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Abstract
Background UVB absorption by 7-dehydrocholesterol (7DHC) in the skin triggers the production of vitamin D and its 
metabolites, which maintain calcium homeostasis. Detection and measurement of 7DHC in skin using modern liquid chro-
matography–tandem mass spectrometry (LC–MS/MS) techniques have been lacking, yet there is need for such a technique 
to provide more information on 7DHC concentration and its UVB responses in human skin.
Objectives To develop and validate a reliable method to measure 7DHC concentration in skin.
Methods Human skin punch biopsies of 5 mm diameter obtained through the Manchester Skin Health Biobank were utilised. 
7DHC was extracted with ethyl acetate:methanol 1:1 (v/v) and derivatised using 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), 
to allow for improved ionisation of 7DHC through Electrospray Ionisation Mass Spectrometry (ESI–MS). Solid supported 
liquid extraction (SLE) was also employed to allow the removal of larger lipids from 7DHC and minimise potential matrix 
effects.
Results The LC–MS/MS assay satisfied International Council for Harmonisation research standards for method validation. 
Calibration curve was linear with a typical r2 of 0.997, coefficient of variation was 11.1% and 4.32% for inter-assay and intra-
assay imprecision, respectively. Lower limit of quantification was 1.6 µg/g and upper limit of quantification was 100 µg/g, 
SLE recovery of 7DHC was on average 91.4%.
Conclusions We have developed a robust, precise and accurate assay for the detection and quantification of 7DHC in small 
samples of human skin (0.2  cm2 surface area). This novel method of extraction and quantification will be valuable to future 
vitamin D photobiology research.
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1 Introduction

Vitamin D nutrition is important in view of the essential 
nature of this hormone in musculoskeletal health; it also 
has roles in immune function and properties that may pro-
tect against types of cancer and infection [1, 2]. Vitamin 
D (cholecalciferol and ergocalciferol) is present in low 
amounts in the diets of many populations, and there is 
good evidence that a high proportion of the body’s vitamin 
D (cholecalciferol) is sourced from the triggering of its 
synthesis following UVB exposure of precursor 7-dehy-
drocholesterol (7DHC) in the skin [2–5]. Furthermore, 
7DHC is also a substrate for CYP11A1 enzyme in skin 
and other tissues [6] and can metabolise 7DHC to 7-dehy-
dropregnenolone (7DHP) which has biological activity and 
can inhibit keratinocyte proliferation [7].

Skin’s 7DHC is reported to be more abundant in the 
upper, epidermal layer than the lower, dermal layer [8]. As 
it is the precursor required for vitamin D synthesis by the 
skin, there is considerable interest in an assay measuring 
concentration of 7DHC in skin accurately, particularly in 
human in vivo studies. There are 7DHC assay methods 
described in the literature [9–14], capable of detecting 
7DHC in various tissues, such as blood, plasma, amni-
otic fluid, cultured skin fibroblasts and neuroblastoma 
cell lines. However, these types of matrices are easier to 
extract from and avoid matrix effects, compared to skin 
which is more difficult to work with due to the prevalence 
of lipids and collagen fibres. Despite advances in quantita-
tive analytical techniques for 7DHC concentration meas-
urements, there are, to our knowledge, no recent devel-
opments in assays making them capable of robust 7DHC 
measurement in small samples of human skin, suitable for 
in vivo studies, and in particular employing tandem mass 
spectrometry, which is considered the ‘gold standard’ for 
the quantitative measurement of vitamin D metabolites in 
serum due to its sensitivity, specificity and reliability [15].

Previous skin 7DHC assays relied on chromatographic 
separation, while using a UV detector [8, 16–18], which 
is known to provide challenges, since it is able to indi-
cate different retention times of molecules, but not able 
to distinguish between different molecular weights, hence 
potentially producing less reliable results. These previous 
assays were not, by modern standards, fully validated. No 
other studies of 7DHC concentration in skin used a MS/
MS detection system [19].

7DHC and other vitamin D derivatives are known to 
be poorly ionisable compounds [20]. Since ionisation is 
a key factor for ESI–MS detection, it is beneficial to use 
derivatising agents to enhance the detection of 7DHC [12, 
21, 22]. Commercially available 4-phenyl-1,2,4-triazoline-
3,5-dione (PTAD) in a Diels–Alder cycloaddition reaction 

has been used as a basis for many vitamin D metabolite 
assays in the past, and yielded excellent results [23, 24]. 
Based on this knowledge and technology, we aimed to 
develop and validate a reliable method to measure 7DHC 
concentration in skin.

2  Materials and methods

2.1  Skin sample collection

Skin samples used for the development of the method were 
obtained through Manchester Skin Health Biobank (MSH-
Biobank) from healthy adults undergoing liposculpture 
procedures. The skin samples were collected using a 5 mm 
diameter hollow, circular scalpel (punch biopsy instrument) 
from the piece of skin provided. The study was approved 
by the North West Research Ethics Committee (reference 
14/NW/0185). All patients gave written, informed consent. 
Porcine skin samples obtained fresh from a local butcher 
shop were also used in early stages of the development of 
the assay.

2.2  Materials, calibration standards and controls

7DHC (≥ 95% chemical purity) and 4-phenyl-1,2,4-triazo-
line-3,5-dione (PTAD; 97% chemical purity) were purchased 
from Sigma-Aldrich Chemicals Company Ltd, Dorset, 
UK. Stable isotope labelled 3β-7-DehydroCholesterol-d7 
(3β-7DHC-d7; 98% chemical purity) was purchased from 
Toronto Research Chemicals, Toronto, Canada. 7DHC, 
3β-7DHC-d7 and PTAD were stored at − 20 °C in sealed 
amber glass ampoules prior to use, to avoid loss of UVR 
spectral integrity (due to photoconversion). Deionised water 
 (H2O), LCMS grade methanol (MeOH) (≥ 99.9%) and ace-
tonitrile (ACN) (≥ 99.9%), analytical reagent grade ethyl 
acetate (EA) (≥ 99%) and propan-2-ol and HPLC grade hex-
ane and formic acid were purchased from Fisher Scientific, 
Loughborough, UK.

Stock solutions, containing 20 µg/mL 7DHC in ACN and 
5 µg/mL 7DHC Internal Standard (IS) in MeOH or ACN, 
were prepared and stored at + 4 °C. 7DHC stock solution 
was then further diluted with ACN to obtain working con-
centrations as outlined in the sample preparation procedure. 
New stock solutions were prepared every 2–3 weeks, as 
there was a loss of signal in solutions older than 2 months.

2.3  Sample preparation procedure for LC–MS/MS

Subcutaneous fat was removed from 5 mm human skin 
punch biopsies (0.2   cm2 surface area) using a surgical 
scalpel. Aqueous and skin samples were then processed in 
the same manner. 50 µL of 5 µg/mL 7DHC IS was added 
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alongside 5 mL of EA:MeOH 1:1 (v/v) to each sample. 
Samples were rotor mixed for 2 min at 40 revolutions per 
minute (rpm), placed in a sonicator for 30 min then cen-
trifuged at 4000 rpm for 10 min. Supernatant (1 mL) was 
transferred to borosilicate tubes and dried at 60 °C under 
a constant stream of nitrogen. 100 µL of propan-2-ol was 
added and the test tube was vortexed for 30 s. Next, 200 µL 
of water was added and vortexed again for 30 s. The samples 
were then transferred to a Solid supported liquid extraction 
(SLE) plate, and after 5 min, 750 µL of hexane was added 
to each well. After a further 5 min, an additional 750 µL 
of hexane was added and left for 5 min, after which time a 
vacuum was applied to draw through any residual hexane 
fraction. The liquid extracted through SLE was then dried 
under a constant stream of nitrogen at 60 °C. 1 mL of PTAD 
in ACN (100 mg per 500 mL) was then added, rotor mixed 
and allowed to stand for 30 min at room temperature, for 
the derivatisation reaction to take place. After 30 min, the 
reaction was stopped with addition of 750 µL of water and 
each sample in the plate was mixed using a separate pipette. 
The plate was finally manually shaken for 2 min and placed 
in the auto-sampler for LC–MS/MS analysis.

2.4  Liquid chromatography

Extracted sample introduction and chromatography were 
achieved with a CTC Analytics HTC PAL autosampler (CTC 
Analytics, Zwingen, Switzerland), fitted with a chill stack 
maintained at 10 °C ± 2 °C. An Agilent 1100 series high-
performance liquid chromatography (HPLC) system (Agi-
lent Technologies, Cheadle, UK), consisting of binary pump, 
solvent degasser and column oven (maintained at 40 °C). 
50 µL was used as the injection volume to the system, fitted 
with a 30 µL loop using total loop overfill mode. Chroma-
tographic separation was achieved using a 2.7 µm Modus 
pentafluorophenyl (PFP) 100 mm × 2.1 mm reversed-phase 
column (Chromatography Direct, Runcorn, UK). Chroma-
tographic separation of the PTAD derivatised 7DHC was 
performed using a gradient elution profile of 65% Solvent 
B, 35% Solvent A at 0 and 2 min; 95% Solvent B and 5% 
Solvent A at 3 and 5 min; 65% Solvent B and 35% Solvent 
A at 7 min. Flow rate was 0.4 mL/min throughout. Mobile 
phase A consisted of 0.1% Formic Acid in LCMS Grade 
Water and mobile phase B was 0.1% Formic Acid in LCMS 
Grade ACN. Total run time was 14 min.

2.5  Tandem mass spectrophotometry analysis

Analyses were performed on a MicroMass Ultima Pt mass 
spectrometer (Waters Corp., Milford, MA, USA). MS/MS 
detection was performed using ESI in the positive ion mode, 
data was acquired using Waters MassLynx 4.1 software 
package (Waters Corp., Milford, MA, USA). System control, 

data acquisition, baseline integration and peak quantifica-
tion was achieved using Waters QuanLynx software. The 
optimisation of MS/MS parameters was performed by direct 
infusion of derivatised standard (see Fig. 1A).

2.6  Method validation

Certified pure standards of 7DHC and 3β-7DHC-d7 (Toronto 
Research Chemicals, Canada) were used and spiked gravi-
metrically into either aqueous solutions or sample skin biop-
sies representing the same biological matrix as the samples. 
The comparison of slopes was made on six spiked aqueous 
solutions and six skin biopsy samples spiked with the same 
concentrations of 7DHC and 7DHC IS (Fig. 2).

2.7  Linearity

7DHC standards with concentrations of 1.6, 3.13, 6.25, 12.5, 
25, 50 µg/mL were used to generate calibration curves. A 
standard curve was generated by plotting the ratio of ana-
lyte peak area to internal standard peak area on the y-axis 
against the weighted (1/x) concentration of their respective 
standards on the x-axis. R-squared was used as goodness-
of-fit measure for linear regression model; correlation coef-
ficient (r2) values of > 0.95 were accepted. Linearity was 
also assessed using multiples of porcine skin biopsies, to 
assess if the peak area of 7DHC response is increasing with 
increasing number of the biopsies (Fig. 3).

The data in Fig. 3 shows that the peak area of 7DHC is 
increasing with increasing number of biopsies, while the 
internal standard is compensating for any loss during the 
extraction procedure. This suggests that the extraction pro-
cedure was efficient and there is a linear correlation between 
the amount of tissue used and the peak area of the curves.

2.8  Accuracy, precision and recovery

As the accuracy of an analytical method could be influenced 
by sample matrix and lead to ion suppression, where pos-
sible, the analytical method was assessed using human skin 
biopsies, where it was not possible porcine skin or aqueous 
solutions were used. The spike experiment was carried out 
on 6 spiked human skin biopsies and 6 spiked solutions not 
containing biopsies across the analytical range established in 
earlier experiments to test the effects of the biological matrix 
on the efficiency of the extraction (Fig. 2).

Imprecision of the assay was assessed by six consecu-
tive measurements of calibration curves for in-batch (intra-
assay) and between-batch (inter-assay) variability. Precision 
is expressed as coefficient of variation (CV), our acceptance 
criteria defined the intra-assay CV limit of < 10% at one 
concentration and cumulative inter-assay CV limit < 15% 
across the assay. Both standard deviation and coefficient of 
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Cone 35V
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variation (CV) were calculated and used to determine the 
imprecision of the method.

2.9  Lower limit of quantification and detection

A precision profile was also carried out. Lower limit of 
quantification (LLoQ) and detection (LLoD) of the assay 
were determined. Standards containing 7DHC at concen-
tration of 0.024, 0.048, 0.1, 0.2, 0.39, 0.78, 1.6, 3.13, 6.25, 
12.5, 25 and 50 µg/mL were analysed three times. The CV of 
each sample was plotted against their respective concentra-
tion. Signal-to-noise (s/n) ratio has to be 10:1 for the analyte 
peak to establish LLoD and the LLoQ was defined as the 
concentration at which the CV ≤ 22%.

3  Results

Chromatographic peak of 7DHC was eluted at 2.8 min 
(Fig. 1D). Total injection-to-injection run time was 14 min. 
The slopes in the matrix effects experiment of the aqueous 
solutions and spiked biopsies suggest no ion suppression 
(Fig. 2). Based on chromatograms and MS data the method 
developed did not result in the presence of significant quan-
tifiable oxidised forms of 7-DHC.

3.1  Method validation, recovery efficiency 
and removal of phospholipids

The assay validation is summarised in Table 1. The assay 
achieved adequate linearity between 0 and 100 µg/mL. 
The assay demonstrated sensitivity, precision and satisfac-
tory recovery. Injections of aqueous blanks after running 
standard 12.5 µg/mL 7DHC spiked samples confirmed the 
absence of carry-over of the analyte.

An experiment was carried out on a single human skin 
biopsy (Table 2). The same biopsy was re-extracted four 
times (E1–E4) with diminishing extraction of material each 
time. The result of the experiment gave 96% 7DHC recovery 
on the first tissue extraction procedure, then more extractions 
of the same biopsy followed. 96% extraction efficiency was 
calculated by taking 7DHC area of the 1st extraction and 

dividing it by sum of all four 7DHC extractions, then mul-
tiplied by 100% [6018/(6018 + 220 + 19 + 3) * 100% = 96%
]. The first tissue extraction procedure 7DHC IS recovery 
was 97%. This was calculated in the same way as described 
above [58171/(58,171 + 1763 + 86 + 12) * 100% = 97%].

4  Discussion

We describe the validation of an LC–MS/MS assay for the 
measurement of 7DHC in small samples of human skin. The 
inclusion of SLE allowed effective removal of potentially 
interfering phospholipids and ceramides found in skin. The 
method demonstrated a mean 91.4% recovery of 7DHC 
using SLE.

Derivatisation with PTAD was an essential step to allow 
better ionisation of 7DHC, by adding oxygen and nitrogen 
molecules which are easily ionised. Shifting the m/z ratio 
from 384.6 to 559.6 through derivatization, enabled better 
separation from lower molecular weight species while also 
making the analyte more hydrophobic, hence diluting later 
than the native molecules. The working range of the assay 
(1.6–100 µg/mL) has been established based on sample skin 
biopsies, with ULoQ of 100 µg/g and LLoQ of 1.6 µg/g suf-
ficient to detect subjects with a low concentration of 7DHC 
in their skin.

Early, labour and material intensive (L: 10 cm × W: 2 cm) 
attempts using sterol chromatography and UV spectroscopy 
aimed to quantify the composition of human epidermal 
lipids. 7DHC was identified using its UV absorption spec-
trum with characteristic peaks at 260, 270, 281, and 293 nm 
[16] and assessed to be on average 4% of the total sterols 
found in epidermis. This value was later argued to be con-
siderably lower [19]. The assay used was not fully validated. 
Ten years later a research group from Texas Research Insti-
tute separated vitamin D and its metabolites in human skin, 
including 7DHC, using gas chromatography; however, little 
quantification was involved [17].

In the 1980s Holick and his colleagues developed a new 
method for the quantification of 7DHC and pre-vitamin  D3 
in skin. It employed high-performance liquid chromatog-
raphy (HPLC) with UV detection at 254 nm [8]. As sta-
ble isotopically labelled internal standards of 7DHC were 
not commercially available, 7DHC isotopically labelled 
with tritium (3H) was produced “in-house” with previously 
described methods [25, 26], while large 6.25  cm2 surface 
area samples of skin tissue were used for the analysis. This 
method was later used as the basis for an experiment in the 
1980s, which examined 7DHC concentration differences 
between skin of young and older adults [18].

A group from Dundee Hospital Medical School, Scot-
land, developed an improved method for the measurement of 
7DHC in skin [19], with the aim to increase the sensitivity of 

Fig. 1  A Mass spectrometer parameter settings and MRM pre-
cursor to product ion transitions for 7DHC/PTAD and 7DHC IS/
PTAD. B Diels–Alder reaction of 7DHC with PTAD and forma-
tion of one of the adducts. C Collision-induced dissociation spectra 
of PTAD-derivatized 7DHC. The precursor to product ion transition 
m/z 560.6 > 356.5 was utilised for MRM. D Chromatogram from the 
standard containing 12.5 µg/mL of 7DHC and 5 µg/mL IS 7DHC. E 
Typical standard curve constructed by plotting the relative response 
of each standard on the y-axis against their respective concentrations 
(µg/mL) on the x-axis. Regression analysis presented a typical corre-
lation coefficient r2 > 0.99

◂
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7DHC measurements. These authors suggested that a single-
stage isocratic HPLC procedure does not provide sufficient 
sensitivity; therefore, they supplemented their HPLC–UV 
system with an amperometric detector, which allowed them 
to use smaller skin samples, with better separation of ana-
lyte and its internal standard. The samples they used were 
significantly smaller (5 mm × 5 mm/0.25  cm2) than in ear-
lier experiments. They were also able to purchase industrial 
grade 7DHC, cholesterol and ergosterol (used as internal 
standard) needed for analyses. The method was validated for 
7DHC recovery after the addition of 7DHC to skin homoge-
nates and demonstrated absolute recoveries ranging from 
30 to 75%; intra-batch and inter-batch imprecision was also 
evaluated and was 2.1% (20 µg/mL) and 4.6–12.9% (4, 8, 12, 
16 and 20 µg/mL), respectively.

While the Dundee Hospital Medical School group assay 
[19], appeared the most reliable technique for the assess-
ment of 7DHC concentration in human skin, advances in 
analytical techniques can aid the development of a more 
reliable method. With the increasing use of MS rather than 
UV detection and the availability of commercially available 
standards for 7DHC and stable isotopically labelled 7DHC 
internal standards, refinement of the 7DHC quantification 
technique can be achieved. A more complete validation of 
the 7DHC assay, compared to previous methods, assures that 
the new technique is reproducible and obtains good 7DHC 
recovery from skin.

The previous experiments aiming to quantify 7DHC (and 
pre-vitamin  D3) in skin using a UV detector emphasised the 
limitations of these methods [8, 16, 17, 19]. While a UV 
detector is able to indicate different retention times, it is not 
able to distinguish between different molecular weights. This 
raises concern that other compounds with similar retention 
time to 7DHC are being detected in the 7DHC peaks pro-
duced using a UV detector. Hence, interpreting UV chroma-
tograms can be extremely challenging. Due to the use of MS/
MS we can be confident that compounds with similar reten-
tion time are not interfering with the measurement of 7DHC.

LC–MS/MS system also allows for higher sensitivity and 
use of smaller skin samples (0.2  cm2 surface area). This is 
particularly important when collecting samples from human 
volunteers, rather than skin as a waste product from various 
surgical procedures. The use of punch biopsies from healthy 
volunteers allows for better understanding of processes tak-
ing place in healthy, ‘alive’ skin and it is a generally used 
and minimally invasive procedure in dermatology research 
[27–29]. Compared to previous studies, we developed a sig-
nificantly more sensitive assay requiring much less tissue.
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Fig. 2  Matrix effect experiment. MS signal vs concentration of 
7DHC obtained by spiking aqueous solutions and human skin biopsy 
samples with the known concentration of 7DHC standard

Fig. 3  Response vs. the number of porcine skin biopsies used. Dotted 
line represents the line of best fit

Table 1  HPLC–MS/MS assay characteristics

a The upper limit of quantification (ULoQ) was established based 
on our method using 1  mL of PTAD. The competition for PTAD 
between 7DHC IS and increasing concentrations of 7DHC led to 
7DHC IS area decreasing with higher 7DHC concentrations. The cut 
off of 100 µg/g was established by calculating 7DHC IS percentage 
difference from the first three samples with lower 7DHC concentra-
tion and their 7DHC IS area. The percentage difference of > 20% was 
used as a cut off

7DHC

Linearity, µg/mL 0–100
Typical r2 0.997
Intra-assay imprecision; mean %CV (at 12.5 µg/mL) 4.32%
Inter-assay imprecision; mean %CV (range: 1.6–

50 µg/mL)
11.1%

LLoQ, µg/g 1.6
ULoQ, µg/g 100a

Mean SLE recovery of 7DHC concentration 91.4% (n = 6)
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We also applied standard validation procedures to our 
assay, which were mostly omitted in previous studies; and 
carried out matrix effects experiment with human skin 
biopsies (Fig. 2), not performed in previous assay evalu-
ations. This allowed us to see that overall, 7DHC spiked 
human samples and aqueous samples behave in a similar 
manner, and we were not experiencing any major matrix 
effects.

In conclusion, the use of LC–UV spectrophotometry 
brings about some issues which can be addressed with the 
use of LC–MS/MS. The biggest shortcoming of using a 
UV detector is its inability to distinguish between different 
molecular weights, in the way that MS does. We believe 
our validated method is a significant improvement in the 
measurement of 7DHC in human skin.

This new method brings many opportunities for appli-
cation in photobiology research. This includes skin 7DHC 
response to UVB exposure in different age groups, in nor-
mally unexposed vs regularly sun-exposed body sites, and 
the influence of skin disease, such as psoriasis or vitiligo. 
For example, future research could revisit age-related abil-
ity to synthesise vitamin D from 7DHC upon UVB expo-
sure, with protocols involving well-matched volunteers of 
different age groups and assessment of matched skin sites, 
or explore responses of skin 7DHC to physiological doses 
of solar simulated radiation. This would provide better 
understanding of the reasons for differences in vitamin D 
status and have public health significance in view of the 
importance of vitamin D nutrition [1, 2], including in the 
context of the growing 65+-year-old population in many 
countries [30, 31].
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