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Background
Variation in mitochondrial DNA (mtDNA) is of interest because it is informative 
about human evolution [1] and because it is associated with numerous human dis-
eases [2]. Because human mitochondrial genomes do not recombine, the relationships 

Abstract 

Background:  Variation in mitochondrial DNA (mtDNA) identified by genotyping 
microarrays or by sequencing only the hypervariable regions of the genome may 
be insufficient to reliably assign mitochondrial genomes to phylogenetic lineages or 
haplogroups. This lack of resolution can limit functional and clinical interpretation of a 
substantial body of existing mtDNA data. To address this limitation, we developed and 
evaluated a large, curated reference alignment of complete mtDNA sequences as part 
of a pipeline for imputing missing mtDNA single nucleotide variants (mtSNVs). We call 
our reference alignment and pipeline MitoImpute.

Results:  We aligned the sequences of 36,960 complete human mitochondrial 
genomes downloaded from GenBank, filtered and controlled for quality. These 
sequences were reformatted for use in imputation software, IMPUTE2. We assessed the 
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among them can be described by a single phylogenetic tree. They can thus be grouped 
by the phylogenetic lineages to which they belong, into so-called haplogroups. In 
this system of evolutionary classification, genomes that belong to deeply divergent 
lineages form major haplogroups, with minor haplogroups corresponding to more 
recently diverged lineages [3, 4].

In some studies, mtDNA is not fully characterised by whole genome sequencing, 
but rather by single nucleotide variants (mtSNVs) identified at predetermined sets 
of mitochondrial genome sites using microarrays [5]. Partial mtSNV data obtained 
using such arrays may be insufficient for reliable haplotype assignment of mitochon-
drial genomes. Reliable classification of mtSNV data is important because haplogroup 
classification is often used in population genetic studies and clinical investigations of 
associations between mitochondrial genomes and disease [6].

In addition, not all microarrays are designed to assay variation at the same sites 
in the human mitochondrial genome. Inconsistencies in the design of microarrays 
used in different studies can result in mtSNV datasets that are partially incompatible, 
making it difficult to combine them for joint analysis. Legacy datasets lacking whole-
genome sequences can be resequenced to provide complete information for adequate 
comparison. However, given the 40 + years of research of mtDNA, it is probable that 
the raw biomaterial for many studies are no longer available. Additionally, studies as 
recent as 2021 have used imputation as a tool to fill in missing mtSNVs for genotype–
phenotype association studies [7], highlighting the continued importance imputation 
plays in biomedical research.

The dual problems of inaccurate haplotype assignment and incompatibility of data 
from studies that use different microarrays can be resolved by imputing mtSNVs at 
missing sites from a representative reference panel of human mitochondrial genome 
sequences. For incomplete mitochondrial genome sequence data, the base states (A, 
C, G, T) of missing nucleotide sites can be imputed by estimating their probabili-
ties from the co-occurrence, as haplotypes, of bases at sites for which data are avail-
able. Accurate estimation of these probabilities has two fundamental requirements: 
(1) An accurate multiple sequence alignment (MSA) of genome sequences; and (2) A 
reference panel of genome sequences that is representative of the population being 
investigated.

The sequences of mitochondrial genomes vary substantially among human popu-
lations. To be representative, genome reference data must be obtained from the pop-
ulation that is the target of investigation. Data that is unrepresentative because it was 
obtained from an inappropriate population, can cause imputation to be biased and inac-
curate [8–13]. Additional bias and inaccuracy may arise during construction of MSAs, 
which entails inserting alignment gaps (‘–’) between some of the nucleotides in some of 
the sequences being aligned—doing so accurately is a nontrivial challenge [14–16].

Imputation has been used to identify missing nuclear genome variants in incomplete 
sequence data using the 1000 Genomes Project dataset [17, 18]. However, this dataset, 
which contains 2504 nuclear and mitochondrial genome sequences representing 26 
populations is only partially representative of human genome variation, with some pop-
ulations (e.g., Pacific Islanders, Indigenous Australians, and Central Asians) still not rep-
resented. Thus, to be able to accurately impute missing variants from other populations 
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reference panels containing high-quality complete data from as many globally diverse 
populations is required.

In addition, considerable work is required to convert the 1000 Genomes Project 
mtSNV data from the format in which it has been made publicly available to a format 
that can be used for imputation. There is no published MSA of mitochondrial genomes 
from the 1000 Genome Project data or other more limited datasets (e.g., [6, 19]) that 
have been used for mitochondrial genome imputation. In addition to introducing errors, 
the need to recreate reference panels and MSAs for new studies results in a lack of the 
standardisation needed for comparison of results from different studies.

Imputation of mtDNA data would be greatly simplified and the substantial existing 
datasets of incomplete mitochondrial genome sequences would be made more acces-
sible by overcoming the need for: preliminary data reformatting, identification and 
curation of suitable reference data panels, and standardisation of high-quality multi-
sequence alignments.

Here we address these challenges by creating a large (n = 36,960) globally diverse MSA 
using automated alignment software and manual curation by experienced researchers. 
This resource is publicly available on GitHub as a standard reference MSA of complete 
sequences in FASTA format (henceforth, the ‘Reference MSA’). We also include the 
standard Reference MSA only including filtered variable sites in a format readily read-
able by IMPUTE2 [20] (henceforth, the ‘Reference Panel’). In addition, we describe a 
SnakeMake pipeline, which we developed for easy imputation of mtSNVs through the 
IMPUTE2 framework [20]. We call our combined Reference MSA/Panel and pipeline 
MitoImpute. Finally, we report our evaluation of MitoImpute using in silico microarrays 
(‘microarray datasets’) derived from The 1000 Genomes Project Consortium [17] whole-
genome sequence (WGS) data, and empirical data from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) [21].

Methods
Reference alignment and reference panel

Whole human mtDNA sequences were downloaded from GenBank on 18 July 2018 by 
adapting the MitoMap [22] search term (Additional file  1: Supplementary Methods). 
This search returned 44,299 complete human mtDNA sequences and excluded archaic 
and ancient sequences. A curated alignment created in 2011 using 7747 complete 
mtDNA sequences, which was aligned using a combination of MAFFT and manual deci-
sions on gap character-state placement by experienced researchers (unpublished, Addi-
tional file 1: Suppl. Methods; Easteal and Jermiin, pers. comm.). To retain the placement 
of gap character-states, sequences were aligned to this pre-existing alignment (unpub-
lished, Additional file 1: Suppl. Methods) in batches of 2500 using MAFFT [23] using 
default settings in Geneious v10.2.6 [24]. The standardised site-numbering convention 
was maintained by including the revised Cambridge Reference Sequence (rCRS) [25] in 
both pre-existing and new Reference MSAs, and by removing sites that introduced gap 
character-states in the rCRS. We considered retaining these sites that introduced gap 
character-states as they likely represent real insertion events. However, we prioritised 
a reference alignment that maintained the rCRS site numbering convention. Gaps in 
sequences that were not the rCRS were retained.
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To improve the quality of the Reference MSA, sequences with ≥ 5 ambiguous char-
acters or ≥ 8 gaps were removed. This threshold was set to enable the inclusion of hap-
logroup B sequences, which averaged 7 gaps relative to other sequences. This quality 
filter reduced the Reference MSA to 36,960 sequences (Additional file  2: Table  1). To 
avoid adding bias to population frequency estimates, GenBank accessions with identical 
sequences were retained on the basis that they represent relatively common mitochon-
drial genomes. AliStat v1.11 [26] was used to quantify the completeness of the new Ref-
erence MSA.

The Reference Panel was created by converting the Reference MSA to formats com-
patible with IMPUTE2 [20]. First, the entire Reference MSA was converted into a VCF 
file with all gap and other ambiguous character-states coded as ‘N’s. Second, all invari-
ant sites were removed from the VCF file using BCFtools v1.4 [27]. Third, the VCF file 
was converted to the IMPUTE2-readable  .gen,  .hap,  .legend, and  .sample files using 
BCFtools v1.4 [27], and into .ped files using PLINK v1.9 [28]. Finally, recombination map 
files were created by extracting the site list from the VCF file using BCFtools v1.4 [27] 
and assigning each site a recombination rate of zero. Furthermore, we created different 
versions of the Reference Panel by further filtering the VCF to minor allele frequencies 
of > 1%, > 0.5%, and > 0.1%. This resulted in the Reference Panel having four versions at 
different minor allele frequency filtering thresholds. We used these thresholds to test 
how well the imputation procedure performs at for different allele frequency cut-offs; 
thus, we refer to all four collectively simply as the Reference Panel. A flowchart of the 
creation and curation of the Reference MSA and Reference Panel is presented in Fig. 1.

Validation panel

In silico microarrays (‘microarray’ datasets) were created by selecting only mtSNVs 
present in commercially available microarrays from the 1000 Genomes Project Phase 3 
WGS data (n = 2535). Microarray information was obtained from strand orientation files 

Fig. 1  Flowchart of the creation and curation of the reference multiple sequence alignment and reference 
panel
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available from the Wellcome Centre for Human Genetics at the University of Oxford 
[29], with 103 strand files containing mtSNVs (Additional file 2: Table 2). Haplogroup 
assignment for the WGS data and the microarray datasets was performed using Hap-
loGrep2 [30] and Hi-MC [31].

Imputation

We used the IMPUTE2 X-chromosome imputation protocol [6, 20] to impute miss-
ing variants to the microarray datasets from the Reference Panel. No recombination 
was assumed (i.e., a uniform recombination rate of r = 0 across all sites). The Markov 
chain Monte Carlo step in IMPUTE2, which is used to account for phase uncertainty in 
recombining diploid data [20], was not used because human mitochondrial genomes are 
haploid and are not known to recombine. Only high-quality imputed sites were retained 
by removing sites with an IMPUTE2 information score of ≤ 0.3.

The khap parameter in IMPUTE2 specifies the k number of haplotypes from the Refer-
ence Panel IMPUTE2 will use in the imputation pipeline. The effect of varying the khap 
parameter was assessed by running the imputation pipeline with khap set to 100, 250, 
500, 1000, 2500, 5000, 10,000, 20,000, and 30,000.

We tested how accurately our imputation pipeline imputes rare variants when the Ref-
erence Panel is filtered at different minor allele frequency (MAF) thresholds. We tested 
thresholds of MAF > 1%, MAF > 0.5% and MAF > 0.1%, resulting in 409, 682 and 1874 
mtSNVs, respectively (Additional file 2: Table 3). With this filtering scheme, two of the 
103 strand files did not include any mtSNVs at MAF > 1% or MAF > 0.5% (Additional 
file 2: Table 2). Imputation accuracy was assessed using Matthews Correlation Coeffi-
cient (MCC) [32, 33] for genotype concordance. We also assessed imputation accuracy 
using haplogroup concordance. Both HaploGrep2 [30] and Hi-MC [31] were used for 
haplogroup assignment, with the complete 1000 Genomes Project WGS data used as the 
truth set. HaploGrep2 has the advantage of covering the full scope of the PhyloTree hap-
logroup nomenclature [30, 34], including small sub-haplogroups. Hi-MC was developed 
for epidemiological research that uses high-throughput data by reducing PhyloTree 
nomenclature to 46 common haplogroups using a limited array of mtSNVs from which 
to assign haplogroups. We treated the first major sub-haplogroup of all L linages (i.e., 
L0), as well as HV and JT as macrohaplogroups [3, 4].

Linear mixed-model ANOVA was used to assess the meaningfulness of difference in 
MCC (mean of mtSNVs per microarray dataset) and haplogroup assignment for differ-
ent parameters tested for khap and MAF.

Pipelines for implementing our imputation pipeline and reproducing our results were 
initially created in BASH shell scripts then lifted over into SnakeMake [35] for the Mito-
Impute pipeline. A flowchart of the imputation and analytical pipeline is presented in 
Fig. 2.

Results
Reference alignment and reference panel

To comply with minimum reporting standards for MSAs, completeness metrics of the 
Reference MSA were computed (Table 1). As described in Wong, Kalyaanamoorthy 
[26], Ca is the completeness of the MSA, Cr is the completeness of the rth sequence, 
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Cc is the completeness of the cth site, and Cij is the completeness of the ith and jth 
sequences. Overall, the Reference MSA is highly complete (Ca > 0.99). Individual 
sequences are also mostly complete (Cr), with the least complete sequence containing 
completely-specified nucleotides at 91% of its sites and the most complete sequence 
containing completely-specified nucleotides at all of its sites. The least complete site 
in the MSA contained completely-specified nucleotides in 44.3% of sequences, and 
the most complete sites had completely-specified nucleotides in all of the sequences. 
The proportion of homologous sites with completely-specified nucleotides at sites in 
both sequences (Cij) ranged from 83 to 100%, suggesting that the majority of sequence 
pairs contain enough information to quantify evolutionary distances. Sites and 
sequences missing a substantial number of nucleotide states were removed in the fil-
tration processes as described in the “Methods” section.

GenBank metadata on geographic provenance was available for 7128 (19.3% filtered 
and 16.1% unfiltered) sequences in the Reference Panel, from 49 countries and 54 sub-
country regions (Additional file  2: Supplementary Table  4). These regions included 
smaller ethnic groups such as Yami Taiwanese, Moroccan Berbers, Pacific Islanders, 
Indigenous Australians, and people from Central Asia and Siberia. For sequences 
with provenance information, there is, however, a distinct bias towards Europe (3855; 

Fig. 2  Flowcharts of the MitoImpute imputation and analytical pipelines

Table 1  AliStat completeness metrics for the Reference MSA

Ca: completeness of the alignment; Cr: completeness of the rth sequence; Cc; completeness of the cth site; and Cij: 
completeness of the ith and jth sequences

Feature Value(s)

Sequences 44,299

Sites 16,569

Completeness score (Ca) 0.9997

C-score for individual sequences (Cr) [min–max] 0.9119–1.0000

C-score for individual sites (Cc) [min–max] 0.4429–1.0000

C-score for pairs of sequences (Cij, i ≠ j) [min–max] 0.8314–1.0000
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54.1%; 10.4% filtered; 8.7% unfiltered) and East Asia (2065; 29.0%; 5.6% filtered; 4.7% 
unfiltered).

All major haplogroups are represented in the Reference Panel (Additional file  1: 
Table 1), including rare haplogroups such as haplogroup S, which is endemic to Indig-
enous Australians, haplogroup L5, which is found in Mbuti Pygmies, haplogroup L6, 
which is found in low frequencies in Yemen and Ethiopia, and haplogroups O and Q, 
which are found exclusively in the Pacific Islands (Fig. 3). Haplogroup B was the hap-
logroup most frequently removed by the quality control filter (3395 or 46% of all 7339 
removed sequences), leaving only 273 haplogroup B sequences. Haplogroup H was also 
heavily filtered following quality control (1376; 19%), but remained well represented in 
the final Reference Panel (n = 7644). Only a small fraction of other haplogroups were 
removed during quality control.

In silico microarrays

Parameter tuning

We measured imputation accuracy of genotypes using the Matthews Correlation Coef-
ficient (MCC) [32, 33]. To summarise MCC values, we calculated the mean MCC across 

Fig. 3  Diversity of mitochondrial Reference Multiple Sequence Alignment. a Principal Component Analysis 
(PCA) of mitochondrial sequencies included in the Reference Panel coloured by haplogroup. b Uniform 
Manifold Approximation and Projection (UMAP) projection of mitochondrial sequences. c Phylogenetic tree 
of 1000 genomes mitochondrial sequences highlighting phylogenetic relationship between mitochondrial 
haplogroups. d Projection of 1000 Genomes mitochondrial sequences onto the mitochondrial reference 
alignment
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all imputed sites, then compared the estimated marginal means using a linear mixed-
model ANOVA. Our results show that the Reference Panel filtered to MAF > 0.1% was 
the best performing ( µMCC = 0.60 ), followed by MAF > 0.5 ( µMCC = 0.58 ), then by 
MAF > 1% ( µMCC = 0.57 ). These contrasts are all statistically significant (ANOVA, 
p = 0.002 ) (Additional file 2: Table 5a-c). For the khap parameter, there was no signifi-
cant pairwise differences between khap = 100 and the other khapvaluesupto1000 . Above 
a khap = 1000 , contrasts were often statistically significant (Additional file 2: Table 5d-f ), 
with larger khap parameter values performing comparatively poorly, indicating a reduced 
ability to correctly assign haplogroups for some microarray datasets.

Imputation accuracy was also evaluated using the IMPUTE2 Info Score using the 
same statistical framework described for MCC. In contrast to MCC, the Reference Panel 
filtered to MAF > 1% was the best performing ( µinfo = 0.73 ), followed by MAF > 0.5 
( µMCC = 0.69 ), and MAF > 0.1% ( µMCC = 0.63 ). All of these contrasts are statistically 
significant (ANOVA, p < 0.0001 ) (Additional file 2: Table 6a-c). Starting at khap = 1000 , 
pairwise comparison of larger khap values become statistically significant, suggesting a 
meaningful difference in mean haplogroup concordance becomes apparent when more 
reference haplotypes are included.

Imputation accuracy was further evaluated by determining whether haplogroup 
assignments were concordant between imputed sequenced datasets. As HaploGrep2 
assigns haplotypes to very specific sub-haplogroups, we measured concordance using 
the sub-haplogroups in addition to macrohaplogroups. We found that sub-haplogroup 
concordance decreased slightly for MAF > 1% (− 2.5%) and MAF > 0.5% (− 0.6%), and 
only slightly increased using MAF > 0.1% (1.4%). Statistical significance is observed 
between all these comparisons (Additional file 2: Table 7a-c). The differences between 
khap parameters settings were more pronounced, with all khap parameter values showing 
a decrease in concordance (Additional file 2: Table 7d-f ), likely because all khap experi-
ments used the Reference Panel filtered at MAF > 1%. Larger khap parameter values per-
formed more poorly than smaller values.

Macrohaplogroup concordance increased only slightly following imputation. There 
was no statistically significant difference between any of the MAF thresholds, although 
there was a slight increase in accuracy with decreasing MAF (0.8% to 2.2%, ANOVA 
p = 0.09 ). Reference haplotype parameter values from khap = 100 to khap = 1, 000 
exhibit minor increases in performance, with larger khap parameter values leading to rela-
tively poorer imputation performance (Additional file 2: Table 8). We note, however, that 
the mean macrohaplogroup concordance in the microarray dataset was already > 86.7%.

Additionally, we evaluated whether the HaploGrep2 haplogroup quality score 
improved following imputation. There was no significant difference in haplogroup qual-
ity score between MAF thresholds (ANOVA, p = 0.56 ); however, on average there was a 
small decrease in the quality score (0.6–0.8%) (Additional file 2: Table 9a-c). The parame-
ter values for the number of included reference haplotypes showed statistical differences 
starting at the contrast khap = 100 to khap = 1000 , with imputation accuracy decreasing 
at higher khap parameter values (Additional file 2: Table 9d-f ).

Improvements in haplogroup concordance was also evaluated using Hi-MC to assign 
haplogroups. Following imputation, there was a mean increase (31.2–32.5%) in accuracy 
of haplogroup assignment across different Reference Panel MAF thresholds. However, 
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there was no statistically significant difference between these MAF thresholds (ANOVA, 
p = 0.83 ) (Additional file  2: Table  10a-c). With an increase in the khap parameter, a 
decrease in accurate haplogroup assignment was observed, with contrasts at khap = 100 
to khap = 2500 becoming statistically significant. These patterns were observed when 
macrohaplogroups were examined (Additional file 2: Table 11). On average, haplogroup 
concordance ranged from 16.7 to 21.0%, while macrohaplogroup concordance ranged 
from 88.0 to 88.4%

Taken together, these findings indicate optimum values of khap = 500 for the number 
of reference haplotypes, and MAF > 0.1% for the minor allele frequency threshold of the 
Reference Panel.

Overall microarray performance

Using our recommended settings ( khap = 500 , MAF > 0.1%), most gen-
otypes were successfully imputed in most cases, with µMCC = 0.618 
( 95%confidenceinterval[CI] = 0.615, 0.620 ). The best performing chip was the GSA-
24v2-0_A1-b37 ( MCC = 0.658; 95%CI = 0.636, 0.681 ), and the worst performing chip 
was the HumanOmni2.5S-8v1_B-b37 ( MCC = 0.381; 95%CI = 0.320, 0.441 ) (Addi-
tional file 2: Table 12).

On average, macrohaplogroups assigned using HaploGrep2.0 from imputed data 
were concordant with the truth set 88.2% of the time ( 95%CI = 88.1%, 89.4% ). The 
GSAMD-24v2-0_20024620_A1-b37 was the best performing microarray dataset in 
terms of HaploGrep macrohaplogroup concordance ( 99.4%; 95%CI = 99.2%, 99.7% ), 
while the InfiniumImmunoArray-24v2-0_A-b37 was the worst performing microarray 
dataset ( 10.8%; 95%CI = 9.6%, 12.0% ). On average there was an improvement in con-
cordance of 1.5%. HumanOmni2.5S-8v1_B-b37 had the largest improvement (24.4%). 
HumanOmni5-4v1_B-b37 was the worst performing microarray dataset, with a 13.6% 
decrease in concordance (Additional file 2: Table 12).

On average, macrohaplogroups assigned using Hi-MC from imputed data were 
concordant with the truth set 91.8% of the time ( 95%CI = 91.7%, 91.9% ). BDCHP-
1X10-HUMANHAP240S_11216501_A-b37 was the best performing microarray data-
set in terms of Hi-MC macrohaplogroup concordance ( 99.9%, 95%CI = 99.8%, 100%) , 
and InfiniumOmniZhongHua-8v1-3_A1-b37 was the worst performing 
( 28.6%; 95%CI = 26.9%, 30.4% ). The overall increase in improvement was 24.9% (Addi-
tional file 2: Table 12), with the HumanOmni5-4v1-1_A-b37 the best performing chip, 
increasing 43.6%, and HumanOmni1-Quad_v1-0_B-b37 the worst performing, showing 
a 32.8% decrease in concordance.

Overall haplogroup concordance

Concordance of individual haplogroups was estimated at the macro-haplogroup level 
using HaploGrep2.0 and Hi-MC. Before imputation, less than 50% of sequences from 
macrohaplogroup V were assigned to their connect macrohaplogroup by HaploGrep2.0 
(Additional file 2: Table 13a), and less than 50% of sequences from macrohaplogroups 
H, HV, I, M, V, W, X were assigned to their correct macrohaplogroup by Hi-MC (Addi-
tional file  2: Table  13b). Imputation accuracy as measured by macrohaplogroup con-
cordance using HaploGrep2.0 showed a difference with the microarray datasets ranging 



Page 10 of 15McInerney et al. BMC Bioinformatics          (2021) 22:417 

from a decrease of 16.6% (HV) to an increase of 52.9% (V). With the exception of L5, 
all African macrohaplogroups showed a slight decrease (3.12–0.18%). For the Native 
American-associated macrohaplogroups, only B showed a decrease (5.02%). Among the 
East Asian-associated macrohaplogroups, G, N, and Z showed a decrease (0.88–7.42%). 
Among the Euro-Indian-associated macrohaplogroups, H, J, and U showed a decrease 
(0.14–1.82%). Imputation accuracy as measured by macrohaplogroup concordance 
using Hi-MC showed a difference with the microarray datasets from a decrease of 15.7% 
(B) to an increase of 89.9% (M). All African macrohaplogroups showed a slight decrease 
(8.9–0.64%). The Native American-associated macrohaplogroups, B and C showed a 
decrease (0.15–15.7%). Among the East Asian-associated macrohaplogroups, only N 
showed a decrease (6.5%). Among the Euro-Indian-associated macrohaplogroups, only 
U showed a decrease (0.8%). However, it should be noted that Hi-MC did not detect any 
presence of macrohaplogroups F, G, L4, L5, Y, or Z.

Alzheimer’s disease neuroimaging initiative

We applied MitoImpute to data from 258 participants in the ADNI study, who 
had provided both WGS [5] and microarray data [21] (Additional file  2: Table  14). 
The ADNI microarray data were mapped to the rCRS and following imputation 
sites with an IMPUTE2 info score ≤ 0.3 were discarded. Both HaploGrep2 [30] and 
Hi-MC [31] were used to assign haplogroups to the WGS, microarray, and imputed 
data. Genotypes were moderately successfully imputed, as measured by MCC 
( µMCC = 0.322; 95%CI = 0.294, 0.350 ). This is in contrast with the microarray dataset 
for the chip with which ADNI was genotyped (Illumina Human610-Quad BeadChip, 
Human610-Quadv1_B-b37, µMCC = 0.606; 95%CI = 0.576, 0.637).

Using HaploGrep2.0, the correct macrohaplogroup to 95.7% of samples for the micro-
array data, which improved to 97.7% after imputation. Macrohaplogroup V showed any 
improvement of 66.7%, whereas all other macrohaplogroups showed no change, with the 
exception of H, which showed a 0.9% decrease (Additional file 2: Table 15a). The cor-
responding improvement using Hi-MC was 37.9% to 95.0%. Macrohaplogroups A, H, J, 
JT, M, N, V, W, and X all showed improvements, ranging from 27.2 to 100% (Additional 
file  2: Table  15b). The results for macrohaplogroups M, V, W, and X, are particularly 
noteworthy since they had no correct assignments prior to imputation. Macrohaplo-
group HV remained at 0% concordance before and after imputation.

Discussion
Investigations into the genetic basis of human mitochondrial disease and of evolutionary 
history rely on the accurate alignment of homologous nucleotide positions, and com-
plete mtDNA sequences [36]. These two factors, in turn, benefit from globally diverse 
sequences being included in MSAs used in these investigations. The imputation of miss-
ing variants can mitigate datasets of incomplete mtSNVs; however, accurate alignment 
of sequences and consistent placement of gap character states is fraught with difficulty 
and time consuming for even experienced bioinformaticians [14]. Lack of publicly avail-
able reference MSAs and reference panels, therefore, presents a limitation to researchers 
investigating mitochondrial disease or evolutionary history. We address this limitation 
by creating a reference MSA from 36,960 globally diverse mtDNA sequences, which was 
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manually curated by experienced researchers to ensure consistency of the placement of 
gap character states. Aligning novel sequences to the Reference MSA will alleviate the 
pressures of the alignment process by providing a guide for these new sequences.

The Reference MSA and Reference Panel we present here are globally and phyloge-
netically representative. Despite less than 20% of samples that we extracted from Gen-
Bank having geographic provenance metadata available, the samples that do contain 
this information suggest there are at least 103 geographic regions from 49 countries 
that  cover all inhabited continents. These include populations usually not represented 
in major population genetic datasets (e.g., the 1000 Genomes Project), such as Pacific 
Islanders and Indigenous Australians. Additionally, all PhyloTree [34] macrohaplogroups 
are present in our Reference MSA and Reference Panel. To the best of our knowledge, 
this is the largest and most genetically and geographically diverse curated mtDNA refer-
ence panel publicly available and readily downloadable.

Additionally, as a curated MSA, the Reference MSA and Reference Panel can be sub-
sampled for use in answering evolutionary and disease-associated research questions. 
Furthermore, the Reference MSA can be used as a reference panel for the imputation 
of mtSNVs. This Reference Panel will enable comparison and combined analyses across 
datasets of differing age and completeness. The Reference Panel has been packaged into 
a user-friendly mtSNV imputation pipeline, MitoImpute.

We evaluated how accurately we could impute mtSNVs using our Reference Panel, as 
measured by the concordance of assigned haplogroups and Matthews Correlation Coef-
ficient of genotypes. Across most microarray datasets, we were able to improve geno-
type concordance and macrohaplogroup assignment marginally when assigned using 
HaploGrep2.0 and significantly when using Hi-MC. As HaploGrep2.0 already accurately 
assigns macrohaplogroups, these results suggest we are successfully imputing phyloge-
netically informative mtSNVs. Some macrohaplogroups experienced marginal decreases 
in their correct assignment; however, this does not appear to be biased to any locality 
outside of Africa. As all haplogroups, except for haplogroups JT and X, experienced an 
average improvement > 30%, this suggests that the Reference Panel is not biased towards 
improvement for certain lineages over others. The addition of new sequences to the 
Reference Panel will only further increase accurate haplogroup assignment in popula-
tions or mtDNA lineages that are still underrepresented. We also tested the practical use 
of our Reference Panel by imputing mtSNVs in the ADNI dataset, demonstrating that 
the Reference Panel and imputation pipeline can successfully impute genotypes and, in 
some instances, dramatically increase the correct macrohaplogroup assignment. Given 
that there are 499 samples in the ADNI genotyping dataset that were not re-sequenced 
in subsequent phases, this demonstrates the utility of our Reference Panel for long-term 
studies that need to bring their older, incomplete dataset to the same standard as newer, 
complete datasets.

Performance testing of the MitoImpute pipeline using microarray datasets revealed a 
seemingly counterintuitive result; the decrease in imputation accuracy as the khap param-
eter increases. Increasing the khap parameter increases the number of haplotypes in the 
reference panel from which IMPUTE2 will impute. We suspect that increasing the num-
ber of reference haplotypes beyond 1000 leads to a greater chance of mismatch between 
the incomplete sample haplotypes and the reference panel haplotypes, particularly in 
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microarray datasets with few mtSNVs. Alternatively, highly diverse reference panels may 
contain a large number of haplotypes uninformative for imputing variants missing from 
the study sample, which has previously been noted by [37]. The limitations of the MAF 
and khap parameters, we suspect, is due to a dearth of mtSNVs in some microarray data-
sets. Datasets with a small number of variants from which to impute missing mtSNVs 
will always present this limitation, and we recommend users proceed with caution when 
using these datasets for subsequent analyses.

We did not split the Reference Panel into population-specific or haplogroup-specific 
sub-panels for numerous reasons. Only 19.3% of GenBank samples had geographic 
provenance metadata available, which would have significantly limited our ability to 
utilise the majority of sequences. Additionally, previous studies have noted that large 
reference panels with diverse haplotypes can improve imputation quality when admix-
ture has occurred [10], such as in post-colonial societies. However, other studies have 
suggested that ‘global’ reference panels decrease imputation quality, while population-
specific reference panels may increase imputation accuracy [38, 39]. With this in mind, 
users of MitoImpute can tentatively assign haplogroups to their microarray data to use 
an a priori guide to subsampling sequences from the Reference Panel. However, we 
note the khap parameter should achieve this intuitively and automatically. Further stud-
ies could use MitoImpute to investigate whether the full or subsampled Reference Panel 
achieves greater imputation accuracy on both single-population and multi-population 
microarray samples.

We aimed to create the Reference MSA with as many as possible completely-
sequenced mitochondrial genomes representing as diverse as possible global haplotypes. 
Our search criteria for harvesting publicly available sequences therefore may exclude 
some complete sequences with large deletions. Small deletions remain present in the 
Reference MSA as gap character states; however, insertions were removed to retain the 
rCRS site numbering convention. We acknowledge these limitations of MitoImpute. 
Another limitation is that MitoImpute was not designed to detect heteroplasmy, but it 
can be detected if raw probe intensity data are available [40]. Finally, we acknowledge 
that resequencing is often the preferable option for dealing with incomplete sequences. 
However, MitoImpute provides a ready alternative when raw biomaterial is no longer 
available for resequencing or for the case of limited financial resources.

Conclusions
Our Reference Panel provides an opportunity for datasets with limited mitochondrial 
genetic variation to be analysed with a more complete set of genetic variants and a more 
accurate assignment of haplogroups. The global disparity in medical research is evident 
in the high proportion of European individuals (~ 78%) association study catalogues 
[41]. The 1000 Genomes Project phase 3 includes 2504 individuals from 26 populations, 
however, these individuals were often sampled from 1 to 3 cities within geographically 
diverse countries, such as China. Our Reference Panel contains sequences from at least 
103 regions in at least 49 countries, capturing a more globally-representative sample of 
mitochondrial genetic diversity. The diversity included in our Reference Panel will allow 
researchers to perform imputation in under-represented human populations, contrib-
uting to solving the disparity in medical genomics research. This study also highlights 
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the imperative to include accurate and detailed metadata when submitting sequences 
to public repositories, such as GenBank. Having only geographic provenance metadata 
available for 19.3% of downloaded GenBank sequences limits our ability to determine 
regions underrepresented in DNA databases. As haplogroups are only useful for deter-
mining geographic provenance at a fine sub-haplogroup level [1], haplogroups cannot be 
relied on as geographic proxies.
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