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ABSTRACT:
In 2011, The National Cancer Institute (NCI) has announced 24 provocative 

questions on cancer. Some of these questions have been already answered in “NCI’s 
provocative questions on cancer: some answers to ignite discussion” (published in 
Oncotarget, 2011, 2: 1352.) The questions included “Why do many cancer cells die 
when suddenly deprived of a protein encoded by an oncogene?” “Can we extend 
patient survival by using approaches that keep tumors static?” “Why are some 
disseminated cancers cured by chemotherapy alone?” “Can we develop methods 
to rapidly test interventions for cancer treatment or prevention?” “Can we use our 
knowledge of aging to enhance prevention or treatment of cancer?” “What is the 
mechanism by which some drugs commonly and chronically used for other indications 
protect against cancer?” “How does obesity contribute to cancer risk?” I devoted a 
single subchapter to each the answer. As expected, the provocative questions were 
very diverse and numerous. Now I choose and combine, as a single problem, only 
three last questions, all related to common mechanisms and treatment of age-related 
diseases including obesity and cancer. Can we use common existing drugs for cancer 
prevention and treatment? Can we use some targeted “cancer-selective” agents for 
other diseases and … aging itself. 

INTRODUCTION

The National Cancer Institute (NCI) has announced 
24 provocative questions on cancer for grant applications. 
Some of these really important questions could be 
answered at least in part in 2011, [1] just based on the 
existing knowledge, linking unrelated fields of science 
and medicine. Such an approach is very effective. For 
example, retrospective analysis of the effect of beta-
blockers and metformin on breast cancer given for 
treatment hypertension and diabetes, respectively, has 
revealed their cancer-preventive effects in humans [2-6]. 
The questions answered in “NCI’s provocative questions 
on cancer: some answers to ignite discussion” [1] were 
very diverse: from oncogene-addiction to curability of 
some disseminated tumors.

Here I choose to extend and update the answers to 
3 related questions. Can we use our knowledge of aging 
to enhance prevention or treatment of cancer? What 
is the mechanism by which some drugs commonly and 

chronically used for other indications protect against 
cancer? The last question “How does obesity contribute 
to cancer risk?” is also related, since obesity is age-related 
disease (despite it can be easily caused or prevented by 
simple environment tactic – diet) and aging is a common 
mechanism for both aging and cancer as we have 
discussed [1]. Some common treatments emerged to 
prevent/suppress both obesity and cancer. Here I combine 
three related questions into a single problem, suggesting 
common treatments against some age-related diseases 
for cancer prevention as well as experimental anti-cancer 
agents for treatment of some age-related diseases and 
possibly aging. 

Can we use our deepening knowledge of aging to 
enhance prevention or treatment of cancer? 

First of all, cancer is an age-related disease. The 
links between cancer and aging were discussed previously 
[1] and I will not be repeating them over here. Both 
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senescent and cancer cells share the senescent phenotype 
[7, 8], including hyper-secretion [9-16]. The main 
difference between cancer and aging is that the control 
of cell cycle is disabled in cancer (by either loss of tumor 
suppressors that inhibit cell cycle (e.g., p16 [17-22]) or 
activations of activators of the cell cycle such as Myc [7, 
23-39]. When the cancer cell is arrested by p16 induction, 
for instance, it becomes senescent (gerogenic conversion). 
But this is mTOR (and similar growth-promoting pathway) 
that drives gerogenic conversion (geroconversion) [7]. 
An arrested cancer cell is a senescent cell, whereas a 
proliferating senescent cell is a cancer cell [7]. Normal 
cells can become senescent by activation cytoplasmic 
nutrient-, mitogen-, stress-sensing and growth-promoting 
pathways such as mTOR. (I suggest the term gerogenic 
pathways, for brevity). If the cell cycle is blocked, such 
over-stimulated cells undergo gerogenic conversion 
(geroconversion), becoming senescent. What is common 
in cancer and senescence is the activation of growth-
promoting signaling pathways such as mTOR  [7, 40]. The 
mTOR pathway is constantly active in cancer cells due to 
mutations in receptor kinases, Ras, Akt, or loss of tumor 
suppressors (e.g., PTEN, TSC-2). [40-55]. Oncogenic 
transformation and gerogenic conversion are very close 
phenomena, involving similar signal-transduction 
molecules such as mTOR. Cancer and aging are not 
rivals but rather two faces of the same coin. In this mini-
review, I will not discuss other very interesting aspects 
of the relationship between cancer and aging, as well 
as the meaning of aging because it have been discussed 
[56], [57], [58-60] and also because the involvement of 
gerogenic (oncogenic) pathways driving geroconversion 
(a conversion from cell cycle arrest to senescence [7], 
[8, 40]) is “the knowledge that can be used for cancer 
prevention”.

Geroconversion can be decelerated by rapamycin. A 
serious of experiments performed in diverse mammalian 
cells and models, demonstrated that mTOR is in fact 
involved in cellular aging [61-72], or strictly speaking, to 
gerogenic conversion. Furthermore, mTOR is involved in 
cell senescence and stem cell exhaustion in the organism 
[73-79].I need to repeat that rapamycin and other inhibitors 
of mTOR decelerate geroconversion [7]. But when 
geroconvesion is completed, rapamycin cannot reverse 
the event entirely. It is easier to decelerate and prevent 
senescence then reverse it. Eventually, hyperfunctions of 
the cells may be changed to malfunctions and the cells 
may become irresponsive to signals, including mTOR 
activators. 

Calorie restriction (CR) deactivates the nutrient-
sensing mTOR pathway and delays both aging and cancer  
(and other age-related diseases) [80-86] . Very importantly, 
short-term CR suppresses cellular senescence in the 
organism [87, 88].

Now it would not be surprising that, inhibition of 
mTOR decelerates organismal  aging [60, 89  [109-113], 

and the [60, 108, 114]. Noteworthy, basal fasting levels of 
mTOR activity are increased in old mice [115]. Fasting 
is less effective in inhibiting mTOR, than rapamycin in 
mice [116].

Rapamycin and other rapalogs, metformin, as well 
as potential inhibitors of gerogenic pathways (currently 
under investigation in our laboratory) could be used for 
cancer prevention. But may other commonly used drugs 
can inhibit gerogenic pathways? This is a topic of the next 
question.

PQ-5: Given the evidence that some drugs 
commonly and chronically used for other 
indications, such as an anti-inflammatory 
drug, can protect against cancer incidence and 
mortality, can we determine the mechanism by 
which any of these drugs work? 

Certain drugs used for hypertension, atherosclerosis, 
diabetes, inflammation and immunossupression can 
protect against cancer. These drugs include rapamycin 
and other rapalogs, metformin, beta-blockers, angiotensin-
blockers, aspirin. Since cancer is an age-related disease, 
drugs that inhibit gerogenic pathways may prevent cancer. 
At conventional doses, these accidental cancer-preventive 
agents are relatively ineffective to treat cancer, implying 
that their cancer-preventive effects are not due to targeting 
cancer cells directly. Aspirin: The anti-inflammatory 
agent aspirin, decreases inflammation, one of hallmarks 
of senescent cells. In some cell models, salicylate acid 
and aspirin inhibit the mTOR pathway [117, 118]. 
Aspirin decreases cancer incidence in humans [119-
128]. Angiotensin-II-blockers. Inhibitors of angiotensin 
II activity include ACE inhibitors (such as captopril and 
lisinopril), which decrease angiotensin II production, 
and angiotensin receptor blockers such as losratan. 
Angiotensin-II-blockers suppress in hepatocarcinogenesis 
in rats [129] chemically-induced colon carcinogenesis 
obese mice and metastasis in mice [129-132]. In humans, 
use of these drugs is associated with a lower incidence 
of cancer occurrence [133-137]. In patients with renal 
transplantation, the use of angiotensin-II-blockers is 
associated with a two-fold reduced risk of skin cancers 
[138].

Angiotensin-II activates the mTOR pathway 
and causes cellular hypertrophy [139-149]. Therefore, 
angiotensin-II-blockers, which prevent these effects, are 
indirect inhibitors of mTOR. 

Beta-blockers, which are used for therapy of 
hypertension, prevent breast cancer [2-4, 150-152].There 
are several publications that activators of beta-androgenic 
receptors can activate the mTOR pathway [153, 154]. 
Therefore, beta-blockers are expected to block mTOR 
activation.

Rapamycin decelerates geroconversion (conversion 
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of quiescence into senescence) in arrested cells  [61-68, 
155, 156]. Also rapamycin suppresses yeast aging and 
prolongs life span in Drosophila and mice [60, 89-113]. 
Rapamycin should delay cancer by slowing down the 
aging process. In fact, rapamycin prevents cancer in mice 
[157-164, 104, 105], and humans [165-169].

Finally, rapamycin prevents cancer in mice [104, 
105, 112, 113, 157-164] and humans [165-169]. Its cancer-
preventing effect may be indirect, due to prevention of 
senescent of normal stroma [170].

Metformin, an anti-diabetic drug, inhibits the 
mTOR pathway [171-173]. Metformin slows down aging, 
delays cancer and extend life span in rodents [174-182]. 
Also metformin decreases the risk of cancer in humans 
[5, 6, 183-193]. Metformin also exerts direct anti-cancer 
effects [54, 194-197]. Clinical studies in the neoadjuvant 
and adjuvant settings are ongoing; additional Phase 2 trials 
in the metastatic setting and proof of principle studies in 
the prevention setting are planned [198].  

The NCI’s questions “How does obesity contribute 
to cancer risk?” was discussed previously [1] and 
references within.  Here I first outline the most important 
points discussed in [1]. There are many theories on 
how obesity promotes cancer, which mostly all are 
partially correct because there are simultaneously several 
mechanisms of how obesity contribute to cancer and each 
theory is based on some of them [199], [200], [201-205]

Without discussing them again [1], I emphasize 
one universal mechanism that obesity promotes cancer 
by over-activating the nutrient-sensing mTOR pathway in 
both normal and cancer cells.

Although obesity is an age-related disease, both 
genetic predisposition (other then age-related quasi-
programmed genes) and especially environment play 
enormous roles. Obesity can be often induced independent 
of aging process by simple overeating. But still almost all 
people would gain weight after 30, unless they actively 
restrict their food intake. Most fitness-conscious people 
do, but unfortunately many others do not. As an aside, 
successful restriction of caloric intake can be considered 
by itself a treatment for obesity. Still visceral fat, the 
most dangerous for the human health, accumulates in old 
animals and humans, compared with younger animals and 
humans. Obesity is a disease that accelerates all other age-
related diseases: diabetes, kidney disease, atherosclerosis, 
liver fibrosis, hypertension, the propensity to blood clots, 
neurodegeneration, sarcopenia, osteoporosis and of course 
cancer. Obesity accelerates aging and dramatically shorten 
life span. The links between obesity and cancer are direct, 
indirect and as well as causative and correlative. In all 
cases, mTOR is involved [1].

We can summarize the following mechanisms [1]:
a. Obesity can promote cancer directly by secretion 

several factors, including pro-inflammatory , by the 
adipose tissue and can directly stimulate tumor growth.  

b.  Obesity causes hormonal changes such as         

insulinemia and insulin promotes cancer. 
c. Obesity can promote cancer by accelerating 

aging, obesity can accelerate aging and aging promotes 
cancer. 

d. Aging can promote both obesity and cancer. 
e. The relationships between them have been shown 

previously (in figure 2  [1]).
Also as we have already discussed [1], nutrients 

and insulin activate mTOR, whereas calorie restriction 
(fasting) deactivates mTOR. The mTOR pathway 
promotes obesity and is activated in obesity. Taking all 
together, one can conclude that rapamycin must prevent 
obesity.

In fact numerous studies demonstrated that 
rapamycin prevented obesity in mice on high fat diet. 
Yet, it was also shown that prevention of obesity may 
be associated with development of insulin-resistance or 
even diabetes-like condition, since chronic high-dose 
administration of rapamycin inhibits MTORC2 [206]. 
This stirred a controversy about rapamycin safety at 
chronic doses, especially in lay media. However, in depth 
analysis reveals that this condition resembles “starvation 
diabetes” described by Claude Bernard almost two 
centuries ago [207.] This condition was even observed 
during especially severe calorie restriction in humans 
and still was beneficial for their health [208]. As I already 
discussed, during starvation the organism needs to 
preserve glucose to feed the brain using as a tool insulin 
resistance in the liver, fat and muscle, lypolisis in the fat 
cells, glycogenesis and ketogenesis in the liver. Starvation 
diabetes is not a true type II diabetes [209]. I named it 
benevolent diabetes or type zero diabetes [209]. In fact, 
despite benevolent diabetes, mice live longer. In contrast, 
type II diabetes (true diabetes) promotes nephropathy, 
retinopathy, atherosclerosis and coronary disease. In 
contrast, rapamycin prevented these complications of true 
diabetes such as nephropathy and retinopathy [210, 211] 
Rapamycin prevents atherosclerosis in rodents [212, 213] 
and coronary re-stenosis in humans [214 , 215]. Most 
importantly, a recent publication by Piguet et al supports 
the concept of benevolent diabetes: Rapamycin impacts 
positively on longevity, despite glucose intolerance 
induction [216].

There are many paradoxes related to insulin 
resistance and longevity (see for ref. [209]). All of them 
can be solved by classification of conditions in two 
groups: low mTOR versus high mTOR [209]. Calorie 
restriction and benevolent diabetes are beneficial, because 
they are associated with low mTOR. Rapamycin has many 
advantages compared with starvation: starvation may lead 
to malnutrition. (This may explain a well-publicized case, 
why calorie restriction did not extend life span of rhesus 
monkeys, despite decelerating aging [217]).  In humans, 
rapamycin-induced diabetes is a rare complication even 
in transplant patients receiving high doses of rapamycin 
every day (see for ref. [209]).  
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But regardless of whether rapamycin-induced 
condition is benevolent, it can be avoided, until we know 
whether it contributes to lifespan extension or not (just an 
association). To avoid inhibition of TORC2 by rapamycin 
and insulin resistance, rapamycin should be used in 
intermittent fashion or in pulzes [209]. Preliminary data 
demonstrate that rapamycin tended to decreases insulin 
and obesity when given intermittently [116]. Intermittent 
rapamycin also prevents cancer [218, 112].

CONCLUSIONS

Currently chemotherapy is the cornerstone of cancer 
treatment.  It can cause cancer regression, remission and 
in rare cases even cure cancer. The arsenal of drugs and 
novel methods of their use, new strategies are constantly 
growing [219- 228] among many others but the progress 
in treatment is modestly incremental. Combining of anti-
cancer drugs together increase their potency [90, 221, 
229-234] but usually against both cancer and normal 
cells. Although in experiments performed in cell culture, 
chemotherapy can kill any cells, it is toxic to normal 
cells too (especially to hematopoietic and epithelial) and 
death from chemotherapy limits cancer therapy. There 
are several solutions. Exploiting some features of cancer 
cells, it is possible to protect selectively normal cells from 
chemotherapy without protecting cancer cells. This was 
demonstrated in paired cancer cells and normal cells in 
culture [235-251] and even in mice [252] but clinical trials 
have been never done. Another approach is to develop 
less toxic agents targeting cancer specific pathways (Ras, 
MEK, ERK, PI3K, IGF-1 and insulin, ErbB and other 
growth factors receptors, AMPK, mTOR, p70 S6 kinase, 
p53, oncogenic metabolism [] [228, 253-259]. The number 
of targeted approaches is rapidly growing [219-225] 
Such agents have been developed but most of them are 
too “weak”, not cytotoxic enough, and resistance rapidly 
develops [260, 261]. However, this Achilles’ heel of 
signal transduction inhibitors could be used for treatment 
two purposes: First, for protection of normal cells from 
chemotherapy especially when cancer cells are resistant 
[237, 262, 263]. Second, at low and intermittent doses for 
treatment of age-related diseases and aging itself.  As you 
may noticed, many of the targets of such anticancer drugs 
(PI3K, IGF-1R, PDGFR HER2 and other growth factors 
receptors and  signaling molecules such as AMPK, mTOR, 
p70 S6 kinase, ATM, p63, p53 are involved in aging and 
therefore, in all age-related diseases, one of which is 
cancer. Therefore, we can envision administration of such 
inhibitors at low, intermittent, non-toxic doses, which 
are not intended to damage cells.  To prevent cancer by 
gerosupression, they need to be administered not at 
high doses but in low, intermittent doses. Alternatively, 
they could be used as protectors of normal cells from 
chemotherapy (rapamycin and nutlin are examples) [241-
251].   

On the other hand, thousands of drugs have been 
developed for treatment of age-related diseases (obesity, 
hypertension, atherosclerosis, cardiac arrhythmias an so 
on) either semi-empirically or by intentional development 
of inhibitors of prostaglandin synthesis, beta-receptor, 
growth-factor receptors, angiotensin II, testosterone 
signal-transduction pathways. All these drugs are 
inhibitors of signal transduction pathways involved in 
diseases.  Many of them, for example angiotensin II, 
inhibit “hyperfunctional” cells by activating mTOR. 
Many of these conventional drugs  are already known 
to inhibit the mTOR pathway. It does not seem to be a 
coincidence that drugs that treat age-related diseases 
inhibit gerogenic pathways (given that aging itself is 
caused by hyperactivation of signal transduction pathways 
such as mTOR). Therefore, it would not be surprising to 
expect that some of conventional drugs used in the clinic 
would have cancer preventive activities, since cancer is 
an age-related disease. Therefore retrospective studies 
of some commonly used drugs for cancer preventive 
effects are warranted. The most trivial and at the same 
time are amazing examples (by its genius simplicity) 
is calorie restriction or fasting. Calorie restriction and 
fasting both slow down aging. They are recommended 
for almost all age-related diseases (except for terminal 
conditions). Calorie restriction and intermittent fasting 
prevent or delay cancer. Recently, it was shown that 
short term complete fasting decreased the side effects of 
chemotherapy in cancer patients [246, 247, 264, 265]. 
Since calorie restriction and fasting are not so efficient 
as rapamycin in inhibition of mTOR and also may cause 
malnutrition, rapamycin at low and/or intermittent doses 
may be even a better choice for prevention of side effects 
of chemotherapy. 
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