000 points. For statistical robustness, we do any single simula-
tion five times, and average the five values over this simulation-
quintuple, resulting in a maximum, minimum, and average CC
and CPL for the (v = 300, e = 2400) network.

We then start a new quintuple of simulations, increasing the
number of connections e by 20, generating five networks with
v = 300 units and e = 2420 connections, and calculate the max-
imum, minimum, and average CC and CPL values from these
five new simulations. We keep starting new quintuples, repeatedly
increasing e by 20, until e = 3300 and the batch of 300-quintuples
is complete. From the entire batch, The six CC and CPL values
of every (v, e) are taken to graph the asymptotic clustering and
path-length behavior of networks of 300 units as it depends on
the numbers of connections (Figure 4).

This process is then repeated for a batch of quintuples of net-
works with 400 units and numbers of connections 3600, 3620, . . . ,
5000 (see Figure 4, top-right box). We continue doing this for
batches of networks with 500, 600, 700, 800, 900, and 1000
units, with connections increasing by 20, showing asymptotic
clustering and path-length behavior depending on connectivity

Frontiers in Systems Neuroscience www.frontiersin.org March 2012 | Volume 6 | Article 20 | 6

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


van den Berg et al. Fragmentation as modularity breakdown

for networks of different sizes (Figure 4). Note that although for
300 units, connections ranged from e = 2400 to e = 3300, these
numbers are different for larger networks.

For each of the eight batches, a phase transition was witnessed
for both the CC and the CPL. To pin down the exact location
of the steepest inclination in the phase transition of the CC (its
center, or “anchor point”), the percolation function for classic
random graphs was function-matched to the Minimum CC of
every batch. The minimum cluster coefficient was chosen over
the average and the maximum cluster coefficient because it has
the steepest inclination, which facilitates the fitting best.

The entire process of fitting was done in Fityk under Linux
using Levenberg–Macquardt an iterative curve-fitting algorithm
which operates by minimizing the summed squares of the resid-
uals, in this case the difference between minimal CC-values of
n-edge simulation quintuples on the one hand, and the (Erdös
and Rényi, 1959) percolation function’s value for n edges on the
other. Both graphs are depicted in overlay in Figure 4.

The Levenberg–Macquardt algorithm is sensitive to local min-
ima which makes it inefficient when using completely random
initial values. Initial parameters were hand-guessed separately for
each of the eight subgraphs in Figure 4, after which the algo-
rithm was ran until convergence beyond the program’s six-digit
resolution, a procedure that was repeated three times with small
differences in the hand-guessed initial parameters. The final val-
ues did not differ within the program’s six-digit resolution over
the three repetitions, and convergence was very fast (typically well
before 100 iterations).

The fits show significant deviations from the data curve, due to
intrinsic fluctuations in the data. Nevertheless the fits adequately
track the data curve. We, therefore, considered reliable the esti-
mates of the scaling power and other model parameters. Even
more reliable estimates could, in principle, be obtained by scaling
up the network size to 2000, 5000, and 10,000 vertices, resources
permitting, as computation time and data grow nonlinearly with
network size.
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