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Abstract. Analyzing single-cell sequencing data across batches is chal-
lenging. We find that the Van Elteren test, a stratified version of
Wilcoxon rank-sum test, elegantly mitigates the problem. We also mod-
ified the common language effect size to supplement this test, further
improving its utility. On both simulated and real patient data we show
the ability of Van Elteren test to control for false positives and false neg-
atives. The effect size also estimates the differences between cell types
more accurately.
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1 Introduction

Large-scale studies such as the Human Cell Atlas [15] involve hundreds of labora-
tories, thousands of patients, and millions of cells, bringing about opportunities
and challenges in analyses. When comparing cell types or groups, discrepancies
across experiments and differences among participants lead to omissions and
false discoveries in differentially expressed genes. Even the trend (upregulated
or downregulated) can be reversed in a phenomenon called Simpson’s paradox
[1]. Although multiple methods have been proposed to tackle such batch effects,
no such option for the widely used Wilcoxon rank-sum test [11,18] has been
applied to single-cell studies, to the best of our knowledge. Here, we show that
the stratified rank-sum test (known as Van Elteren test [17]) and our modified
common language effect size may benefit single-cell studies.

We briefly review and conceptually compare related works on correcting
batch effect in Sect. 1.1. Then, in Sect. 2, we revisit Wilcoxon rank-sum test,
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and introduce the Van Elteren test supplemented by our direct extension of
the common language effect size [5,12]. Simulation studies and applications to
real data in Sect. 3 show that the test controls for the batch effects and leads
to more accurate biological discovers, compared with Wilcoxon rank-sum test.
More discussions and explanations, are shown in Sect. 4.

1.1 Related Works

Mainstream methods to mitigate batch effect fall into two categories, batch cor-
rection methods and batch-aware statistical tests. The former includes methods
reducing batch effect in the data to facilitate downstream analysis, while the
latter includes analyses that control for the batch effect.

Batch Correction Methods. Batch correction methods eliminate the discrep-
ancy among batches to create an integrated dataset. The most conspicuous man-
ifestation of batch effect is splitting one cell type into multiple clusters. To solve
this problem, many methods match and combine clusters across samples based
on similarities. A commonly adopted one, Mutual nearest neighbor (MNN) [3],
uses similar cells across datasets as anchors, and based on them correct the gene
expression of other cells. Scanorama [4] and Seurat [16] are both based on the
MNN methodology. Another method, Harmony [7], iteratively corrects the data
by clustering the cells and moving neighboring clusters toward each other. These
methods typically produce a unified data matrix, which can be conveniently used
in visualization and downstream analysis. However, these empirical corrections
usually lack negative control and raise uncertainty in the discovery [14].

Batch-Aware Statistical Tests. Instead of manipulating the data directly,
statistical methods may handle batch effect by considering it as a covariate in
the model. This is possible in Student’s t-test, Poisson test, negative binomial
test, etc. Notably, all these tests are parametric, meaning that a distribution
must be given in advance. However, the debate of the true distribution of single-
cell gene expression has never ceased, which is a reason why the nonparamet-
ric Wilcoxon rank-sum test is widely used. To allow modeling covariates, one
may use a generalized version of rank-sum test, the proportional odds model [2].
However, modeling batches by using a covariate also makes unnecessary assump-
tions upon them. Stratification, which only combines statistics from batches, is
the “as simple as possible, but no simpler” way to handle batches. The Van
Elteren test we use, is the stratified version of Wilcoxon rank-sum test.

It is worth noting that methods like scVI [9] have combined statistical mod-
eling with batch effect correction. However, the effect of batches is modeled by
a black-box neural network, making the interpretation elusive.
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2 Methods

2.1 Wilcoxon Rank-Sum Test

We briefly revisit the Wilcoxon rank-sum test (also known as Mann–Whitney U
test) [11,18]. The test statistics U is defined as

U =
n1∑

i=1

n2∑

j=1

(
1ai>bj +

1
2
1ai=bj

)
, (1)

where A = {ai}n1
i=1 and B = {bj}n2

j=1 are the two samples to be compared (e.g.,
two cell types in one experiment), with sample sizes n1 and n2, respectively.
Function “1” takes value 1 when its condition holds true, and 0 otherwise. When
n1 and n2 are both at least 10, which is common in single-cell studies, the
distribution of U approximately follows a normal distribution N (μ, σ2) where

μ =
n1n2

2
(2)

and

σ2 =
n1n2

12

(
(n + 1) −

k∑

i=1

t3i − ti
n(n − 1)

)
, (3)

in which ti stands for ties (corresponding to the second term in Eq. 1).

2.2 Van Elteren Test

The Van Elteren test [17] is the stratified version of Wilcoxon rank-sum test.
For example, if there are m patients, they maybe treated as strata. In that case,
a U statistic may be obtained from each patient g ∈ {1, · · · ,m}, denoted as
Ug ∼ N (μg, σ

2
g). A new statistics V is constructed by

V =

[∑m
g=1 wg(Ug − μg)

]2

∑m
g=1 w2

gσ
2
g

∼ χ2
1, (4)

where wg is a weight for each sample to be discussed later. When m = 1, the
formula degenerates to V = (Ug − μg)2/σ2

g ∼ χ2
1, which is consistent with the

rank-sum test.

Weights. As discussed by Van Elteren [17], the weights wg can be assigned in
different ways. It should be noted that the Ug for a batch g ranges from 0 to
ng1ng2, the product of two sample sizes in the batch. Should the weights all be
equal, a patient with more cells available will dominate the test results. It is
proven in [17] that weight

wg =
1

ng1ng2
(5)
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eliminates such effect, and a test utilizing such weight is thus named as “design-
free test”. However, given that a batch with more instances available (e.g., a
patient with more cells sequenced) may be more convincing, another weight

wg =
1

ng1 + ng2 + 1
(6)

is introduced, which gives more power to larger batches. It also effectively assigns
larger weights to batches whose samples are more balanced, when the batch sizes
are the same. It is shown in [17] that this choice yields largest statistical power
against randomized alternatives, and is thus named as “locally-best test”. The
comparison of two weights are shown in Fig. 1.
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Fig. 1. The weight for each batch when using the (A) design-free test and (B) locally-
best test. For design-free test all the batches have equal weights, while for locally-best
test higher weights are given to batches with higher and balanced sample sizes.

Effect Sizes. For Wilcoxon rank-sum test, a simple definition of effect size is

f =
U

n1n2
, (7)

which is centered at 50%, meaning the probability P (a > b) when a and b
are randomly drawn from sample A and sample B, respectively. An effect size
greater than 50% generally means that A is higher, and vice versa. It may be
easily extended for Van Elteren test by taking average using desired weights. For
the design-free test, the effect size is

f =
1
m

m∑

g=1

Ug

ng1ng2
, (8)

as all batches are treated equally regardless of the sample sizes. It may be inter-
preted as the probability of P (ag > bg) for ag and bg randomly drawn from
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Ag and Bg, after randomly choosing a batch g. For the locally-best test, the
effect size becomes

f =
1∑m

g=1
ng1ng2

ng1+ng2+1

m∑

g=1

ng1ng2

ng1 + ng2 + 1
Ug

ng1ng2
(9)

=

∑m
g=1

Ug

ng1+ng2+1∑m
g=1

ng1ng2
ng1+ng2+1

, (10)

which changes the probability of choosing a group g to be in proportion to
ng1ng2

ng1+ng2+1 , giving higher weights to batches with higher and balanced sample
sizes (Fig. 1). Generally, any wg may be used to define f , as in

f =

∑m
g=1 Ugwg∑m

g=1 ng1ng2wg
, (11)

the two previous options being its special cases.

3 Results

We implemented the Van Elteren test with the effect size in R, available at our
GitHub repository (https://github.com/KChen-lab/stratified-tests-for-seurat),
based on Seurat 3.0 by utilizing its differential expression analysis part (but
irrelevant to the data integration) [16]. When there are two groups of cells, A
and B, denoted as type, and patient identity, denoted as batch, the Van Elteren
Test can be called as follows.

FindMarkers(obj, ident.1 = ’A’, ident.2 = ’B’, group.by = ’type’,
test.use = ’VE’, logfc.threshold = 0,
latent.vars = ’batch’, genre = ’locally-best’)

The genre may be set to either locally-best or design-free, as introduced in
Sect. 2, based on which p-values and effect sizes are calculated. Typical results are
shown in Table 2. An effect size of larger than 0.5 indicates a higher expression
in cell type A, and vice versa. The avg logFC, average logarithmic fold changes,
are calculated automatically by Seurat, where a positive value indicates a higher
expression. It may show different trends compared with the effect sizes. Generally,
the effect sizes are more indicative after controlling for the batch effect.

3.1 Simulation Study

We simulated datasets to illustrate the key utilities of Van Elteren test. The
parameters are specified in Table 1. Poisson distribution is used to model sequenc-
ing depth. Visualization is available in Fig. 2 for illustration. We assume that the
library size of each sample is equalized by other genes beyond the simulated ones.

https://github.com/KChen-lab/stratified-tests-for-seurat
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The testing result of Van Elteren test and Wilcoxon rank-sum test is shown in
Table 2. Trend (A over B) are indicated by arrows and insignificant p-values are
grayed out. For Van Elteren test, the locally-best version and the design-free
version return very similar results.

Table 1. Simulated datasets

Patient Number 1 Number 2

Cell type A B A B

Cell amount 101 30 31 100

Gene1 Pois(λ = 9) Pois(λ = 10) Pois(λ = 8) Pois(λ = 9)

Gene2 Pois(λ = 8) Pois(λ = 6) Pois(λ = 15) Pois(λ = 14)

Gene3 Pois(λ = 3) Pois(λ = 3) Pois(λ = 5) Pois(λ = 5)

Gene4 Pois(λ = 5) Pois(λ = 6) Pois(λ = 5) Pois(λ = 6)

Suppressing False Negatives. Batch effect may introduce false negatives,
where a significantly differentially expressed gene is overshadowed. For gene 1, on
which cell type B always have higher expression on both patients, the Wilcoxon
rank-sum test did not pass the threshold of 0.05 to reject the null hypothesis,
while Van Elteren test yields a significant p-value. The effect size, smaller than
0.5, also correctly suggests that the expression of gene 1 in cell type B is higher
than that in cell type A, compared with the average logarithmic fold change,
which wrongfully indicates otherwise.
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Fig. 2. Illustration of four simulated genes. Two shades correspond to two cell types
(dark: cell type A; light: cell type B). For each gene, the left panel is stratified by
patients and the right panel shows aggregated distribution.
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Table 2. Results of the two tests in simulation studies

P-value Effect size

Wilcoxon Van Elteren Log fold change Van Elteren f

locally-best design-free locally-best design-free

Gene1 6.336E−02 3.119E−03 3.109E−03 0.673 ↑ 0.375 ↓ 0.375 ↓
Gene2 3.700E−08 8.469E−03 8.193E−03 −1.182 ↓ 0.611 ↑ 0.611 ↑
Gene3 5.770E−05 7.831E−01 7.905E−01 −3.664 ↓ 0.488 ↓ 0.489 ↓
Gene4 2.465E−03 2.245E−03 2.416E−03 −0.817 ↓ 0.373 ↓ 0.372 ↓

Suppressing Reversed Conclusions. Batch effect may also lead to reversed
conclusion (i.e., which cell type has higher expression). For gene 2, on which cell
type A always have higher expression value, both tests reject the null hypothesis.
However, the effect size of Van Elteren test, larger than 0.5, correctly identifies
that the expression of gene 2 in cell type A is higher than that in cell type B,
while the average logarithmic fold change wrongfully indicates otherwise.

Suppressing False Positives. False discoveries are also possible outcome of
batch effect. As is shown in gene 3, the distribution of both cell types are exactly
the same in each patient. Nevertheless, Wilcoxon test yields a very significant
p-value. The average logarithmic fold change also has a large magnitude. Van
Elteren test returns a p-value of 0.7831, together with a effect size close to 0.5,
suggesting that the difference is neither significant nor large.

Consistency. As a negative control, when the three issues above are not present,
p-value from Van Elteren test is consistent with Wilcoxon rank-sum test, as is
shown by gene 4. The effect size and the log fold change also both show that the
cell type B has higher expression in gene 4.

3.2 Retina Data

We have tested the Van Elteren test on real retina single-cell gene expression
data gathered from three patients [8]. Two regions, macula (i.e., the center area)
and peripheral, are labeled in the data. We question which genes differentially
express for the same cell type between two regions. We run Wilcoxon rank-sum
test and Van Elteren test on 2,295 rod cells and 203 cone cells. We compare the
results in Fig. 3, where genes with large differences in p-values between two tests
are labeled with gene names.

Rod Cells. The results of two tests are largely comparable, showing a diagonal
pattern. Meanwhile, some exceptions are present (see Table 3 for the p-values
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Fig. 3. Comparison of p-values returned from Wilcoxon rank-sum test and Van Elteren
test on (A) rod cells and (B) cone cells. Each dot is a gene, whose p-value from Wilcoxon
rank-sum test and Van Elteren test are shown by its x-coordinate and y-coordinate,
respectively. Genes with largely changed p-values (102 for rod cells and 101 for cone
cells) are labeled with gene names.

and effect sizes), among which we observed that p-values for gene GNGT1 and
SYNE2 change the most.

For GNGT1, the reversed conclusion effect is also observed, as the Van
Elteren f effect size suggests that the peripheral region has a higher expres-
sion, while the log fold change indicates otherwise. We further inspected the
distributions to validate and interpret the differences. In Fig. 4A, the left panel
does show generally higher expression of GNGT1 in each individual patient,
while the aggregated distribution on the right shows a reversed effect, which
is an instance of the aforementioned Simpson’s paradox. For SYNE2 (Fig. 4B),
conspicuous discrepancy among batches is also shown, which leads to a less pre-
cise rank-sum test result. Indeed, these two genes were found playing roles in
macular degeneration diseases [6,10].

Cone Cells. For cone cells, we observed similar results. Some genes show
changes while most genes are consistent across the tests. The p-values and effect
sizes are shown in Table 4.

For gene PCBP4, Van Elteren test shows more significant p-value, and an
effect size indicating smaller expression in macula, which is different from the log
fold change. Decrease in PCBP4 has also been linked with age-related macular
degeneration [13]. Figure 5 shows that batch effect in distribution of PCBP4 may
have misled the rank-sum test and the logarithmic fold change.
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Table 3. Gene with large p-value change in rod cells

P-value Effect size

Wilcoxon Van Elteren Log10 ratio Log fold change Van Elteren f

GNGT1 1.694E−10 1.229E−13 3.14 89.679 ↑ 0.390 ↓
SYNE2 1.451E−09 6.654E−12 2.34 −48.321 ↓ 0.400 ↓
TUBA1B 9.317E−17 5.521E−19 2.23 233.992 ↑ 0.631 ↑
UCHL1 9.044E−21 6.300E−23 2.16 243.679 ↑ 0.639 ↑
NTM 1.116E−07 8.324E−10 2.13 3.679 ↑ 0.410 ↓
AHNAK2 4.179E−24 3.140E−26 2.12 178.679 ↑ 0.644 ↑
SNAR-E 1.991E−04 1.664E−06 2.08 Inf ↑ 0.431 ↓
TJP2 3.650E−09 3.358E−11 2.04 75.678 ↑ 0.411 ↓

Table 4. Gene with large p-value change in cone cells

P-value Effect size

Wilcoxon Van Elteren Log10 ratio Log fold change Van Elteren f

PCBP4 1.734E−02 1.285E−03 1.13 5.397 ↑ 0.335 ↓
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Fig. 4. Distribution of counts of (A) GNGT1 and (B) SYNE2 in rod cells. Left panels
are stratified by patients and right panels show aggregated distributions.
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4 Discussion

The results have clearly shown that Van Elteren test benefits biological studies in
precisely identifying differentially expressed genes. Although the results we show
do not include multiple comparison correction, Seurat 3.0 will automatically
give corrected p-value based on the raw p-value using Bonferroni correction.
Generally, any correction based on p-values will also apply.

The result also indicates that stratified test is a neat way to handle batch
effect. Although covariate has the ability to control for explanatory variables, it is
generally more suitable for continuous variables. It also casts more assumptions
when modeling covariate. Stratified test, on the other hand, does not infer the
influence of the discrete batches. Rather, it directly aggregates the statistical
power of multiple samples.

Admittedly, for the rod cells, although changes in p-values are observed, the
significance threshold was well passed by both. However, it should be noted that
the retina data are collected from relatively healthy tissues and are considered
clean, while Van Elteren test is expected to make a more meaningful difference
on noisy pathological and tumor data. In addition, rod cell is the most populous
cell in retina. For rare cell types that take smaller proportions, like the cone cells,
the difference Van Elteren test makes can be crucial.

The caveat of stratified test is that for it to work the strata shall not overlap
with the variable of interest. For instance, it may not find the difference, mean-
while also control for the batch effect, between two patients. Nonetheless, neither
is covariate applicable to such cases. As the batch effect and biological effect are
convolved, more prior knowledge is generally needed to distinguish them.

5 Summary

We have adopted Van Elteren test, an underappreciated statistical test, and our
weighted common language effect size to single-cell sequencing data. When batch
effect is severe, the test control for false positives. Otherwise, it is consistent
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with Wilcoxon rank-sum test. The modified common language effect size also
faithfully depicts the trends. This work may increase the precision of differential
expression analysis to help identify genes of interests.
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