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Abstract: The endothelial glycocalyx, the gel layer covering the endothelium, is composed of gly-
cosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels’
mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several
physiological and pathological events. In the present review, we described the mechanisms that dis-
turb glycocalyx stability such as reactive oxygen species, matrix metalloproteinases, and heparanase.
We then focused our attention on the role of glycocalyx degradation in the induction of profibrotic
events and on the possible pharmacological strategies to preserve this delicate structure.
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1. Introduction

The endothelium was once only known as the cellular internal monolayer of blood
and lymphatic vessels, but now it is also recognized as a dynamic organ. First of all,
endothelial cell phenotype is different in different organs and districts, and this reflects
specific functions [1]. For instance, in the kidney, endothelial cells of the large vessels are a
continuous layer kept together by intercellular junctions, whereas glomerular endothelial
cells and endothelial cells of peritubular capillaries are highly fenestrated [2]. Endothe-
lial cells are covered by a gelatinous layer called the “glycocalyx”, which represents an
important element of the vascular barrier [3].

In the last few years, it has appeared that (1) a great deal of endothelial functions are
modulated and mediated by the glycocalyx, (2) the integral endothelial surface layer is an
important element in tissue homeostasis, and (3) alterations of this structure are involved
in several pathophysiological conditions: sepsis as well as chronic cardiovascular, renal,
and metabolic diseases [4–7].

In this review, we will describe the composition and function of endothelial glycocalyx
together with the mechanisms responsible for its degradation. We will also focus on the
recent findings as to the role of the endothelial glycocalyx in the modulation of renal fibrosis.
Finally, we will discuss the present and possible future strategies aimed at preserving this
delicate structure.

2. Endothelial Glycocalyx Structure and Functions

The glycocalyx is synthesized by vascular endothelial cells and expressed on the
endothelial cell surface [8], and it is mainly composed of membrane-binding proteoglycans
(mainly syndecans 1, 2, and 4 and glypican 1), glycosaminoglycan (GAG) side-chains
conjugated with the core protein of the proteoglycans, hyaluronan, glycoproteins, and
adsorbed plasma proteins (such as albumin and antithrombin) [9].

Proteoglycans are a group of molecules composed of a core protein to which several
GAGs are attached. GAGs are negatively charged unbranched polysaccharide chains made
up of the repetition of disaccharide units. Depending on their core disaccharide units,
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GAGs are classified in heparin/heparan sulfate, chondroitin sulfate, dermatan sulfate, and
keratan sulfate [10]. Since GAGs have sulfated groups, they are negatively charged, and
this gives them the capacity to bind several growth factors and cytokines, thus protecting
them from degradation [11]. Moreover, they create a gradient necessary for fluid transit
and renal blood filtration [12,13]. Hyaluronan (a nonsulfated GAG) is found mainly in the
luminal part of the glycocalyx, and it is not attached to a core protein but binds to surface
receptors (e.g., CD44) [14].

Syndecans are central elements in endothelial cell homeostasis. Their interaction with
ligands modulates endothelial cell growth and behavior [15]. Glypicans are important
regulators of angiogenesis and coagulation [16,17]. The three groups of cell glycoproteins
present in the endothelial glycocalyx are the selectin family, the integrin family, and the im-
munoglobulin superfamily [8]. E-selectin and P-selectin are both expressed by endothelial
cells with different mechanisms and both modulate leukocyte–endothelial cell interac-
tions [18–20]. Integrins are transmembrane receptors [21] that mediate platelet–endothelial
cell interactions [22] and facilitate cell–extracellular matrix (ECM) adhesion [23]. The prin-
cipal elements of immunoglobulin glycoproteins are intercellular adhesion molecules 1 and
2 (ICAM-1 and -2), vascular cell adhesion molecule 1 (VCAM-1), and platelet/endothelial
cell adhesion molecule 1 (PECAM-1), and they regulate the binding of leukocytes and
platelet endothelium [24].

The thickness of the glycocalyx was reported to be 4–500 nm, which depends on
the measurement technique, and it was observed that there is a dense inner matrix layer
associated with membrane-attached glycoproteins and a less-dense outer layer composed
mainly of GAGs and plasma proteins [25]. Thickness is also modulated by the balance
between synthesis caused by endothelial cells, GAG depolymerization, and proteoglycan
shedding. Globally, the endothelial glycocalyx is a structure in dynamic equilibrium with
the components of the flowing blood [26–28]. Interestingly, it has been proved that cerebral
endothelial glycocalyx thickness is not homogeneous among pial arteries, penetrating
arteries, and capillaries. Glycocalyx thickness was not correlated with the vessel diameter,
but it might reflect the functional heterogeneity of the vessel type [29].

The main functions of the glycocalyx are the control of vessel tone in response to shear
stress, the regulation of the permeability, coagulation and complement system, as well as
the regulation of endothelial–blood cell interaction.

Proteoglycans such as syndecans and glypicans, but also hyaluronic acid, are mechan-
otransducers of the shear forces to endothelial cells [30]. For instance, when the flow
becomes multidirectional, there is a modification of plasma proteins, cations, and cationic
amino acids associated with GAGs and this could aid in syndecan-1 oligomerization and
transduction of the signal via its intracellular domain, which is associated with linker
molecules that connect them to the cytoskeleton [31]. The principal effects of shear stress
are the alignment of endothelial cells in the shear direction (via mechanotransduction) and
the production of nitric oxide (NO): a mediator that induces smooth muscle cell relaxation
and, consequently, vasodilatation, and the reduction of shear stress [32].

The negatively charged endothelial glycocalyx represents an electrostatic barrier for
plasma cells and proteins, like albumin. It also regulates permeability to water and small
molecules and oxygen [12,33] and allows for the selective buffering of sodium ions [34]. It
has been proved that enzymatic elimination of the majority of the endothelial glycocalyx
modulates hydrostatic and oncotic pressure gradients between the lumen of the blood
vessel and the interstitial space [35–37].

A functional glycocalyx represents an antithrombotic and anticoagulant surface as
antithrombin III bound to GAGs modulate several coagulation factors [38] and GAGs
interact with multiple complement elements of both: classic alternative and lectin path-
ways [39]. During inflammation, several cytokines activate the expression of tissue factors
on endothelial cells. Tissue factor binds to and activates clotting factor VII, which via
factor X, results in the generation of thrombin and conversion from fibrinogen to fibrin [40].
Thrombin can activate PAR1, which, in turn, induces the production of several cytokines
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and growth factors and causes platelet activation and aggregation. On endothelial cells,
PAR1 activation rises endothelial permeability, and the von Willebrand factor (vWF) se-
cretion from that participates in platelet recruitment. Platelets can also be activated by
proinflammatory mediators and thus sustain fibrin formation [41,42].

One of the most important physiological roles of the glycocalyx is the recruitment
of leukocytes to areas of infection with a multistep process: tethering, rolling, adhesion,
and transmigration. Ordinarily, cell adhesion molecules on the endothelium, such as
integrins and immunoglobulin glycoproteins, are hidden within the glycocalyx, but, once
infection occurs, the glycocalyx is degraded by inflammatory mediators, which facilitate
ligand–receptor interactions that promote the adhesion of leukocytes (Figure 1) [38].

Figure 1. (1) Under physiological conditions, the glycocalyx represents a protective layer of proteoglycans (syndecans and
glypicans), glycosaminoglycans (GAGs) (HS—heparan sulfate, HA—hyaluronic acid), and adsorbed plasma proteins. (2) In
pathological situations such as atherosclerosis, ischemia, and diabetes, a series of stimuli impact glycocalyx integrity. (3) ROS
and shear stress recruit activated inflammatory cells, and inflammatory cells release additional ROS. (4) ROS participates in
GAG depolymerization, which aids in (5) leukocyte activation and macrophage extravasation. Activated inflammatory
cells release (6) HPSE (red scissors) and (7) matrix metalloproteinases (MMPs) (black scissors). MMPs shed the protein
extra-domains of proteoglycans, and HPSE cleaves HS chains. (8) Soluble syndecans and HS fragments additionally activate
inflammatory cells (9), which release cytokines. (10) Cytokines and growth factors activate endothelial cells to produce
MMPs and HPSE, fueling the system.

3. Mechanisms of Endothelial Glycocalyx Damage

The mediators of glycocalyx degradation are copious, and some of them are intercon-
nected, thus creating a vicious cycle: reactive oxygen/nitrogen species (ROS/RNS), matrix
metalloproteinases (MMPs), hyaluronidase, and heparanase.

ROS and RNS are directly able to destroy GAGs; specifically, they induce modification
in sugars and aid their hydrolytic cleavage [43,44]. Interestingly, hyaluronic acid (HA) is
highly sensitive to chemical insults resulting in the generation of low-molecular-weight
HA [45]. These species, in turn, activate a proinflammatory state, resulting in increased
ROS/RNS production [46].
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MMPs are a family of zinc-dependent endopeptidases that degrade extracellular matrix
components (collagen, elastin, etc.). In the vasculature, MMPs are mainly expressed by
inflammatory cells and, after specific stimuli, by endothelial and smooth muscle cells [47,48].
Their expression is regulated by ROS, cytokines, shear stress, and hypoxia [38]. In the
glycocalyx, MMPs cleave the extracellular domains of syndecans. Syndecan-1 is shed by
MMP-2, MMP-9, MT1-MMP, and ADAM-17 [39]. Syndecan-4 is shed by MMP-9 in a TNF-α-
dependent manner [49]. MMPs are also able to cleave chondroitin sulfate [50].

Heparanase is an endo-β-D-glucuronidase, which cuts the heparan sulfate (HS) chains
at the level of a limited number of specific intrachain sites, generating fragments of about
5–7 kDa [51]. Upregulation of heparanase expression in the vascular endothelium at the site
of inflammation has been reported in multiple organ systems and promotes inflammatory
responses [52]. Heparanase expression is upregulated in endothelial cells by several factors:
ROS [53], inflammatory cytokines [54], high glucose [55], and advanced glycosylation
products [56]. In the vascular district, heparanase is also released by inflammatory cells
and platelet [57].

Heparanase can modulate glycocalyx damage in a manifold manner.

(1) By degrading HS, it modulates the interaction of endothelial cells with blood cells [58],
regulates vascular permeability [59], and makes adhesion molecules on endothelium
more accessible to circulating inflammatory cells [60].

(2) By releasing proinflammatory cytokines and chemokines bound to GAGs, it sustains
inflammation, oxidative stress, and additional glycocalyx damage [61].

(3) Heparanase is also able to sustain inflammation by activating Toll-like receptors
(TLRs) on macrophages via heparan sulfate fragments, leading to the activation of
nuclear factor-κB (NF-κB), which results in the expression of additional inflammatory
cytokines (TNF-α, IL-1β, and IL-8) [62]. The same cytokines can then sustain hep-
aranase expression on endothelial cells [54] as well as the production of MMPs [63]
and ROS.

(4) Heparanase also contributes to glycocalyx damage, thus increasing their procoagulant
state by increasing tissue factor (TF) and modulating tissue factor pathway inhibitor
(TFPI) [64].

(5) Lastly, the glypicans can also undergo shedding by phospholipase-D and notum
(Figure 1) [65].

4. Glycocalyx Dysfunction Conditions

Pathological damage of the glycocalyx occurs in response to mechanical cellular stress,
endotoxins, inflammatory mediators, atrial natriuretic peptide, ischemia/reperfusion in-
jury, free oxygen radicals, and hyperglycemia, as well as the novel coronavirus disease
2019 (COVID-19) [49,66]. Degradation of the glycocalyx results in the shedding of some of
its components in the blood flow (hyaluronic acid, heparan sulfate, syndecan-1 and 4, and
glypicans), and often they correlate with the severity of particular diseases [50,67].

Glycocalyx degradation happens in infective (sepsis) and noninfective (trauma) in-
flammation [68], and in these settings, tissue necrosis factor-a (TNF-a) has a central role [69].
It exerts its role via heparanase activation and MMP9 upregulation [63,70]. Sepsis causes
glycocalyx degradation but also delays its regeneration [71]. The breakdown of the en-
dothelial glycocalyx stimulates macrophage recruitment and macrophage phenotype alter-
ations [72,73] as well as leukocyte adhesion and focal vascular inflammation [74].

Collecting proof from in vitro and in vivo studies shows that hemorrhagic shock in-
duces endothelial glycocalyx shedding and endothelial injury, accompanied by disturbed
junctional integrity [75,76]. During ischemia/reperfusion (I/R) injury, it is damaged both
during the hypoxic phase but also by the restoration of the blood supply (reperfusion). En-
dothelial cells after ischemia/reperfusion become swollen and detached from the basement
membrane. Increased release of histamine and cathepsin, as well as oxygen free radicals
and heparanase, may account for glycocalyx damage [77,78]. It has been proved that in
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patients undergoing major vascular surgery with global or regional ischemia, components
of the glycocalyx, such as heparan sulfate and syndecan-1, are released into the plasma [79].

There is evidence that diabetes disturbs the vasculature globally, and alterations of the
endothelial glycocalyx happen early in the onset of the disease [80]. It has been proved that
acute hyperglycemia increases glycocalyx degradation and vascular barrier instability [81]
confirmed also by in vitro studies [82].

The new coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) in patients induces not only pulmonary disease,
eventually culminating in acute respiratory distress syndrome (ARDS), but also produces
multiple systemic effects, including acute kidney injury (AKI), acute cardiac injury, coagu-
lopathy, thromboembolic complications, including stroke and pulmonary embolism, and
circulatory shock [83]. Vascular endothelial damage has been identified as a common fea-
ture of high-risk patients prone to severe COVID-19, and several studies have shown that
endothelial glycocalyx is seriously damaged during COVID-19, as proved by the increased
shedding of syndecan-1 and hyaluronic acid and increased levels of heparanase [66,84].

5. Role of Glycocalyx Dysfunction in Fibrosis

Some recent findings indicate that mechanisms involved in endothelial glycocalyx
dysfunction may participate in organ fibrosis, especially in renal fibrosis. Renal fibrosis
is the final common outcome of practically all renal diseases causing chronic kidney dis-
ease (CKD). The main macroscopic characteristics of renal fibrosis are glomerulosclerosis,
tubulointerstitial accumulation of extracellular matrix, inflammatory infiltration, tubu-
lar atrophy, capillary loss, and podocyte depletion. These events are caused by several
biological events, including mesangial and fibroblast activation, monocyte/macrophage
and T-cell infiltration, and cell apoptosis, which result in irreversible organ damage [85].
Activated myofibroblasts are the sources of extracellular matrix accumulation and they
originate from several sources: interstitial renal fibroblasts, interstitial perivascular cells
called pericytes, fibrocytes, tubular epithelial cells, and endothelial cells [86].

As described above, heparanase is an active player in glycocalyx remodeling, and
the same agents that disrupt glycocalyx represent an element of damage and triggers
renal fibrosis. Heparanase plasmatic levels are upregulated in chronic kidney disease
patients [87], and several works have proved that heparanase is a central player in reg-
ulating the development and progression of renal fibrosis by modulating the epithelial-
to-mesenchymal transition (EMT) of proximal tubular cells in diabetic conditions and
after ischemia/reperfusion injury (I/R) [88–91]. We can therefore speculate that increased
plasmatic heparanase levels can then sustain local fibrosis in damaged areas.

One of the actions of heparanase is the mobilization of cytokines and growth factors
from the GAGs of the glycocalyx. Among them, TGF-β and FGF-2 are crucial elements that
prompt fibrosis, and it has also been proved that heparanase sustains their induced EMT in
the kidney [92,93]. Specifically, heparanase is necessary to maintain a rapid TGF-β effect
and sustain its autocrine loop [92]. Heparanase is also necessary to activate FGF-2 signaling
and maintain the autocrine loop by regulating MMP-dependent syndecan-1 shedding [93].

As described above, glycocalyx degradation is a crucial step for inflammatory cell
recruitment, and heparanase is necessary for macrophage infiltration in diabetic nephropa-
thy [91] and I/R injury [93]. It has been proved that heparanase polarizes macrophages
toward an M1 proinflammatory and profibrotic phenotype in I/R injured kidney, and then
it regulates the cross-talk between macrophages and tubular epithelial cells, which undergo
EMT [94]. The recruitment of M1 macrophages then increases the production of profibrotic
cytokines [94], which participate in the development of CKD and organ fibrosis. A recent
study proved, in a mouse model, that heparanase inhibition prevented the development
of chronic fibrosis in a model of I/R injury [88]. Overall, the present findings prove that
heparanase, independently of the underlying nephropathy, regulates the development of
fibrosis in chronic kidney disease modulating EMT and inflammation.
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In the kidney, endothelial glycocalyx damage increased the production of vasoconstric-
tor agents [95]. Endothelin-1 (ET-1) is a potent endothelial-cell-derived vasoconstrictor. It is
triggered by multiple stimuli such as ROS and inflammatory cytokines [96] and is released
upon endothelial activation and activates two G-protein-coupled receptors, endothelin
receptor type A (ETRA) and endothelin receptor type B (ETRB). Together, these receptors
induce a variety of intracellular signaling cascades, resulting in vasoconstriction, prolifera-
tion, inflammation, extracellular matrix production, and fibrosis [97,98]. Recent findings
have proved a renal interaction between heparanase and ET-1. Firstly, it was observed
that endothelin-1 activates podocytes to release heparanase, thus causing damage to the
glycocalyx, proteinuria, and renal failure [99]; secondly, it was observed that heparanase
overexpression increases ET-1 levels after I/R renal injury [77], and heparanase inhibition
reduces ET-1 expression [77,88] and its associated renal fibrosis [88]. This system, which
leads to renal damage and fibrosis development, is also fueled by other agents, angiotensin
II and aldosterone. Angiotensin II induces the production of ET-1 in podocytes and mesan-
gial cells [95], increases heparanase expression, and, moreover, induces the production of
aldosterone, which additionally increases heparanase expression [100].

An additional layer of evidence as to the involvement of heparanase in diabetic
nephropathy is its levels observed in the urine of diabetic patients. Those (diabetics) who
underwent kidney transplantation showed significantly lower urine heparanase levels
compared to the ones who had not undergone a transplant [101]. Although it is known that
glucose may regulate heparanase secretion [102], insulin seems to cooperate with glucose
to promote heparanase secretion in HK-293 cells, though heparanase gene expression is in-
hibited by insulin in human aortic endothelial cells [103]. Moreover, heparanase per se has
been shown to trigger the activation of the insulin receptor signaling pathway [104], leading
to ERK activation [105], a well-known signaling pathway involved in EMT. Should this
also occur in endothelial cells, a heparanase–insulin-dependent vicious cycle would further
amplify/accelerate fibrotic processes. It should also be borne in mind that endothelial cells
in insulin-resistant and/or diabetic subjects develop a selective insulin resistance whereby
only the antiatherogenic IRS-PI3K-Akt arm responsible for NO production becomes resis-
tant [106]. The other arm, the MAPK-ERK pathway, known to be proatherogenic, retains
responsiveness to insulin. Thus, the selective loss of insulin action may further aid CVD.

Another capable linker between endothelial glycocalyx dysfunction and fibrosis is
sirtuin-1 (SIRT1). Sirtuins (silent information regulator (SIRT)) are a group of NAD-
dependent histone deacetylases that regulate chromatin silencing and transcriptional
repression. Since they modulate several pathways, they are linked to cellular energy
metabolism, mitochondrial biogenesis, stress response, apoptosis, inflammation, and also
fibrosis [107]. The lack or reduction of SIRT1 impacts all the endothelial functions [106], but
mice with endothelial deficiency of SIRT-1 develop tubulointerstitial fibrosis as well [108].
In this model, it has been described that SIRT-1 deficiency is associated with decreased
MMP-14 levels [109]. It has also been documented that treatments with losartan, an an-
giotensin II receptor blocker, and hydrogen-rich water by increasing SIRT-1 reduce EMT
and fibrosis in UUO mouse models [110,111].

It has been proved that depletion of SIRT1 increases TGF-β1 activation, the acetylation
of Smad3 [112], and that mice with endothelium-specific heterozygous TGFβ receptor II
knockout (TGFβRIIendo+/−) are also protected against tubulointerstitial fibrosis via the
inhibition of endothelial-to-mesenchymal transition [113]. Recently, it has been proved that
a possible link between dysfunctional endothelial cells and the activation of fibroblasts,
supporting fibrosis, could derive from specific factors secreted by endothelial cells with low
(or lacking) SIRT-1 levels [108]. It has been found that endothelial cells lacking SIRT-1, when
treated with TGF-β, release increased levels of Jagged1, Dickkopf-related protein 3 (DKK3),
and syndecan-4 [108]. Jagged1 is a ligand of the Notch pathway, and DKK3 is a putative lig-
and of the Wnt pathway. Both pathways are implicated in the development of fibrosis [114].
The increased expression of syndecan-4 in endothelial cells lacking SIRT-1 is mediated via
the NF-κB pathway. Normally, SIRT-1 deacetylates p65 and prevents its nuclear translo-
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cation [115], but when it is reduced, p65 increases the transcription of syndecan-4, which
has NF-kB-response elements in its promoter regions [116]. The shedding and processing
of heparan sulfate proteoglycan syndecan-4 are mediated by ADAM-17 and heparanase,
and both are under NF-κB regulation. Lastly, syndecan-4 ectodomain accumulation in the
interstitium acts as a macrophage chemoattractant, increasing fibroblast activation and
inducing renal interstitial fibrosis (Figure 2) [117].

Figure 2. A series of noxa (ischemia/reperfusion (I/R), ROS, diabetes hyperinsulinemia, sepsis)
increases heparanase production, which participates in glycocalyx degradation and the release
of growth factors. Heparanase and these factors then sustain fibrosis via the activation of the
EMT process. There is close interaction between macrophages and heparanase in the regulation of
the fibrotic process. The production of heparanase is moreover sustained by a vicious loop with
endothelin-1 released during glycocalyx degradation. In addition, the reduction of sirtuin-1 increases
TGF-beta signaling fueling fibrosis via EMT. The lack of sirtuin-1 also induces fibrosis through the
activation of the Notch and Wnt signaling pathways and the release of syndecan-4, which acts as a
chemoattractant.

6. Therapeutic Strategies to Preserve Glycocalyx

Since glycocalyx degradation affects the normal functions of endothelium but also
influences several pathological processes such as inflammation and fibrosis, there is the
necessity of therapeutic intervention to preserve its integrity and to restore its structure.
Below, we will briefly show the available and promising strategies to achieve this goal.

• Resuscitation fluids (fresh frozen plasma, plasma albumin, and hydroxyethyl starch)
may influence glycocalyx shedding [118].

• It has been proved that anesthetic sevoflurane attenuates glycocalyx degradation in
guinea pig hearts in a myocardial I/R injury model [78].

• Glucocorticoid: hydrocortisone reduced coronary resistance, vascular permeability,
tissue edema, the release of lactate, uric acid, purines, and histamine, which were
accompanied by severe degradation induced by TNF-α [119]. Dexamethasone sup-
pressed the expression of MMPs and rescued the expression of ZO-1 and syndecan-1
in sepsis [120].

• Elevated levels of oxidative stress are present in the serum of CKD patients [121];
moreover, antioxidant elements such as ascorbic acid are reduced, limiting NO bioac-
tivity [122]. Some strategies aimed at reducing oxidative stress have been tested.
In a rat model of angiotensin-II-induced hypertension, the administration of green
tea extract restored endothelium vasodilatation through ROS scavenging [123]. Ad-
ditionally, the use of the antioxidant N-acetylcysteine reduces oxidative stress in a
hyperglycemic state and, by doing so, reduces endothelial activation [124].
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• Heparin and heparinoids may act toward several mechanisms. Firstly, heparins, by
binding to endothelial cells, participate in the reconstitution of the glycocalyx and
recover its negative charge [125]. It has also been reported that heparins increase heparan
sulfate production and sustain its sulfation pattern [126]. Secondly, heparins are able
to control multiple inflammatory effects. Heparins are able to protect cells from ROS,
and they bind complement, growth factors and cytokines (i.e., interferon-γ and FGF-2),
and P- and L-selectin (inhibiting leukocyte adhesion) [127]. Third, heparins protect
endothelial cells from high-glucose damage by preventing the interaction of advanced
glycosylation end products with their receptors [128], reducing membrane disruption
and cell death [127]. Lastly, heparins are heparanase inhibitors, and thus they can
modulate all the effects of this enzyme in direct glycocalyx degradation but also in
inflammation and fibrosis [127]. Heparins are also able to bind and inhibit NF-κB [128]
and thus regulate inflammatory cytokines but probably also the same heparanase and
syndecan-4 expression involved in the development of fibrosis [88,116]. In this situation,
a promising agent is sulodexide, a mixture of 80% fast-moving heparin and 20% of
dermatan sulfate. Sulodexide has antithrombotic, profibrinolytic, anti-inflammatory,
antioxidant, and anti-ischemic properties. In addition, its proposed mode of action is the
inhibition of heparanase and also the modulation of MMP-9 production [127]. Animal
models revealed multifaceted effects of sulodexide on endothelial functions [127,129],
and, in clinical evaluation, sulodexide was able to partially restore endothelial glycocalyx
and vascular permeability in patients with type 2 diabetes [130,131].

• Another element that could help to maintain glycocalyx integrity in diabetes is atrasen-
tan and metformin. Atrasentan, antagonizing endothelin-1, reduces the glomerular
expression of heparanase and its activator cathepsin-L [73]. The mechanism of action
of metformin has not yet been clarified, but two weeks of metformin in drinking
water is associated with an improvement in glycocalyx barrier properties in db/db
mice [132].

• Since MMPs are central elements in glycocalyx degradation, some attempts at inhibi-
tion have been made, but more cell and animal experiments are necessary for a clinical
translation. In vitro, sphingosine-1-phosphate (S1P) inhibits MMP-9 and -13 activity
by activating the S1P1 receptor, which restores the endothelial glycocalyx through the
activation of the PI3K pathway. S1P by inhibiting MMPs prevents the shedding of
CS, HS, and the syndecan-1 ectodomain [133,134]. The use of pan-MMPs inhibitors,
however, is not viable [135]. Some studies have shown that specific MMP-2 and -9
inhibition prevent the shedding of SDC-4 and HS in response to TNF-α preserving
glycocalyx integrity [63,136].

• Another strategy to protect and reconstitute damaged glycocalyx is to supply en-
dothelial cells with glycocalyx components. It has been proved, in an in vivo model,
that glycocalyx damaged by hyaluronidase treatment can be partially recovered by
acute infusion of hyaluronan and chondroitin sulfate [137]. It has also been proposed
that the use of glycocalyx-mimetic biomaterials such as corline heparin conjugate,
a structure resembling a proteoglycan, is able to protect the vasculature in throm-
botic disorders and organ transplantation [138]. Additionally, elements designed to
improve the compatibility between blood and polymeric biomaterials, such as the
glycocalyx-mimetic dextran-modified poly(vinyl amine) surfactant, could represent
useful tools to ameliorate glycocalyx structure [139].

• Possible strategies in future could implement NO production through the use of small
molecules such as the protein kinase C inhibitor midostaurin, the pentacyclic triter-
penoids ursolic acid and betulinic acid, the eNOS-enhancing compounds AVE9488
and AVE3085, and the polyphenolic phytoalexin transresveratrol [140].

• Giving the central role of SIRT-1 on endothelial glycocalyx preservation strategies
aimed at restoration of its expression and activity are currently being tested [141]. The
first generation of SIRT1 activators were plant polyphenols, such as butein, piceatannol,
isoliquiritigenin, and mostly resveratrol [142,143]. Advances in sirtuin biochemistry,
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assays, and crystal structures allowed the development of more specific SIRT-1 mod-
ulators. Three small-molecule SIRT1 activators (SRT2104, SRT2379, and SRT3025)
have been tested in clinical trials. All the compounds were well tolerated. In three
studies, in elderly volunteers, healthy cigarette smokers, and type 2 diabetics, the
compound SRT2104 had a beneficial effect on lipids, decreasing serum cholesterol,
LDL levels, and triglycerides [139]. SRT2104 also reduced the LPS-induced release of
inflammatory mediators and activation of coagulation [144]. Other studies have been
carried out to test the anti-inflammatory effects of SRT2104 [141]. Starting from this
evidence, the evaluation of these compounds’ effects on glycocalyx preservation and
the regulation of fibrosis would be desirable to be made.

• It has been described that the patchy degradation of ESG is a result of the exocytosis
of lysosome-related organelles. The control of excessive exocytosis could be achieved
by sustaining NO production such as with NG-hydroxy-l-arginine, a nitric oxide
intermediate [145].

• A new and promising strategy to obtain the restoration of glycocalyx is the recently
described nanoliposomal carriers of preassembled glycocalyx [146]. These structures
are able to bind to cells with degraded glycocalyx and restore NO production in
endothelial cells, and they are able to induce a flow-induced vasodilatory response in
perfused mesenteric arteries with a degraded glycocalyx [146].

7. Conclusions

In conclusion, since the endothelial glycocalyx has a crucial role in the development of
organ fibrosis further research is needed to translate to the clinic new strategies to maintain
and reconstitute glycocalyx integrity.
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