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ABSTRACT: The band structure and electronic properties of a
material are defined by the sort of elements, the atomic registry in
the crystal, the dimensions, the presence of spin−orbit coupling,
and the electronic interactions. In natural crystals, the interplay of
these factors is difficult to unravel, since it is usually not possible to
vary one of these factors in an independent way, keeping the others
constant. In other words, a complete understanding of complex
electronic materials remains challenging to date. The geometry of
two- and one-dimensional crystals can be mimicked in artificial
lattices. Moreover, geometries that do not exist in nature can be
created for the sake of further insight. Such engineered artificial
lattices can be better controlled and fine-tuned than natural
crystals. This makes it easier to vary the lattice geometry,
dimensions, spin−orbit coupling, and interactions independently from each other. Thus, engineering and characterization of
artificial lattices can provide unique insights. In this Review, we focus on artificial lattices that are built atom-by-atom on atomically
flat metals, using atomic manipulation in a scanning tunneling microscope. Cryogenic scanning tunneling microscopy allows for
consecutive creation, microscopic characterization, and band-structure analysis by tunneling spectroscopy, amounting in the
analogue quantum simulation of a given lattice type. We first review the physical elements of this method. We then discuss the
creation and characterization of artificial atoms and molecules. For the lattices, we review works on honeycomb and Lieb lattices and
lattices that result in crystalline topological insulators, such as the Kekule ́ and “breathing” kagome lattice. Geometric but nonperiodic
structures such as electronic quasi-crystals and fractals are discussed as well. Finally, we consider the option to transfer the
knowledge gained back to real materials, engineered by geometric patterning of semiconductor quantum wells.
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1. THE EMERGENCE OF ELECTRONIC QUANTUM
MATERIALS

The field of (topological) electronic quantum materials is one
of the major research directions in current solid-state physics,
connecting theorists, solid state chemists, material scientists,
and experimental physicists. This rapidly expanding field has its
origin in several theoretical and experimental advancements
starting in the 1980s, and it was boosted by the isolation and
full electronic characterization of graphene.
Although the concept of a “quantum material” is not strictly

defined (indeed, the electronic properties of all materials have
a basis in quantum mechanics), some materials could be
considered more “quantum” than others. In the last decades, a
number of striking macroscopic physical phenomena have
emerged that can most appropriately be explained by plain
quantum physics.1,2 Notoriously, two-dimensional electron
gases exhibiting the quantum Hall3 and fractional quantum
Hall effects,4 several types of (high-temperature) super-
conductors,5−10 semiconductors with optoelectronic properties

that depend strongly on the overall dimensionality of the
crystal11−13 (0D−2D), the nanogeometry,14−21 and, more
recently, the rapidly expanding field of topological quantum
materials with electronic surface or edge states.22−44 In the
latter, the boundary states are protected by topology: (i) by
valence/conduction band inversion due to strong spin−orbit
effect (so-called quantum spin Hall insulators) or (ii) by
certain crystal symmetries (topological crystalline insulators).
For electronic solids, the extended wave functions (Bloch

states) and related band structure depend in an intricate way
on (i) the atomic elements of the crystal defining atomic
energy levels and strength of spin−orbit coupling or magnetic
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effects, (ii) the precise atomic registry defining the
(anisotropic) electronic coupling, (iii) the overall dimensions
of the system, i.e., in how many directions wave functions are
confined, (iv) for 1D and 2D systems the superimposed
nanogeometry, for instance, a two-dimensional electron gas
molded in a Lieb, Kagome, or honeycomb geometry on the
nanoscale, and (v) the presence of Coulomb or spin
interactions between the quasi-particles. Theory has been
dominant in the still young field of quantum materials. Several
quantum phenomena of high potential interest have been put
forward by theorists.1,39,44−53 Experimental realizations often
lag behind these theoretical predictions because a given
“theoretically interesting” material has to be grown as a crystal
with precise chemical composition and crystal structure,
dimensionality, and nanogeometry. In addition, the material
should not have (too many) defects or impurities. This
requires advanced synthesis and structural characterization of
the material down to the atomic level. Study of the electronic
band structure requires incorporation of the material in an
optical or electronic device for optical or electronic spectros-
copy and/or transport measurements. For graphene, this cycle
of material research could be completed due to graphene’s
intrinsic simplicity, simple growth and isolation, and chemical
stability. Transport measurements in a magnetic field
unambiguously demonstrated the anomalous quantum Hall
effect, related to the electronic Dirac band structure of
graphene.54 Graphene can also be deposited or grown
relatively easily on a flat metallic or insulator surface, allowing
for atomic force55−58 and scanning tunneling microscopy and
spectroscopy.58−65 An active and promising area of interest at
present is the molecular synthesis of atomically precise ribbons
of graphene66 with well-defined arm-chair or zigzag edges. The
measurement of their electronic band structure with scanning
electron tunneling spectroscopy is directly linked to their
atomic landscape, and reveals the direct influence of
dimensions, edges and geometry on the electronic properties
of a 2D crystal.56,66−76

The quantum materials that arrived on the scene after
graphene were generally more complex. Strained 2D HgTe was
the first material that was discovered to exhibit the famous
quantum spin Hall effect,34,36,77 the second important
topologically protected electronic phase after the quantum
Hall effect. The two-dimensional crystals of HgTe obtained a
tweaked zinc blende crystal structure due to strain induced by
epitaxy with CdTe. The strained zincblende structure and the
strong intrinsic spin orbit coupling present in HgTe induces
inversion of the conduction and valence bands. As a result, a
topologically protected insulating gap arises in the HgTe
crystal, with helical electronic states at the edges of the crystal.
Here, helicity means that there is an edge state with the quasi-
particle spin locked to its momentum in one direction, say
(E,k,↑), and a second counterpropagating spin mode (E,−k,↓).
The one-dimensional helical quantum channels support
transport without dissipation: back scattering is impossible,
except if there is a spin-flip. Later, 2D HgTe was also
considered as a material basis for a nanoscale honeycomb
structure. For this system, Dirac-type valence and conduction
bands have been predicted. Due to the strong intrinsic spin−
orbit coupling, a robust 30 meV band opening arises at the
Dirac point, hosting quantum spin Hall edge states.21 In this
system, the quantum spin Hall effect is due to the honeycomb
geometry combined with strong intrinsic spin−orbit cou-
pling.41,42 Two-dimensional crystals of HgTe with a honey-

comb geometry on the nanoscale have not yet been
experimentally realized.

2. ANALOGUE QUANTUM SIMULATIONS WITH
ELECTRONIC ARTIFICIAL LATTICES AS MODEL
SYSTEMS

The field of quantum materials is rapidly expanding with
discoveries at the frontiers of science. However, all progress
and in some cases lack of progress is directly related to
reproducible material synthesis and the fabrication of clean
samples for scanning tunneling microscopy and devices for
transport analysis. Here, quantum simulations using artificial
lattices, created atom-by-atom in a scanning tunneling
microscope, and thus atomically precise, come on stage.
Some materials might be so complex or difficult to fabricate
that it is worth building an artificial analogue that mimics
several of the essential elements of the original material and is
thus described with a similar Hamiltonian. Artificial lattices
provide more control and are often easier to characterize than
complex real materials.78 Quantum simulations have addressed
questions in electronic material science,79−85 fundamental
physics,86−90 and chemistry.78,89,91 As far as we know, the first
ideas on quantum simulation go back to Richard P.
Feynman.92,93 Furthermore, with his lecture “There is plenty
of room at the bottom”, he anticipated the creation of quantum
architectures by control over individual atoms; nothing more
than a futuristic concept at that time. These ideas have now
been fully realized with cold atoms in optical lattices and with
atomic manipulations in a scanning tunneling microscope.
The artificial atoms, molecules, and lattices that we will

discuss in this review are electronic in nature and fabricated in
a scanning tunneling microscope by atomic manipulation of
adatoms (or CO molecules) on a flat metallic surface. We will
outline the concept of a designed artificial electronic lattice, its
physical elements, and its characterization. Briefly, artificial
two-dimensional sites can be defined by arrays of adatoms or
carbon monoxide molecules on well-defined positions on a
metallic substrate. The surface state electrons are forced into
artificial sites. These sites can be considered artificial atoms, be
it in two dimensions. Artificial molecules and entire lattices,
devoid of impurities, can be constructed from this type of
artificial atom. With scanning tunneling spectroscopy, the local
density of states (LDOS or electron probability density
|φ|2(x,y)) can be measured, from which the band structure is
derived. This methodology can thus provide a one-on-one
relationship between electronic band structure and the lattice
geometry, a powerful tool to test concepts and theories. We
remark here that artificial atoms, molecules, and lattices can
also be engineered by assembling corral-type organic structures
and periodic organic scaffolds to mold the two-dimensional
electron gas present on the surface of noble metals.94−96

Artificial model systems are versatile. In addition to
mimicking 2D materials on an atomic level, defects and
impurities can be introduced and the consequences for the
electronic band structure can be quantified. In an artificial
lattice, it is also possible to change one parameter at a time,
which is usually not the case in real materials. Furthermore,
theories often use simplified assumptions; artificial lattices
enable us to check the validity of these assumptions since they
are based on experimental observations. For instance, band
structure predictions are often based on tight-binding
calculations based on nearest-neighbor hopping only. Measure-
ments on artificial lattices have shown that next-nearest-
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neighbor hopping may substantially change the predicted band
structure, e.g., by showing that predicted flat-bands obtain a
(weak) dispersion.97

A drawback of artificial lattices created with adatoms on a
metallic surface is that surface-bulk scattering of the electrons
results in a limited coherent lifetime of the surface states
electrons, thus causing broadening of electronic resonances.
This depends on the metal and its crystallography; for instance,
on the Cu(111) surface, lifetime scattering results in
broadening effects of about 24 meV at the band minimum at
4.6 K.98 This value increases to about 80 meV in artificial
lattices made from CO. In contrast, lifetime scattering on the
Ag(111) surface is only about 6 meV at 4.6 K98.
So far, electronic correlations, Cooper pair formation, and

spin−orbit coupling have not been introduced in artificial
electronic lattices, although they are essential physical elements
of many real quantum materials and may result in topologically
protected electronic phases.22,99−103 These components are
important next steps in the pursuit of the mastery of quantum
materials. It is possible that a metallic substrate or adatoms of
high atomic mass, such as thallium, lead, or bismuth, could
induce spin−orbit coupling into the surface-state electronic
gas.104 Superconductive proximity from the underlying metal
may induce electron pair formation in a surface state electron
gas.105−107 Coulomb interactions between the electrons are an
essential element in many quantum materials. The artificial
lattices reported so far have a high electron density and thus a
strong screening of these interactions. To enable simulation of
Coulomb interactions, electron-poor surface-states will be
required for systems in which the density of the surface gas can
be manipulated by an electrostatic gate. This stage has not
been reached yet. So far, artificial lattices prepared on flat
metallic surfaces are appropriate to simulate the effects of
lattice geometry in the single-electron regime. Even with these
limitations, interesting lattices with Dirac bands, flat bands, and
topological edge states have been simulated in a very
convincing way. Before we review these systems, we shortly
discuss analogue quantum simulations with particles other than
electrons.

3. QUANTUM SIMULATIONS WITH OTHER
PARTICLES

A large variety of platforms are used for analogue quantum
simulation, e.g., ultracold atoms, trapped ions, superconducting
circuits, gated semiconductors, and optical lattices. The
platform in which analogue quantum simulations have reached
the most advanced stage is that of ultracold atoms caught in
optical lattices.79,84,108,109 Two-dimensional lattices with
potential wells and barriers are created with crossing laser
beams; they are loaded with ultracold atoms (bosons or
Fermions) with a temperature in the nanokelvin regime.110,111

The atomic occupation of each lattice site is measured by light
scattering and monitored as a function of the on-site energies,
tunneling barriers, lattice geometry, and external fields. The
average occupation is usually smaller than one atom per lattice
site. Although the lattice engineering, length scales, particles,
and monitoring of the particle positions are completely
different from those in electronic lattices, the class of physical
questions that can be investigated is very similar. For instance,
flat bands in the Lieb and honeycomb lattices have been
simulated.82,97,112,113 This has also been done with artificial
electronic lattices. The advanced stage of cold-atom optical

lattices has enabled the investigation of on-site interactions and
spin−orbit coupling.82,114−116
A second material system that has proved successful in

analogue quantum simulations is that of pillar arrays of III−V
semiconductors. Each pillar contains a stacking of quantum
wells and optical cavities to increase the interaction between a
quantum-well exciton and its resonant photon. The resulting
quasi-particle (or excitation) of interest is hence an exciton-
polariton.117 The geometry of the array of semiconductor
pillars defines the lattice with lattice sites and hopping barriers
for the exciton polaritons.118−137 The de Broglie wavelength of
exciton polaritons is large and is used to control hopping and
interaction in the lattice. Exciton-polariton lattices are very
powerful quantum simulators and could simulate the effects of
lattice geometry on the band structure, from the single-particle
regime119,138−141 to that of (strong) interactions.142−144 In the
limit that exciton-polaritons are nearly photons, we deal with
purely photonic lattices, which also have shown strong
potential for quantum simulation.131,145,146

Quantum simulations with arrays of semiconductor
quantum dots in which the electron occupation per quantum
dot can be controlled by individual gates also allow for the
study of many-body effects.90,147−150 These arrays are most
alike the artificial lattices on metallic surfaces that are
presented below.

4. THE PHYSICAL ELEMENTS OF ARTIFICIAL
LATTICES PREPARED IN A SCANNING TUNNELING
MICROSCOPE

This section will describe the separate physical elements
underlying the modeling of quantum materials with artificial
electronic lattices. Each of these elements is the result of
extensive theoretical and experimental research, work that in
some cases has even resulted in a Nobel prize. We have chosen
to construct a brief and comprehensive review that contains
sufficient detail to understand the principles behind the
creation and characterization of artificial electronic lattices in
a scanning tunneling microscope and their characterization
with scanning tunneling spectroscopy; these activities can be
considered as attempts of “analogue quantum simulation” of
real lattices with the same geometry.

Scanning Tunneling Microscopy and Spectroscopy

After its invention,151,152 scanning tunneling spectroscopy was
rapidly developed as an accurate method to map the atomic
structure of metallic surfaces and adsorbed flat molecules or
two-dimensional systems. In brief, an electrically conductive tip
is scanned over a metallic surface, with the tip in quantum
mechanical tunneling contact with the surface. This means that
the tip is within a nanometer of the metallic surface. A bias V is
applied between the tip electrode and the metallic substrate,
inducing an electric field over the vacuum gap between the tip
and the metal surface. This results in a controlled difference
between the Fermi energy of the tip and that of the substrate,
which constitutes the thermodynamic driving force for directed
electron tunneling. The bias V is defined as eV = EF,tip −
EF,sample. The convention here is that, at positive bias, the Fermi
level of the tip EF,tip is at higher energy than that of the sample,
EF,sample. When V is different from zero, an electron tunnel
current flows from the tip to the substrate, or vice versa, and
this current (usually smaller than 1 nA) is measured in an
external circuit. At positive bias, electrons can tunnel from the
tip to the substrate. Quantum mechanical electron tunneling
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between (the last atom on) the tip and the metal surface is
roughly exponentially dependent on the tip−surface distance,
which allows one to map the atomic periodicity of the metal
surface, or to detect the presence of adatoms or molecules. In
other words, a spatial map of the current variations at constant
tip height (or more commonly, tip height at constant current)
represents the atomic corrugation of the surface and highlights
adsorbed species.153

The scanning tunneling microscope also allows one to
perform powerful spectroscopy, providing the local electronic
density of states, denoted as LDOS(E,x,y). Briefly, the tip is
positioned with atomic accuracy at a specific position (x,y) on
the sample at a given and constant tip height. The bias V
between the tip electrode and the substrate is varied, and the
tunnel current I and conductance dI/dV are measured as a
function of the bias V; dI/dV vs V corresponds then to the
LDOS(E) at that position. To understand this, we consider a
quantum mechanical system with discrete energy levels (e.g.,
an adatom, molecule, quantum dot) on the substrate surface
with the tip placed above this system. When the bias is
increased above zero, a tunnel current is detected when the
Fermi-level of the tip becomes resonant with an empty energy
level of the quantum system. Hence, the empty energy level is
measured as a step in the (I,V) curve or as a peak in the dI/dV
vs V plot. The next energy level is then detected as a second
peak in the dI/dV vs V plot. The same holds when the bias is
made negative, and the filled energy levels of the quantum
system are detected by onsets of tunneling from the substrate
to the tip. We conclude that the energy levels of quantum
mechanical objects on a metallic surface can be measured by
scanning tunneling spectroscopy.154−165 Two remarks should
be added: First, when an electron enters an adsorbed quantum
system, it charges this object; this means that the resonance
occurs at an energy equal to single-particle energy + the
charging energy (also noted as self-energy). This charging
energy can be expressed as e2/C, with C being the capacitance
of the quantum object in the given tip/object/substrate
double-barrier junction. If a second electron tunnels into the
object before the first one has left, double charging occurs and
the resonance bias V for the second electron is increased by an
amount equal to the Coulomb energy.166 This means that, in
principle, tunneling spectroscopy allows one to quantify the
single-particle energy of the eigenstates, and the energy scale of
Coulomb repulsion between the two (or more) electrons
populating the quantum object as well.161 In the literature,

there is a vast number of reports on energy-level spectroscopy
of metallic samples, adsorbed atoms, molecules, and extended
lattices.
This Review focuses on the spectroscopy of artificial atoms

and artificial lattices prepared directly on metallic surfaces by
atomic manipulation in a scanning tunneling microscope
(STM). The screening of the self-energy and electron−
electron interactions within these systems is strong, and we can
safely assume that the tunneling-resonances, discussed below,
quantify the single-electron energy levels or dispersive bands of
the system. Hence, the single-particle local density of states
LDOS(E) is measured at a certain position (x,y) by dI/dV vs
V. The magnitude of dI/dV is proportional to the squared
wave function of the eigenstate at given bias (given energy). In
other words, a spatial map of dI/dV at given bias V reflects the
energy-resolved local density of states LDOS(E,x,y), also called
the probability density |φ(E,x,y)|2, of the system. Scanning
tunneling microscopy, spectroscopy, and wave function
mapping are appropriate tools in the study of artificial lattices.

Metals with Surface State Two-Dimensional Electron
Gases

In 1939, William Shockley published an influential work on the
energy levels and bands related to the surfaces of three-
dimensional metallic crystals.167 This work commented on and
incorporated earlier work of Tamm168,169 and Goodwin.170−172

The argumentation starts with a finite linear chain of quantum-
mechanically coupled atoms. It is obvious that the potential
energy landscape at both ends of the chain is different from the
interior of the chain. The coupling of N atoms in the chain
results in N energy levels that can form a dispersive band. Due
to the deviating potential landscape of the ends of the chain,
two of the N energy levels can be energetically separated from
the band. The two energy levels have a strong electron density
localization over a few atoms at the ends of the chain. In the
three-dimensional case, considering a crystal of N × N × N
atoms, on the order of N2 levels are localized on surface atoms,
and Shockley anticipated that these energy levels themselves
can form a two-dimensional dispersion with in-plane wave
vectors, separated from the bulk bands. Such a band thus
contains electrons caught in a two-dimensional potential with
free motion and wavevectors parallel to the surface, i.e., a two-
dimensional electron gas. Surface bands of energy close to or
overlapping with the bulk Fermi level are of particular
importance.

Figure 1. Two-dimensional electron gas residing on the surface of Cu(111). (a) Typical surface state band of a Cu(111) surface as characterized by
scanning tunneling spectroscopy. The surface state sets on at V = −0.45 V. The shaded energy range between −0.45 and 0.5 V is suitable to localize
electrons in artificial lattices. (b) Energy-wavevector dispersion of the Cu(111) surface state electrons presented in the gap above a filled bulk band
(gray). The Fourier-transformed scanning tunneling spectroscopy data (blue) coincide with the results of photoemission spectroscopy (green) and
follow a parabola in the energy range between −0.45 and 0.5 V. Reprinted with permission from ref 173. Copyright 2011 the American Physical
Society.
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The surface-state band of a Cu(111) surface, characterized
by scanning tunneling spectroscopy, was reported by the IBM
Almaden group and confirmed by other experiments.174−176

Figure 1 shows the results that were obtained. The surface
state density sets on at an energy of −0.45 eV with respect to
the Fermi-level, rises rapidly to a maximum, before slowly
decaying to become negligible at 0.5 eV. With angle resolved
photo emission spectroscopy (ARPES), the energy vs surface-
parallel wavevector dispersion was determined, being nearly
the same as that obtained with scanning tunneling spectros-
copy.175−177 The energy region between −0.45 and +0.5 eV
will thus form our working region of interest; in this region, it is
possible to confine the Cu (111) surface state electrons into
artificial atomic sites and lattices (see below).
More generally, the energy vs wave vector dispersion

relation of (electron-occupied) surface bands has been
investigated extensively with scanning tunneling spectroscopy
and Angle Resolved Photoemission Spectroscopy (ARPES),
for several facets of noble metals.155,178−191 Alternatively, the
oscillatory LDOS patterns of surface waves at step edges or
around scattering adatoms can be measured as a function of
the bias, ultimately providing the dispersion relation and the
effective surface electron mass, around 0.38mo for
Cu(111).174,192 Furthermore, surface states can hybridize
with the specific energy levels of an adatom, giving rise to an
atom-localized electronic state that can often be distinguished
from the two-dimensional surface band by scanning tunneling
spectroscopy. For instance, a Cu adatom on a Cu(111) surface
state gives rise to a localized state of energy just below the
onset of the surface band itself.193 By using atomic
manipulation (see below), two-dimensional constructions of
chains of Cu adatoms could be prepared. The energy levels and
dI/dV maps, proportional to the squared wave function, appear
to be determined by the size and shape of the atomic
chain.194−198 In fact, these energy levels can be considered as
arising from standing waves in a “molecule” of adatoms. In
other words, “artificial atomic sites” emerge. Such architectures
and others can be prepared on a sample surface with atomic
accuracy, in a cryogenic scanning tunneling microscope.
Atomic manipulation is the second physical element required
to prepare and study artificial lattices.

Atomic Manipulation of Atoms or Small Molecules
Adsorbed on a Metal Surface

Adatoms and small molecules, such as carbon-monoxide CO,
chemisorb on clean and flat metal terraces in such a way that a
minimum-energy configuration is formed. Adatoms on, e.g., a
(111) face of an fcc crystal typically take the trigonal valley
between three atoms of the metal surface to maximize van der
Waals and chemical interactions. CO forms an interesting
exception to this, as on, e.g., a Cu(111) surface the carbon
atom binds directly on top of a Cu atom.199 If a metallic tip is
brought closer to a chemisorbed CO or adatom, the adatom/
tip attraction can become of the same order as the
chemisorption energy, and an adatom might be transferred
from the sample to the tip and placed on another well-defined
position on the surface, i.e., vertical manipulation. In a subtler
way, the tip can drag an adsorbate along the sample surface by
applying a lateral force, position it, and then retract from the
surface, i.e., horizontal/lateral manipulation. Atomic manipu-
lation was developed in the beginning of the 1990s in the IBM
Almaden group and extended by other groups; it was shown
that noble gas atoms and transition metal adatoms could be
positioned on a flat metallic surface.192,200−208 Later, CO
molecules chemisorbed with the C atom on top of the surface
atoms could also be manipulated.205,207 As CO molecules act
as barriers for surface state electrons, they are appropriate for
preparing artificial atomic sites, molecules, and lattices by
confinement of these electrons in a limited surface area. It is
precisely this confinement method that we have used
extensively to prepare artificial lattices and even fractal
structures (see below).

Artificial Atoms and Molecules Defined by Adatoms

The orbitals of Cu adatoms can interact with the Cu(111)
surface band, and form new states localized on the adatom.193

This concept was soon extended to study adatom clusters with
a well-defined shape and size. The eigenstate energy levels of
these 2D architectures and maps of the squared standing wave
function patterns195,196 were obtained from scanning tunneling
microscopy and spectroscopy. From this, it became clear that
Cu adatom clusters form quantum boxes with atomic/
molecular-type eigenstates. The interaction of these quantum
eigenstates with (i) the surface band existing outside the
system, and (ii) bulk bands of the Cu substrate results in a
broadening of the states.177 We remark here that, recently, In
adatoms on a reconstructed (111) InAs surface have also been

Figure 2. Quantum corral or artificial atom in two dimensions prepared on a Cu surface by atomic manipulation. (a) The quantum corral consists
of 48 Fe atoms, positioned by atomic manipulation in a circle with a radius of 7.13 nm. The scanning tunneling spectroscopy |φ(E,x,y)|2 map (wave
function map) reveals the standing-wave pattern inside the corral at a bias of V = 10 mV. Reprinted with permission from ref 341. Copyright 1999
the American Physical Society. (b) Tunneling conductance dI/dV vs the bias V, acquired in the center of the corral, shows well-defined discrete
energy levels, which can be considered as the eigenstates of the artificial atom. Reprinted with permission from ref 342. Copyright 1993 American
Association for the Advancement of Science.
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used to engineer artificial molecular structures for which the
molecular orbitals were characterized in terms of their energy
and spatial extension.209

Artificial Atoms, Molecules, and Lattices Defined by
Vacancies in an Atomic Layer

Another way to prepare artificial systems is based on a CuCl
monolayer crystal on a Cu(100) surface.210 In this monolayer,
Cl-vacancies can be manipulated and positioned at will using
the STM tip. The Cl vacancies act as artificial atomic sites with
a well-defined energy level, and ability to couple to identical
neighboring artificial sites. Linear Su−Schrieffer−Heeger
chains with topological end-states and a two-dimensional
Lieb lattice were engineered by coupling of such vacancy
sites.83,211 Lattices made with this platform will be discussed
below.
Artificial Atoms, Molecules, and Lattices Defined by
Confinement between Adatom or CO Barriers

The oscillatory patterns observed close to step edges and
impurities indicate that surface-state electron waves, moving
parallel with the surface, scatter with many sorts of adatoms. In
a seminal work, corrals of such scatterers were prepared by
atomic manipulation.192 Inside the corral, the local LDOS
shows a standing-wave pattern, which reflects the squared wave
function of electron states confined into the corral, denoted as
|φ(E,x,y)|2 (see above and Figure 2). A sound quantum
mechanical explanation of the energy levels and wave functions
of such quantum corrals showed that they can be considered as
artificial two-dimensional atomic sites.212,213 In the next
section, we present smaller quantum corrals as artificial atomic
sites, which will then form the basis for artificial molecules and
artificial lattices.

5. ARTIFICIAL ATOMS AND MOLECULES IN TWO
DIMENSIONS

Here we discuss two-dimensional artificial atoms created by
quantum corals formed by CO on Cu(111). We mention here
that such corrals can also be formed by ring-shaped molecular
architectures.94

Artificial Atom: Wave Functions, Orbitals, and Energy
Levels

We consider a corral defined by CO atoms on the Cu surface;
see Figure 3. Each carbon monoxide molecule acts as a
repulsive scatterer and defines an electrically repulsive potential
of about 0.9 eV per CO.214 In this way, a two-dimensional
disk-shaped quantum box is defined, in which electrons are
confined as standing waves.174,192 In what follows, we will call
such sites artif icial atoms. An electron confined in such an
artificial atom takes on quantized values of energy and angular
momentum (for circular corrals).213

We model the disk-shaped quantum box by an origin (0,0)
and a radius a. For simplicity, we will assume an infinite
potential well around the circular artificial atom:

= < ≥ = +∞V r r a V r a( ) 0 for , ( ) (1)

Using the polar coordinates (r,θ) and assuming that the radial
and angular part of the wave functions can be separated, i.e.,
ψ(r,θ) = Θ(θ)R(r), the Schrödinger equation becomes
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The solutions are derived in the SI, section 1, and read:
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in which R(n,m) is the two-dimensional radial distribution
function, depending on the principal quantum number n and
the angular quantum number m; it is a Bessel function of the
first kind and of order m. The wave functions with quantum
number n have n − 1 nodal circles in the quantum box. The
function eimθ describes the angular dependence of the wave
function and depends only on the angular quantum number m,
with m = 0, ±1, ±2, ... and defines m nodal lines in the
quantum box, or artificial atom. The energy levels and wave
functions are presented in Figure 3. The two-dimensional wave
functions bare a strong resemblance with the three-dimen-
sional orbitals of real atoms. For instance, (n = 1, m = 0)
presents a 1s orbital and (n = 1, m = +1), (n = 1, m = −1)
present wave functions that evolve clockwise and anticlock-
wise; from a linear combination of these two wave functions,
px, py orbitals can be formed. Furthermore, (n = 1, m = +2), (n
= 1, m = −2) represent two in-plane d orbitals and (n = 2, m =
0) has a nodal ring and corresponds to a 2s orbital. Please,
notice that, in two-dimensional artificial molecules and lattices,
the energy, symmetry, and sign of the lattice site orbitals are all
important factors for the band structure.
Artificial Atom: Experimental Realization and
Characterization in an STM

We now present and discuss a circular artificial atom created
on a Cu(111) surface; see Figure 4. Figure 4a shows the

Figure 3. Orbitals of artificial atoms in two dimensions. (a) Artificial
atom defined by a ring of electron-repulsive CO molecules (black)
placed on specific positions on a Cu(111) surface (orange). (b)
Analytical calculation of the real part of the wave functions labeled by
their radial quantum number n and the angular momentum quantum
number m. The (n = 1, m = 0) orbital is equivalent to an s orbital.
From the (n = 1, m = −1) and (n = 1, m = −1) orbitals, px and py
orbitals can be constructed. (c) Energy scheme of the lowest energy
levels labeled by (n,m). (d) Squared modulus of the wave functions
|φ(E,x,y)|2, providing spatial maps of electron probability. Reproduced
with permission from ref 343. Copyright 2020 SciPost Foundation.
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schematic of a circular corral. dI/dV vs V (corresponding to
the LDOS) spectra were acquired at the positions marked at
the center and close to the boundary; see Figure 4b. The
spectrum taken in the center shows a resonance at −0.17 V,
while the one taken off-center shows an additional peak at 0.21
V. The maps of (dI/dV)(x,y) (Figure 4c) show that the two
resonances correspond to the (n = 1, m = 0), and (n = 1, m =
−1), (n = 1, m = +1) states. The images are reminiscent of the
probability density of s orbitals and degenerate p orbitals,
respectively. Consequently, these states will be referred to as s-
like and p-like states.

Artificial Dimer-type Molecules: Experimental Realization
and Characterization in an STM

The analogy of a quantum corral to an atom can be extended
further: two corrals can be coupled together to form a dimer,
resulting in an interaction between the on-site orbitals to form
bonding and antibonding molecular orbitals. In a dimer, there
is an increased probability density in between the two nuclei at
the energy of the bonding state. The reverse is true for the
antibonding orbital; in this case, a node exists between the
corrals. The energies of bonding and antibonding orbitals are
observed by measuring dI/dV spectra at different positions in
the artificial dimer; see Figure 4d. A spectrum in the region
between the two sites shows a peak at −0.24 V corresponding
to the bonding orbital. The antibonding state can be detected
in the center of the two atoms at −0.14 V. Figure 4f shows
differential conductance maps at the energies of the bonding
and antibonding orbitals, respectively. This concept of
coupling quantum corrals is the basis behind the construction
of artificial electronic lattices, as was first demonstrated in a
seminal study of an artificial honeycomb lattice (coined
“molecular graphene”.215

6. SIMULATION OF AN ELECTRONIC LIEB LATTICE

General

The geometry of the Lieb lattice is well-known from the AX2
planes in the 3D ABX3 perovskite structure, such as the
superconducting CuO2 planes in cuprate high-temperature
superconductors.216 However, the geometry does not exist as
such in a natural 2D material, making the electronic Lieb
lattice an ideal candidate for analogue quantum simulation (see
below). The Lieb lattice is a depleted square lattice, consisting
of three (artificial) atoms per unit cell: two edge sites (red),
connected to two nearest neighbors, and one corner site (blue)
with four nearest neighbors216,217 (see Figure 5a). The Lieb
lattice can alternatively be defined as the split graph of the
square lattice.218 The three-atom basis gives rise to three s
orbital bands. Two bands converge to a Dirac cone at the

Figure 4. From artificial atoms to artificial molecules. (a) Schemes of
the artificial atom and (d) artificial diatomic molecule. The dark dots
represent CO molecules, and the orange dots represent the Cu(111)
surface atoms. The positions on which the spectra were taken are
marked in (a) black and red, and (d) black and blue. (b,e) dI/dV
spectra averaged over several measurements on each position and
divided by the average bare Cu(111) spectrum acquired with the
same tip. The light-colored dots represent this data. The continuous
lines represent the moving average. (c) Differential conductance maps
of the artificial atom showing the m = 0, n = 1 (1s) and the m = 1 or
−1 (in-plane 1p) states at −0.17 and 0.21 V, respectively. (f)
Differential conductance maps of the artificial dimer showing the
bonding and antibonding combinations of two 1s orbitals at −0.24
and −0.12 V, respectively. Reproduced with permission from ref 343.
Copyright 2020 SciPost Foundation.

Figure 5. Quantum simulation of the Lieb lattice in a scanning
tunneling microscope. (a) Schematic of the Lieb lattice. The unit cell
(dashed contour) contains two edge sites (red) and one corner site
(blue). (b) Band structure at the corner of the Brillouin zone of an
ideal s orbital Lieb lattice, comprising a Dirac cone (purple) and flat
band (red). (c) Configuration of CO molecules (black) on Cu(111)
(orange background) to confine the Cu surface-state electrons into
the Lieb geometry. (d) Configuration of chlorine vacancies (black) in
a chlorine monolayer on Cu(100) (orange), coupled to a Lieb lattice.
(e,f) Characterization of the Lieb lattice of chlorine vacancies, Figure
5d: (e) Wave function map at V = 3.15 V, corresponding to the
energy of the lowest Dirac band. (f) Wave function map at V = 3.5 V,
the flat band energy, showing a high LDOS at the edge sites of each
unit cell. (g−j) Wave function maps for the Lieb lattice constructed
with CO molecules on Cu, Figure 6c: (g) Wave function map at V =
−0.2 V, corresponding to the energy of the lowest Dirac band. (h)
Wave function map at V = −0.05 V, the flat band energy, showing a
high LDOS at the edge sites of each unit cell. (i) Wave function map
at V = +0.55 V, showing the coupling of in-plane p orbitals in the Lieb
lattice. Panels (a)−(c) and (g−i) are adapted with permission from
ref 214. Copyright 201Springer Nature. Panels (d)−(f) are adapted
with permission from ref 211. Copyright 2017 Springer Nature.
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Brillouin zone corners; the Dirac cone is intersected by a flat
band (see Figure 5b). Similar to graphene, the linear dispersion
in the Dirac cone leads to massless electrons which can
propagate in the lattice at a constant velocity. In contrast, the
electrons in the flat band are localized on the edge sites of each
unit cell. Generally, the realization of a flat band is particularly
interesting for the investigation of electron−electron inter-
actions,219−222 the quantum spin Hall effect,134,216,223 and
superconductivity.106 An optical equivalent of the Lieb lattice
was theoretically proposed113,224 and subsequently realized in
bosonic and Fermionic cold-atom lattices.225,226 Moreover,
photonic Lieb lattices were realized and the band structure was
mapped.135,219,220,222,227,228 Recently, exciton-polaritons122,229

were studied in a Lieb geometry.

Simulation of the Electronic Lieb Lattice

The electronic Lieb lattice was realized via two approaches:
chlorine vacancies and CO on Cu(111). Drost et al.
manipulated chlorine vacancies in a chlorine monolayer on
Cu(100).211 The approach was originally presented in the
seminal work performed in the group of Otte.83 A Lieb lattice
of 3 × 3 unit cells with Cl-vacancies as artificial atoms was
created, see Figure 5d. Differential-conductance spectra and
maps showed the bottom Dirac band and the edge-localized
flat band, corroborating the main characteristic features of the
Lieb lattice (Figure 5e,f). An advantage of this approach is that
the direct lattice is patterned, in contrast to the inverse
geometry required for the CO-on-Cu(111) platform. More-
over, the Cl-vacancy platform is ideal for C4-symmetric lattices.
A disadvantage is that the on-site energy of the vacancy states
is close to the Cl-conduction band, leading to a limited

accessible energy range. As a consequence, the Dirac band
above the flat band could not be resolved.
In the work of Slot et al.,214 the CO-on-Cu(111) platform

was used. The Lieb lattice is C4-symmetric, which means that
the lattice is not entirely compatible with the underlying
Cu(111) lattice. However, since the artificial atoms formed by
COs on top of the Cu atoms comprise many Cu atoms, good
approximations to the Lieb lattice can be prepared, even on a
hexagonal Cu(111) surface.214,216,217,230,231 Since the Lieb
lattice has no dual lattice, the inverse lattice was defined using
crosses of five CO molecules, as indicated in Figure 5c. The
unit cell was chosen such that the on-site energy was near the
Fermi energy and the anisotropy of the C4-symmetric Lieb
lattice on the triangular Cu(111) background was minimized.
Scanning tunneling spectroscopy resolved the bottom and top
Dirac bands and a quasi-flat band. Furthermore, LDOS maps
showed the localization of the Dirac bands on both the corner
and edge sites (Figure 5g) while the flat band resides on the
edge sites only (Figure 5h). The second band (supposedly flat)
has acquired a dispersion due to a substantial next-nearest-
neighbor hopping and coupling with higher-energy bands.
At energies above the three lowest bands, p orbital bands

were observed (see Figure 5i). We should remark here that p
orbital bands were first established in cold-atom lattices.108,232

More recently, p orbital honeycomb and Lieb lattices were
realized with photonic- and exciton-polariton excita-
tions.122,229,233 The C4-symmetric Lieb lattice is a suitable
candidate to describe p orbitals in a convenient px and py
orbital basis.234 Motivated by the higher-energy bands
observed in the initial Lieb lattice, in Slot et al.,234 the
artificial-atom sites were enlarged in order to decrease the on-
site energy and thus shift the p orbitals down to the

Figure 6. Design and realization of the first quantum simulation of a honeycomb lattice, “molecular graphene”. (a) Schematic overview of the
placement of the electron repelling CO molecules (black) on a Cu(111) substrate (copper), as performed by Gomes et al. The lattice vector is 1.92
nm. The green circles indicate the lattice sites of the honeycomb lattice. (b) Measurement of LDOS(E) as a function of the bias, showing the Dirac
cone with the Dirac point indicated by ED. The spectrum is an average of the positions indicated by green circles in (a). (c) Scanning tunneling
microscope image of the artificial lattice with a high LDOS(E,x,y) in yellow indicating the high electron probability in the honeycomb network. (d)
Scanning tunneling microscope image of the stretched artificial lattice simulating a 60 T field. The LDOS is higher at one sublattice (bright sites)
compared to the other sublattice (darker sites). (e) Scanning tunneling microscope image of adjoined honeycomb lattices with different lattice
spacing (1.78 and 2.04 nm, respectively) forming a p−n−p junction. (f) Contour plot of the LDOS(E) taken along the center line of the p−n−p
junction indicated by the arrows in (e). The dashed line at 0 mV marks EF. The Dirac point (low electron density) is shown by the white line.
Reprinted with permission from ref 215. Copyright 2012 Springer Nature.
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appropriate energy range −0.45 < E < 0.5 eV. LDOS maps
displayed nodes on the artificial-atom sites and a finite DOS
between the sites, characteristic for the low px and py orbital
bands.234 In addition, the on-site energies of the px and py
orbitals were tuned separately by creating an asymmetric Lieb
lattice, breaking the spectral degeneracy of the px and py orbital
bands.
The work on s and p orbitals in the Lieb lattice established

that the orbital degree of freedom is among the parameters that
can be tuned in electronic lattices realized using CO on
Cu(111). Orbital degree of freedom plays a crucial role in the
creation of generic honeycomb lattices with separated s and p
orbital bands, discussed in the next section.

7. SIMULATION OF A HONEYCOMB LATTICE WITH
ORBITAL DEGREES OF FREEDOM

General

The honeycomb lattice consists of two interpenetrated trigonal
lattices with equivalent sites. Its unit cell consists of two sites
(A and B) and thus a site of each trigonal sublattice. The
coupling between nearest neighbor A and B sites in this
geometry results in a linearly dispersed relation between
energy and momentum in the regions around the K, K’ points
of the Brillouin zone (see Figure 6).235 In the generic
honeycomb system, in which each atomic site has an s orbital

sufficiently separated in energy from the in-plane (px, py)
orbitals, Dirac cones can be formed by coupling of the s
orbitals, separately from the in-plane p orbitals.49,236 The two
orthogonal (px, py) orbitals cannot form conventional
bonding−antibonding combinations; instead, their interaction
gives rise to complex interference patterns. As a result, the four
in-plane p bands consist of a nondispersive flat band, followed
by two dispersive bands forming a Dirac cone at higher energy,
followed by another flat band (see Figure 7). Since the kinetic
energy is quenched in the flat bands, interactions form the
dominant energy scale. It has been predicted that this will lead
to new quantum phases, such as the p band quantum (spin)
Hall effect, unconventional superconductivity and Wigner
crystals.49 The physics of in-plane p orbitals has been studied
with ultracold atoms in optical lattices,236−238 light in photonic
systems,233 and exciton-polaritons in a semiconductor pillar
array.122,138

Natural atomic monolayer materials with honeycomb
geometry include graphene, silicene, and germanene.235,239−246

In graphene, the most studied electronic honeycomb lattice,
the s and in-plane px, py orbitals of the carbon atoms hybridize
and form sp2 electronic bands, with the lower one being
completely filled.235 This filled band leads to a very strong in-
plane bonding between the carbon atoms, giving graphene its
mechanical strength, but the band is far below the Fermi level
and thus not electronically active. The remaining pz orbitals

Figure 7. Design and realization of an artificial electronic honeycomb lattice with a separated s and p orbital Dirac cone and p orbital flat band. (a)
Schematic overview of the placement of the electron repelling double-ringed CO rosettes (black) on a Cu(111) substrate (copper), as performed
by Gardenier et al. The lattice vector is 3.58 nm, corresponding to 14 Cu atoms. The green dots indicate the positions of the honeycomb lattice
sites; the violet crosses indicate the bridge positions between the lattice sites. (b) Experimental (dark) and theoretical (light) LDOS(E) taken on
the lattice sites (green) and on the bridge sites (purple). 1−3 reflect the first s orbital Dirac cone, with 1,3 being the M points and 2 being the Dirac
point; 4 shows the flat-band due to interference of in-plane p orbitals with strong intensity on the bridge sites; 5−7 show the second Dirac cone due
to the p orbitals. (c) Corresponding band structure for the design in (a) calculated by the muffin-tin approximation. The band structure reflects
separated s (blue) and p (orange) orbital bands. (d,e) Wave function maps at the energy of the flat-band showing the nearly zero electron
probability on the lattice sites (dark blue) and very large probability on the bridge sites (yellow) indicative for a p orbital band. (d) Experimental
LDOS(x,y) map and (e) muffin-tin calculation at the same energy. The black hexagons are the CO-rosettes. Reprinted from ref 260. Copyright
2020 American Chemical Society.
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(perpendicular to the graphene plane) form π bonds, resulting
in two bands touching at the (K, K’) Dirac points at which the
Fermi energy is situated. The linear energy-wave vector
dispersion (Dirac cone) around the (K, K’) points is
responsible for the exciting electronic properties of graphene.
Solid-state electronic honeycomb systems can be realized in

two-dimensional semiconductor materials by lithographic
etching, giving access to genuine honeycomb semiconductors,
hosting Dirac-type electrons and holes.14−18,20,21,108,247−254

Alternatively, the self-assembly and epitaxial connection of
nanocrystals at an interface has resulted in honeycomb
semiconductors of II−VI materials.255−259 The creation of
2D semiconductors with honeycomb nanogeometry with
minimum disorder and the study of the optoelectronic
properties is currently performed in several groups worldwide.
We will discuss this in the outlook section of this work. First,
we describe analogue quantum simulations of electronic
honeycomb systems in detail.

Simulation of “Molecular Graphene” by the Group of H.
Manoharan108,215

An artificial honeycomb lattice engineered by manipulation of
CO molecules on a Cu(111) surface in a scanning tunneling
microscope was reported years ago; the lattice was coined
“molecular graphene”. This groundbreaking work showed the
full potential of quantum simulations with artificial lattices
prepared in a scanning tunneling microscope. First, a
graphene-type honeycomb lattice with a single Dirac cone
was created (Figure 6a and b). Second, by changing the size of
the artificial atomic sites, the intrinsic Fermi level (at the Dirac
point) could be changed; the epitaxial connection between two
domains with a different intrinsic Fermi level results in
electronic equilibrium, simulating a “p−n” junction, as for real
materials (Figure 6e and f). Third, it was shown that
deformations of the lattice are equivalent to a strong
pseudomagnetic field (Figure 6c and d).
Figure 6a presents the design used in the Manoharan group;

a hexagonal array of single CO scatterers (black dots) was
prepared by atomic manipulation; this results in lattice vectors
of 1.92 nm, hence considerably larger than that in real
graphene. Figure 6e shows a scanning tunneling microscopy
image, in which a honeycomb network of high electron
probability can clearly be seen. Scanning tunneling spectros-
copy (Figure 6b) revealed the local density of states (LDOS)
corresponding to a single Dirac cone (indicated by ED). The
width between the two maxima around the Dirac point, i.e., the
two M-points, is 180 meV, resulting in a hopping value of
about 90 meV. From the steepness of the linear dispersion
E(k) = ℏvFk, the group velocity (Fermi velocity) of the
electrons is found to be 2.5 × 105 m/s, considerably smaller
than in graphene.
Increasing (decreasing) the lattice spacing lowers (raises)

the energy levels and the position of the Dirac cone. This can
be seen in Figure 6e and f. The region labeled “p” is a
honeycomb lattice with a smaller lattice spacing than that in
panels (a) and (b), thereby confining the surface state
electrons to a smaller area and raising the energy levels. The
Dirac point is therefore situated above the Fermi energy EF,
resulting in a lattice with fewer electrons, i.e., a p-doped
system. The opposite occurs when the lattice spacing is
increased (labeled by “n”). Here, the Dirac cone is shifted to
lower energies leading to electrons filling the upper band as
well, i.e., a n-doped system. Attaching both systems to each

other gives a p−n−p junction. Figure 6f shows the nearly
instantaneous jump in energy of the Dirac cone position when
going from one lattice type to the other.
Perhaps the most compelling highlight of this work is the

deformation of the lattice by triaxial strain creating a
pseudomagnetic field (gauge field) up to 60 T. The effect of
the strain on the electron localization is visualized in Figure 6d,
showing the difference between sublattice A and B at a
pseudomagnetic field of 60 T. The spin symmetry of the
sublattices has been broken; a zeroth order Landau state
emerges on sublattice A; sublattice B sites show a Landau gap
that gives mass (widens the gap at the Dirac point) to the
Dirac electrons with pseudospin B.
It was not entirely clear which type of atomic site orbitals

were involved in the formation of the Dirac bands.
Calculations by Wang et al.251 show that, for the design
presented in Figure 6a, hybridization between the s and in
plane (px,py) orbitals occurs, very similar to the case of real
graphene. Below, it is shown that, by playing with the size of
the artificial atomic sites and thus the on-site energy of the s
and (px, py) orbitals, hybridization can be avoided to a large
extent, resulting in a band scheme in which s orbital bands are
separated from p orbital bands.

Simulation of the Generic Electronic Honeycomb Lattice
with Separated s and p Orbital Bands

Gardenier et al. extended the quantum simulation of electronic
honeycomb lattices with designs that show separated s and p
orbital Dirac bands, and, as a result, unclouded p orbital
physics (see above).260 The electronic bands can only be
observed if they emerge in the energy window of the Cu(111)
surface state, i.e. between −0.45 and +0.5 eV with respect to
the copper Fermi level. Assisted by theory, Gardenier et al.,
tailored the energy of the s- and p orbital bands within this
energy window by adjusting the lattice vector. As mentioned
previously, a larger lattice vector causes the electronic states to
drop in energy. Moreover, by using double-ringed rosettes of
CO molecules, instead of a single CO molecule, the degree of
quantum confinement and the coupling between the sites
could be tuned. The final design is shown in Figure 7a.
The electronic band structure of this lattice is shown in

Figure 7c. It was calculated by solving the Schrödinger
equation with a muffin-tin potential accounting for the rosettes
of CO molecules as repulsive scatterers. In addition, the
muffin-tin band structure was fitted with a tight-binding model
based on artificial atomic sites in a honeycomb lattice; each
atomic site has one s orbital and two in-plane p orbitals, and
s−s, s−p, and p−p hopping is allowed between neighboring
sites. The band structure shows the p orbital flat band and
Dirac cone, well separated in energy from the lower s Dirac
cone. The four p orbital bands (orange) contain a (nearly) flat
band and two dispersive bands forming a Dirac cone. Above
these bands, hybridization becomes important. The muffin-tin
calculations could also accurately reproduce the experimental
results of a single s orbital Dirac cone in the LDOS(E)
spectrum by Gomes et al. (see Figure 6b). This indicates that
this approach is an appropriate electronic quantum simulator
for the study of the in-plane p orbital physics.
The LDOS(E) spectra on the on-site (green) and bridge site

(purple) positions are presented in Figure 7b; they should be
compared with the theoretical muffin-tin spectra, plotted in
lighter colors below the experimental data. The first double
peak (peaks 1 and 3) corresponds to two s orbital bands
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forming a Dirac cone, and the minimum (point 2) indicates
the Dirac point. The two maxima correspond to the high
LDOS at the M points; if the overlap integral between
neighboring s orbitals is neglected, the distance between these
two maxima provides a good estimate for two times the
hopping term between the nearest-neighbor s orbitals, i.e., tss.
The obtained tss value is 45 meV. From a tight-binding fit,
taking the overlap into account, one can find a hopping energy
of 60 meV. In the lattice studied by Gomes et al. the hopping
energy was about 90 meV.
Around 0 V, a very strong LDOS peak is observed on the

bridge sites, while the LDOS on the lattice sites is very low
(peak 4). This high electron probability corresponds to the flat
band originating from p orbitals. Between 0.1 and 0.4 V, a
second double peak with a minimum is found. Comparison
with the calculations showed that this feature reflects the
dispersive p orbital bands; the minimum corresponds to the
Dirac point (point 6), and the lower maximum (peak 5)
reflects the high LDOS at the M point. The maximum at
higher energy (peak 7) corresponds to the third and fourth p
orbital bands. If the orbital overlap and hybridization are
neglected, the energy difference between the flat band
maximum and the Dirac point is 1.5 tppσ; from this, tppσ is
found to be 160 meV. From the muffin-tin calculations
combined with a tight-binding fit, a comparable value of 127
meV is found.
The electron probability pattern at the flat-band energy is

remarkable, with a very high electron probability between the
sites (thus bridge positions) and a very low probability on the
sites (Figure 7d). The interaction of in-plane p orbitals at the
sites of a honeycomb lattice can best be described as orbital
interference by geometric frustration.49,236 These interference
patterns were also calculated by using the original tight-binding
theory, and by muffin-tin calculations combined with a tight-
binding parameter fit; see Figure 7e.
These results show that solid-state electronic honeycomb

lattices can be designed in such a way that in-plane p orbital
physics fully emerges. The design is purely based on the lattice
geometry and the degree of quantum confinement and intersite
coupling. These concepts can be directly transferred to two-
dimensional semiconductors in which the honeycomb
geometry is lithographically patterned or obtained by nano-
crystal assembly;20 see the last section of this Review. These
systems can be incorporated in transistor-type devices in which

the Fermi level and thus the density of the electron gas can be
fully controlled.261 For instance, a partial filling of the flat band
can result in electronic Wigner crystals, new magnetic phases,
and superconductivity.49,262 Hence, Gardenier et al. present a
feasible geometric platform for real materials opening the gate
to novel electronic quantum phases, both in the single-particle
regime as in the regime with strong interactions.15,22,81,263

8. ARTIFICIAL TOPOLOGICAL LATTICES

The versatility of artificial matter constructed one atom at a
time is further demonstrated by the creation and measurement
of topological states of matter. Here, we focus on experimental
developments within topology that have made use of atomic
manipulation platforms.

The Su−Schrieffer−Heeger Model

Background. The SSH (Su−Schrieffer−Heeger) model,
sometimes known as a Peierl’s or dimer chain, is a one-
dimensional chain of alternating weak and strong bonds. This
configuration is known to occur in polyacetylene, for which the
model was initially developed.264,265 The SSH model is
perhaps the simplest system that supports topological states.
The dimerization of the lattice gives rise to two bulk bands,
separated by a gap. Through the choice of unit cell, the state at
the end of the lattice may either form part of the bulk band or
an isolated end mode. This is due to either strong or weak
coupling at the termination. Alternatively, one may construct a
domain wall where the unit cell is switched midlattice to
produce an isolated state. The crucial protecting symmetry for
the isolated end or domain wall states is chiral, or sublattice
symmetry. A topological state in one sublattice is robust
against perturbations of the other sublattice, such as on-site
energy fluctuations and the introduction of next-nearest-
neighbor coupling between sites of the other sublattice. The
SSH model has been implemented experimentally with a host
of methods, including self-assembly of indium on Si(111),266

with graphene nanoribbons267,268 and in transition-metal
monochalcogenide nanowires.269 Here, we discuss the
implementation of the SSH chain created “atom by atom”
with scanning tunneling microscopy.

Realization of the SSH Chain in the CuCl Monolayer
on Cu(111). As mentioned in section 6, tunable lattices can be
created using a chlorine monolayer on Cu(100). Each vacancy
in the chlorine monolayer hosts a well-defined state at an

Figure 8. 1D SSH/dimer chain realized using vacancies in a chlorine monolayer on Cu(100). (a) Top: schematic of the configuration of the dimer
chain. Heavy lines represent strong coupling, and dashed lines represent weak coupling. Two distinct phases, A and B, are denoted with yellow and
blue shading. The phases are distinguished by the arrangement of bonds within and between the unit cells. Domain walls form when the phase is
switched, leaving isolated sites. Middle: topographic STM scan of the chain. Bottom: differential conductance map acquired at the midgap energy
(3.53 V), showing the domain wall states. Scale bars are 2 nm. (b) Left: topographic STM scan of a continuous dimer chain structure with two
domain walls. Right: differential conductance map (3.5 V) showing midgap states at the domain-wall locations. Scale bars are 3 nm. Figures are
adapted from ref 211. Copyright 2017 Springer Nature.
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energy below the band edge of the chlorine monolayer. The
vacancies themselves can be manipulated with the STM tip
and constitute artificial sites. When brought close enough to
each other, the vacancies interact. In this way, the direct lattice
(not the inverse as with CO/Cu(111)) can be formed. The
coupling strength can be tuned by the distance between
vacancies/artificial lattice sites. Drost et al. used this technique
to produce several configurations of the SSH chain, which they
performed dI/dV spectroscopy measurements on to determine
topological states.211,270

A realization of the SSH chain by Drost and co-workers is
shown in Figure 8a. They produced a chain of dimers
terminated by strong bonds. In this case, the interunit cell
hopping is weak and hopping within the unit cell is strong,
giving rise to two sets of states above and below the vacancy
state energy. At two points in the chain, domain walls were
introduced (see schematic (top) and STM scan (center) in
Figure 8a), manifesting sites solely connected by weak
hopping. dI/dV spectroscopy revealed in-gap states localized
at the isolated sites created by the domain walls. A differential
conductance map of the chain at this in-gap energy shows a
pronounced intensity at the domain wall sites, corresponding
to the topologically protected domain wall states of the SSH
model (bottom part of Figure 8a).
To verify that the form of the chain had no effect on the

existence of the midgap states, the authors constructed a loop
of artificial sites with SSH texture and embedded two weakly
connected domain wall sites within it. An STM scan of the
loop is shown in Figure 8b (left). In this configuration, in-gap
states were also identified at the isolated sites formed by
domain walls, which are prominently visible in the differential
conductance map in Figure 8b (right).

Trimer Chains. In subsequent research from the same
group, Huda et al. expanded the work on topological domain
wall states by creating a chain of trimers with various domain
configurations.271 The design of the trimer chain considered is
shown in Figure 9a. Each unit cell contains three sites. To
define two different phases (labeled A and B) in the chain, the
bond configuration within each cell is chosen differently. For
the combination chosen here, localized states emerge at the
domain wall between phases A and B. The states lie within the
gaps in the band structure, which itself contains three energy
bands. It was shown that the energy level positions could be
tuned by altering the coupling between bulk and domain wall
sites (hopping t3 in Figure 9). This is in contrast to that of a
dimer chain (the SSH model described above), where the
energy of the domain wall state is pinned exactly in the middle
of the gap for symmetry reasons. Figure 9c shows the variation
of the domain wall site energy as t3 is altered. The three gray
bars are the bulk bands which remain unchanged. Meanwhile,
the two energy states of the domain wall site both deviate
toward the middle of their respective gaps as t3 is increased.
The group altered t3 in their trimer lattice by changing the
physical distance between sites at the domain wall. t3 was
weakest when it was equal to the weak coupling of the rest of
the lattice. From there, the physical gap between sites at the
domain wall was made successively smaller for stronger
coupling. Figure 9b shows an STM topograph, differential
conductance map, and LDOS calculated with tight binding for
each lattice. The LDOS maps, both experimental and
calculated, have been produced at the energies of the domain
wall sites. This result showed that topological states could be
produced in trimer chains, with the extra feature that the
energy levels of the topological modes could be tuned at will

Figure 9. Trimer chains and double dimer chains realized using vacancies in a chlorine monolayer on Cu(100). (a) Diagram showing the
arrangements of strong bonds (t1, heavy lines) and weak bonds (t2, dashed lines) in each type of unit cell (either yellow or blue). Between phase A
and phase B, there is a domain wall site. The bonds connecting to the domain wall site are denoted t3. (b) Topographical images, differential
conductance maps, and simulated LDOS maps acquired at the energy of each domain wall state for three different values of t3 (labeled weakest,
intermediate, and strongest). (c) Tight-binding-calculated energies of the in-gap states for a trimer as a function of t3. The energies are given with
respect to the on-site energy of a site in the chain. The gray horizontal sections are the bulk bands. Vertical blue lines show the positions of each of
the in-gap states that were realized in (b). The darker line at 0.04 eV is where t2 = t3. (d) Top: Topographs of the chains. Middle and bottom:
experimental and simulated LDOS maps acquired at the energies of the domain wall states. The domain wall of configuration 1 shifts the
dimerization in one chain, giving rise to three domain wall sites which are separated from the rest of the chain. Domain wall states are seen at 3.40
and 3.58 V. (e) The domain wall of configuration 2 shifts the dimerization of both chains, giving rise to two domain wall sites which are separated
from the rest of the chain. Domain wall states are seen at 3.48 and 3.56 V. Reproduced from Figures 3 and 4 of ref 271, which have been reordered.
The original article was published under a Creative Commons Attribution 4.0 International License.
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using the Cl/Cu(100) platform. Such states are thought to
house fractional charge of e/3 or 2e/3 depending on the
domain wall configuration.
Double Dimer Chains. Huda et al. also investigated

double dimer chains. Here, the sublattice symmetry is broken
due to coupling between the two chains, however, domain wall
states arise from another topological origin.266 The states can
host different chirality depending on the configuration of the
chains and domain wall. Figure 9d and e show two examples of
double dimer lattices produced with the Cl/Cu(100) platform.
In Figure 9d, the dimerization has been shifted in only the top
chain, which produces three domain wall sites. These
contribute three states, one of which merges into the bulk.
Differential conductance maps were acquired at the remaining
two energies, shown in Figure 9d. In Figure 9e, the
dimerization has been shifted in both lattices, which results
in two domain wall sites. This configuration also produced
three energy states; the bonding and antibonding states of the
isolated dimer, as well as a hybridization of the domain wall
with the middle bulk band. By performing these experiments,
the group showed that chirality is a degree of freedom that can
be manipulated with artificial lattices.
SSH Chain Simulated with CO on Cu(111). Similar to

the chlorine vacancy platform, the SSH chain can be realized
using the CO/Cu(111) platform.272 An example of a finite
SSH chain is shown in Figure 10a. The yellow sites indicate
bulk artificial-atom sites connected by alternating weak (red,

dashed) and strong (blue, solid) bonds. The end sites,
indicated in blue, are weakly connected to the bulk. The
weak and strong bonds are engineered by narrow and wide
connections between the sites, respectively, defined by the
positions of the CO molecules. A differential-conductance map
around midgap energy, 55 mV, confirms a pronounced LDOS
at the end sites (see Figure 10b), corresponding to the
topological end states in the SSH model. Some intensity is
observed in the bulk as well, which can be ascribed to the finite
weak coupling (ta = 28.5 meV and tb = 75 meV; parameters
were derived from a comparison between a muffin-tin and
tight-binding model for the described lattice configuration).

Corner States in a Breathing Kagome Lattice

The concept of localized modes on weakly connected sites can
be generalized from 1D to 2D. Kempkes et al.272 realized a
finite breathing Kagome lattice using the CO/Cu(111)
platform. A compelling artificial Kagome lattice could also be
created by an organic molecular synthesis on the surface of
Cu(111).95 A conventional Kagome lattice is a tripartite lattice
that can be considered as a line graph of the honeycomb
lattice.218 This lattice can exhibit a topological flat band and a
Dirac cone in the presence of spin−orbit coupling.218 The
breathing Kagome lattice273 has alternating weak (red, dashed)
and strong (blue, solid) hopping, opening a band gap between
the bottom Dirac bands; see Figure 10c−e. Importantly, the
corners (dark blue) only have weak bonds to the rest of the

Figure 10. From 1D SSH to 2D breathing Kagome lattice. (a) Schematic of the SSH model with sublattices A and B and alternating weak (red)
and strong (blue) coupling. (b) Differential conductance map of the realized SSH chain at V = 55 mV showing localized modes at the end sites. (c)
Schematic of the breathing Kagome lattice and the design for its realization using CO on Cu(111) (inset). (d) Differential conductance spectra
acquired in the bulk (green) at the edges (yellow) and at the corners (blue) of the Kagome lattice. The solid lines are from experimental data, and
the dashed lines are from tight binding calculations. (e) Band structure of the breathing Kagome lattice showing a band gap between the two lowest
bands. In the displayed realization, there is a next-nearest-neighbor hopping of 18.8 meV, resulting in a nonflat top band (ta = 28.5 meV, tb = 75
meV). (f) Differential-conductance map of the realized breathing Kagome lattice at V = 50 mV showing localized modes at the corner sites. Figures
are adapted with permission from ref 272. Copyright 2019 Springer Nature.
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lattice. Furthermore, the lattice consists of dimerized
boundaries (yellow), reminiscent of SSH chains, and a
trimerized bulk (green). An enhanced LDOS results on the
corner sites in both the band gap of the SSH-like edges and the
band gap of the bulk (green) (spectra not shown). The LDOS
at this energy is spatially visualized in the differential
conductance map in Figure 10f. This confirms that localized
in-gap modes are present on weakly coupled sites in the
presence of the 2D lattice. Additionally, localized in-gap modes
could be added or removed at will, showing the tunability of
the platform.
While the topological end-modes of the 1D SSH chain and

the corner modes of the 2D breathing Kagome lattice emerge
in a similar way in the wave function maps, it does not
inherently follow that the latter are protected as well. Initially,
it was suggested that the breathing Kagome lattice is a higher-
order topological insulator (HOTI).274,275 The “order” refers
to the difference n in dimensionality between the d-
dimensional bulk and the (d−n) topologically protected states,
presumably making the Kagome lattice with d = 2 and n = 0 a
second order TI. The 0D corner modes and 1D hinge modes
in 2D and 3D second order TIs, respectively, are topologically
protected by spatial symmetries or time-reversal symmetry, or
a combination of both.274−277 Soon after the theoretical
concept had been introduced, several existing materials were
shown to be HOTIs.277,278 In addition, HOTIs were created
using platforms with different types of excitation, such as
photonic lattices,279 mechanical metamaterials,280 microwave
circuits,281 and topolectrical circuits.282 A 3D electronic HOTI
exists as a real material, e.g., the metal bismuth.278 2D

electronic HOTIs were predicted for several metal dichalco-
genides,277 but experimental realizations had not been reported
so far. Several protection mechanisms were proposed for the
corner modes in the Kagome lattice, among which a
combination of mirror and C3 symmetry273 and a generalized
chiral symmetry.272,283,284 Recently, however, it was shown by
van Miert and Ortix that this does not hold.285 The nature and
robustness of the corner-localized modes in the breathing
Kagome lattice are under debate.285,286

The Kekule ́ Lattice
Another sort of lattice that can host topological states is the
Kekule ́ lattice. This is a honeycomb lattice, like graphene, but
with alternating weak and strong bonds. The band structure of
a plain honeycomb lattice consists of Dirac cones at the K and
K’ points, describing massless electrons. When the bonds in a
honeycomb lattice are modulated with the Kekule ́ distortion, a
gap opens at the K points, which is equivalent to ascribing a
mass to the electron in the Dirac equation. In this case, the
bulk of the Kekule ́ lattice becomes insulating, i.e., a gap is
opened in the band structure. The remarkable feature of the
Kekule ́ lattice is that, within this gap, topologically protected
edge states can exist, but only for certain configurations of the
lattice and its termination. This type of topology occurs in
topological crystalline insulators. These are states of topological
matter that cannot be adiabatically transformed into trivial
insulators unless a certain spatial symmetry is broken, such as
mirror or rotational symmetry.287 In the case of the Kekule ́
lattice, mirror and sublattice symmetries are the protective
symmetries of interest.

Figure 11. Topology in Kekule ́ lattices (a) The first realization of a honeycomb lattice with Kekule ́ texture, produced with the CO/Cu(111)
platform. On the left is a plain artificial graphene lattice, with the bond structure (top) and STM image (center) shown. Black dots represent
artificial electronic sites, gray dots represent CO molecules, and blue lines represent a uniform bond strength. The dI/dV spectrum on the bottom
left was acquired in the artificial graphene lattice and shows evidence of the Dirac point at around 50 mV. The right side of the image illustrates a
Kekule ́ lattice, which is a honeycomb lattice with modulated bonds, where purple represents strong and pink represents weak coupling. The dI/dV
spectrum on the bottom right was acquired in the Kekule ́ lattice and exhibits a gap compared to the plain honeycomb lattice. This a result of the
Kekule ́ modulation. (b) Illustration of the protective symmetries and example terminations in the Kekule ́ lattice. Unit cells are defined in blue for
two edges: partially bearded and molecular zigzag. For the existence of topological states, sublattice symmetry and mirror symmetry must be
present. The two sublattices are denoted by A (red dots) and B (green dots). Two mirror planes are shown, one perpendicular to the a1 lattice
vector (red) and one perpendicular to a2 (green). There is no lattice site to place the plane that would yield mirror symmetry perpendicular to a2,
but it can be done for a1. (c) Experimental realizations of the Kekule ́ lattice with different terminations and bond patterns. The two top lattices have
intra-hexagon bonds stronger than inter-hexagon bonds. The opposite holds for the lower two lattices. The lattices on the left have partially bearded
termination, and on the right, molecular zigzag. The top left and bottom right lattices exhibit edge states, as highlighted.288. Figure 11a reprinted by
permission from ref 215. Copyright 2012 Springer Nature. Figure 11c adapted with permission from ref 288. Copyright 2020 the American Physical
Society.
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Although the Kekule ́ distortion in the honeycomb lattice has
not been reported to exist in nature, Kekule ́ lattices have been
artificially produced in experiments. The first realization of the
Kekule ́ lattice was produced by Manoharan et al. by confining
the Cu(111) surface state with CO.215 There was a clear

energy gap at the Dirac point, measured in the dI/dV
spectrum. Figure 11a shows (from top to bottom) the design,
an STM image, and a dI/dV spectrum, respectively, for
artificial graphene. The right side of Figure 11a shows the same
for a lattice with a Kekule ́ distortion. The dI/dV spectrum

Figure 12. Topological states in artificial graphene nanoribbons. (a) Top: Two different GNR designs, the left has a molecular zigzag edge and the
right has a zigzag edge. STM topographs are shown in a black/white color scheme. dI/dV maps are shown in a blue/white/red color scale and show
that the molecular zigzag GNR is trivial and the zigzag GNR accommodates edge modes. (b) Symmetrical (left) and asymmetrical (right) 7−9
GNRs. The STM topographs show the geometry in a black/white color scheme. The dI/dV maps show that there is a state at the interface in the
symmetrical case but not the asymmetrical case. (c) Top: Schematic of the GNR. Bottom: STM topographs, dI/dV maps, and tight-binding
calculated LDOS maps are shown for several configurations where the lengths of each section are varied progressively. The edge modes are seen to
couple with each other, as evidenced by the diminishing LDOS of the interfacial states, indicating hybridization of the states at both ends. Figures
are taken from the following preprint: ref 344.
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shows a gap compared to the undistorted graphene. From fits
to theory, they found the mass of the Fermions in this Kekule ́
system to be 0.1 ± 0.02me (as opposed to zero in theory for
Fermions in graphene).
Later, topological modes were identified in a photonic

structure, where zero modes were localized at the corner of a
2D Kekule ́ system.279 Edge states have also been observed in a
sonic Kekule ́ lattice.289 It was previously thought that
topological states in the Kekule ́ lattice came about via a
quantum pseudospin Hall effect accommodated by orbital
angular momentum at the hexagons. This was postulated by
Hu and Hu, who at that time implied that merely switching the
configuration of strong and weak bonds could lead to the
existence or absence of topological states.290 Later, the same
group found that this was not entirely true: the shape of the
edge should also be taken into account.291 The existence of
topological states at the edge of the Kekule ́ lattice was
predicted by the group by calculating the mirror winding
number, which acts as the topological invariant of the system.
The protective symmetries of the Kekule ́ lattice in this model
are mirror symmetry and sublattice (chiral) symmetry. The
sublattice symmetry of the system is captured by the two
overlapping triangular lattices, where each A (B) site is
connected only to B (A) sites, illustrated in Figure 11b. Mirror
symmetry is also elucidated in Figure 11b. There is mirror
symmetry about the plane perpendicular to a1 (zigzag
direction) but not about the plane perpendicular to a2
(armchair direction), where there is no site at which the
geometry can be mirrored at an axis perpendicular to the edge.
Thus, no mirror winding number can be calculated for the
graphene armchair edge. The mirror symmetry allows the
decomposition of the Hamiltonian into even and odd sectors,
which can ultimately be used to find two mirror winding
numbers. In order to have a correspondence between the edge
modes and the winding number, the unit cell must be chosen
in such a way that it is not severed at the edges. Thus, the
mirror winding numbers depend on the sublattice and mirror
symmetries, and the unit cell. By extension, the bond texture of
the lattice and the shape of the edges are both crucial to the
topology of the system. When the sum of the winding numbers
is zero, this results in a dispersive edge state. In the case of the
zigzag edge, the mirror winding numbers can be calculated,
and they are nonzero, thus the states are static. However, one
can conceive of edges where the total mirror winding number
is zero. Two examples presented here are the partially bearded
and molecular zigzag edges. Figure 11b shows the bond pattern
and unit cells defining these edges.
The Kekule ́ lattices with partially bearded and molecular

zigzag terminations were realized using the CO/Cu(111)
platform in the STM.288 The bonds between lattice sites were
made stronger or weaker through the strategic placement of
CO molecules. Figure 11c presents differential conductance
maps taken in the bulk band gap of each lattice. Elevated
LDOS(E,x,y) at the edges can be observed in the maps on the
top left and bottom right of Figure 11c, while the lattices
shown at the top right and bottom left are insulating
throughout. This set of experiments provided an experimental
validation of the theoretical paper by Hu et al. (ref 289), who
predicted the existence of the edge states shown.

Toward Majorana Bound States in Artificial Lattices

There is a very active research effort devoted to realizing
Majorana bound states (MBS) in condensed matter systems.

These exotic quasi-particles, the physics of which will not be
expanded upon here, can be used in fault-tolerant quantum
computing. One of the avenues being explored to fabricate
MBs is based on one-dimensional magnetic chains on
conventional superconductors. In these systems, the MBS
should emerge at the chain ends. Indeed, signatures consistent
with Majorana modes−an enhanced density of states at zero
energy - have been observed in self-assembled Fe chains on
Pb(110).292,293 In principle, superconducting or magnetic tips
can be used to distinguish Majorana modes from other
phenomena that might also lead to zero energy states. Thus,
far, controlled manipulation of adsorbates on Pb surfaces has
not been reported. This limits the possible network
architectures that can be used to study Majorana physics.
Consequently, different research groups have worked on
creating chains of metal atoms with noncolinear spin-structure
on superconductors that allow for atomic scale manipulation.
Atomically well-defined Fe chains could be constructed on
Re(0001) and Nb(110), and zero bias states were observed for
sufficiently long chains.294−296 In these systems, the (mag-
netic) coupling between the atoms depends on the crystallo-
graphic direction in which the chain is build. This was also
exploited to engineer MBS in Mn chains on superconducting
Nb(110) [arXiv:2104.11503]. The atomic scale control allows
for the manipulation of interactions between Majorana modes
in finite size systems, which is an essential ingredient for
Majorana-based quantum computing.

Artificial Graphene Nanoribbons

Changing the nature of topological boundaries in a material
was also achieved in artificial graphene nanoribbons
[arXiv:2104.11334] (GNRs). In this work, the authors
constructed strips of artificial graphene using the CO/
Cu(111) platform. GNRs have been known to host topological
modes at their edges.68,297 Here, the authors engineered this
behavior and showed that the topological states were tunable.
First, 9-atom wide armchair GNRs were constructed.

Topological states were engineered at the ends of the ribbon
by editing the geometry: when the ends were made to have a
zigzag pattern, topological edge states arose. When three sites
were moved from one zigzag edge to the other, creating instead
a “molecular zigzag” type pattern at both sides, the topological
states became trivial. This was made clear with dI/dV
spectroscopy and maps, as presented in Figure 12a.
To verify that this effect had not been misconstrued as edge

states from other mechanisms, the group connected 7-wide
and 9-wide artificial GNRs together in two different ways,
either symmetric or asymmetric. In the symmetric case, a
topological interface state appears, while in the asymmetric
case it does not. This is because the unit cell depends on the
termination of the 7-wide GNR, which in turn depends on
whether it is connected directly at the center (symmetric) or to
one side (asymmetric) of the 9-wide GNR. This is shown in
Figure 12b. Finally, the group investigated coupling between
interfacial states by constructing a 9GNR/7GNR/9GNR
structure containing four topological states. Shifting one of
the domain walls closer to another step-by-step showed that
the LDOS of the topological states diminished with decreasing
distance (increasing coupling strength) between them. The
group conjectured that this was a result of the hybridizaion of
the wave functions at both ends. This can be seen in Figure
12c.
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9. SIMULATION OF APERIODIC TWO-DIMENSIONAL
SYSTEMS

General

The presence of long-range order and translational symmetry
enables the use of periodic boundary conditions in electronic
structure calculations. As such, it underpins our understanding
of the electronic structure of materials. However, not all
materials have translational symmetry. There are three notable
categories: (i) Amorphous materials, i.e., materials with no long-
range order. In amorphous systems, the atomic regularity
seems to be present if examined from afar. In reality, the atoms
have positions that are centered around a mean value (those of
the corresponding crystal), but the coordinates differ randomly
from site to site. This nonperiodicity results in localization of
wave functions and a “band structure” that bears some
reminiscence to that of the crystalline variant. A well-known
example is amorphous silicon; it has “quasi” conduction and
valence bands with broad tails, and optical transitions from the
quasi-VB to quasi-CB set on at around 1.6 eV instead of 1.1 eV
in crystalline Si. (ii) Quasicrystals, aperiodic tilings, built up
using two or more well-defined tiles. In so-called quasi-crystals,
motifs (tiles) are tessellated such that there is local rotational
symmetry but no translational symmetry. Quasi-crystals are
rarely found in nature; Schechtman et al.298 observed metallic
alloys in which the atoms are arranged in motifs with 10-fold
rotational order, being incompatible with a periodic lattice.
Later, quasi-crystalline motifs have been observed in some
types of self-assembled colloidal solids.299,300 (iii) Fractals,
systems that are self-similar on different length scales. For
fractals, the so-called Hausdorff dimension is a noninteger that
exceeds its topological dimension. Regular fractals consist of
motifs that are repeated on several length scales; fractals often
emerge in bioinorganic skeletons and plants, for instance, in
the Romanesco flower. Fractal structures have been obtained
with synthetic chemistry.301,302

Figure 13 shows an example of a quasi-crystal (Penrose
tiling) and fractal (Sierpinski triangle). The electronic

properties of both types of structure are difficult to study,
since they rarely occur in nature on an appropriately small
length scale. Periodic Bloch-type wave functions do not occur
in solids that lack atomic order. Many quasi-crystals,
experimentally discovered in the early 1980s,303,304 have to
be synthesized in the laboratory and are thermodynamically
unstable. The few quasi-crystals that have been found in nature
have been formed in outer space.305 Even though fractals are
pervasive on the macroscopic scale (Romanesco broccoli, the
cardiovascular system, and coast lines are well-known
examples), no naturally occurring geometric quantum fractals
have been identified. Molecular self-assembly can be used to
form fractals in a bottom-up fashion.301 However, the coupling
between the building blocks is too weak to result in a true
electronic fractal. The ability to position adsorbates with
atomic scale precision enables the formation of well-defined
electronic quasi-crystals and fractals, as shown below. Synthetic
quasi-crystals have also been realized using cold atom gases
and photonics.306−308

Formation of Electronic Quasicrystals and Fractals

Collins et al. used the CO/Cu(111) platform to create an
electronic Penrose tiling; see Figure 13a−c.309 The motifs in
the Penrose structure contain several specific sites, each with
its own vertex structure. It was shown that these different sites
are characterized by a specific local density of states, LDOS(E).
In energy-resolved wave function maps, these sites have
heightened LDOS in the Penrose tiling at specific energies.
Fractal structures in which electrons are confined remain

intriguing to the scientific community.310−316 The same
technique used for the creation of electronic lattices and
simulations of quasi-crystals has been used to create
simulations of electronic fractals, for instance a Sierpinski
triangle; see Figure 13d−f.317 The basic unit, generation 1
(G1), contains three different types of atomic sites,
characterized by their connectivity or vertex structure. The
wave function maps in the second and third generation of the
Sierpinski gasket show remarkable regularities, which can

Figure 13. Aperiodic lattices created using the CO/Cu(111) platform. (a) Penrose tiling, constructed with two rhombi, indicated in blue and
green. (b) STM image (left) of an arrangement of CO molecules (black) that leads to a Penrose tiling for the surface- state electrons. (c) The
corresponding normalized dI/dV map (right) shows that the LDOS also exhibits a Penrose geometry. Scale bar: 5 nm. (d) Third generation
Sierpinksi triangle. The first generation is shown in light blue. (e) STM images of the first three generations of the Sierpinski triangle, indicated by
G1, G2, and G3, respectively. Scale bar: 2 nm. (f) Left: dI/dV (LDOS) map of the electronic state at −0.325 V; the absence of nodal points
indicates a fully bonding wave function delocalized over the triangle. Right: dI/dV (LDOS) map of the electronic state at −0.200 V; nodal points
partition the wave function into nine self-replicating parts. Panels b and c are taken from ref 309, published under a Creative Commons Attribution
4.0 International License. Panels e and f are adapted with permission from ref 317. Copyright 2019 Springer Nature.
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loosely be understood by molecular orbital theory. The
resonance at lowest energy shows a wave function which is
entirely “bonding”, i.e., has the same sign everywhere, visible
by a nearly uniform LDOS over the entire fractal structure
without nodes in the squared wave function |φ|2(E) . At higher
energy, nodal points emerge in the wave function as for
molecules. Interestingly, these nodal points partition the wave
function in self-repeating parts; see Figure 13f. Hence, the
electronic wave functions inherit the structure (and fractal
dimensions) of the underlying “atomic” structure. This is
consistent with the observation for the synthetic Penrose tiling
that the Cu(111) surface state electrons are confined to the
geometric structure defined by the CO molecules. The
Hausdorff dimension of a geometrical Sierpinksi triangle is
log 3/log 2 ≈ 1.58. In the work, presented here, the box
counting method was employed to experimentally determine
the Hausdorff dimension from wave function maps of the CO/
Cu(111) Sierpinski triangle at different energies. It was found
to fluctuate around 1.58, confirming the fractal nature of the
“lattice”.
Many-body interactions between electrons affect the

electronic properties of materials differently in one and two
dimensions; it would thus be of high interest to be able to
study electron correlations in fractal structures, such as the
Sierpinski fractal in Figure 13, with a dimension between one
and two. Other outstanding questions are related to the effect
of spin−orbit interaction or Cooper fair formation in electronic
fractals.318,319 Quantum simulations will require electron gases
with low and varying electron density to study interactions;
electron gases that inherit spin−orbit coupling, or the
propensity for pairing by proximity318,319 to study the metal/
superconducting transition in a fractal.

10. BACK TO REAL MATERIALS: GEOMETRICALLY
PATTERNED TWO-DIMENSIONAL
SEMICONDUCTORS

Brief History

In semiconductors, the chemical potential of free conduction
band electrons (valence band holes) can be varied with respect
to the energy levels in the system. This is possible either by
incorporating specific nonisovalent impurity atoms on specific
atomic positions in the lattice, or by applying an external
electric field, thus electrostatic doping or gating. The latter
requires a capacitor structure between the semiconductor of
interest and a metal electrode. In a more advanced
technological form, electrostatic gating is used in comple-
mentary metal-oxide-semiconductor (CMOS) technology to
define and transmit (0,1) bit states in transistor devices. More
recently, also electrolyte gating has been applied.261,320,321 The
ability to grow ultrapure Si crystals, foresee them with electron-
donating or electron-accepting dopants, and change the
chemical potential has enabled our current information society,
known as the “silicon age”. In the temperature range
considered here, the chemical potential is very close to the
Fermi level. The ability to be able to change the Fermi-level
has key scientific importance. First, being able to change the
electron concentration in the conduction band (hole
concentration in the valence band) allowed in-depth study of
a plethora of opto-electrical and magneto-optical phenomena
in which interaction of electrons, excitons and phonons play a
role. Second, the energetic variation of the Fermi-level allows
to scan the Fermi-level across large parts of the Brillouin zone,
this enables one to study the properties of electrons at specific
points in the Brillouin zone.
In parallel with the development of CMOS technology

based on a bulk Si, low-dimensional and especially 2D
semiconductors were developed and investigated. The
electrons in 2D semiconductors correspond to Bloch type
waves in the two lateral x,y directions and are confined as
standing waves in the short z direction. Two-dimensional
semiconductor crystals, also known as quantum wells, can be

Figure 14. Fabrication of 2D InGaAs semiconductor with a nanoscale honeycomb geometry. (a−d) Consecutive steps in the nanolithography
procedure, with (a) growth of silica and PMMA layers on top of the InGaAS quantum well, after which (b) electron beam lithography is used to
write a hexagonal periodic pattern in the PMMA; (c) presents the reactive ion etching to transfer the pattern as hole array in the silica layer, and
(d) presents the inductive coupled plasma etching to transfer the hole pattern from the silica into the InGaAs layer. (e) SEM image of a honeycomb
InGaAS crystal with a periodicity of 60 nm. (f) SEM cross section of the conical holes with periodicity of 39 nm. Reprinted from ref 262. Copyright
2021 American Chemical Society.
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grown on substrates and incorporated in devices by precious
gas-phase deposition techniques such as chemical vapor
deposition, molecular beam epitaxy, pulsed layer deposition,
and methods derived from these.322,323 Two-dimensional
semiconductors have boosted the optoelectronic industry. In
addition, fundamental research on electron gases in 2D
semiconductors have resulted in paradigm-shifting break-
throughs in solid state physics. In 1980, the quantum Hall
phenomenon was discovered,3,324−326 now established as the
first topological electronic band structure effect in the solid
state. Around 1984, the fractional quantum spin Hall effect was
discovered and analyzed.4,327−329 Further theoretical and
experimental research revealed the existence of composite
electronic quasi-particles, some of them with exchange
statistics not reminiscent of Fermions, nor bosons, called
non-Abelian anions.
Another step in this field, more related to the contents of

this Review, was to modulate the lateral potential experienced
by the electrons in a 2D semiconductor in a periodic way. The
patterning creates a potential on the 100 nm scale super-
imposed on the atomic potential of the lattice. This
superimposed potential results in the formation of electronic
minibands and thus provides a powerful pathway to alter the
electronic band structure of well-known semiconductor
materials by geometry. Technically, this is achieved by electron
beam lithography methods with the purpose to fabricate a
periodic array of metal gates that exert a repulsive of attractive
potential, forcing the electrons to live in a honeycomb
superlattice. The magnitude of the translation vectors is
between 150 and 100 nm.14,250 Alternatively, an array of
nanoscale holes in a 2D semiconductor crystal can be
fabricated,247,249 in fact resulting in a more robust honeycomb
potential, also allowing for smaller lattice vectors. This latter

method and the resulting 2D semiconductor with a honey-
comb geometry with translation vector magnitudes of 40−60
nm are presented in Figure 14. A much later development
came from the field of colloidal nanoscience: self-assembly and
oriented attachment of PbSe nanocrystals resulted in 2D
semiconductors with square or hexagonal arrays of nanovoids;
the latter system is, in fact, an atomically coherent semi-
conductor with a honeycomb geometry.255,256 The advantage
of nanocrystal assembly is the much smaller period in the range
of 5−10 nm, resulting in broader, i.e., more dispersive,
electronic bands.20,262 But obviously, nanolithography for
periodic superlattices in semiconductors is better established
and applicable to more type of materials.250

Theoretical Efforts before the Rise of Graphene

The two-dimensional honeycomb lattice has been inspirational
for many scientists, even far before the rise of graphene. As far
as known, the first calculations of the band structure of an
electronic honeycomb lattice were reported in 1947.330 The
theoretical efforts at the end of the previous century were
devoted to honeycomb systems featuring Coulomb or spin
interactions between the electrons. The on-site and nearest
neighbor Coulomb interactions, and the resulting semimetal/
insulator model were discussed in terms of the Hubbard
model.331−335 Coulomb interactions and magnetic ordering
were discussed in detail by Herbut et al. showing that the on-
site Coulomb interactions drive a semimetal to antiferromag-
netic insulating phase transition.335

The single-electron band structure of two-dimensional
semiconductors with a honeycomb geometry got the interest
of theorists at the end of the previous century up to this
date.14,20,249,253,336−338 The low-energy band structure shows
several Dirac cone mini-bands, similar as those predicted and

Figure 15. Resonant inelastic light scattering spectroscopy (RILS) of two-dimensional electron gas in GaAs confined to a honeycomb geometry.
(a) Sketch of the AlGaAs/Si/GaAs heterostructure with attractive metal gates on top to force the electron gas in a honeycomb geometry. (b) SEM
picture with the array of gate electrodes on top of the device. (c) Sketch of the lowest two conduction bands forming a Dirac cone, and possible
intracone transitions in the 1 meV range. (d) RILS spectra (enhanced by optical pumping) showing a strong transition around the M points (0.5
meV) in the Brillouin zone. The joint density of states is indicated at the bottom. Reprinted with permission from ref 18. Copyright 2018 Springer
Nature.
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measured for the artificial honeycomb lattices formed on a
Cu(111) surface; see section 7. However, the orbital nature of
the bands and the interesting physics of in-plane p orbitals,
where destructive orbital interference results in a flat band,
were not discussed in the early works. The physics of in-plane
p orbitals was first mentioned by the group of Das Sarma49,236

and related to experimental research with cold atoms in optical
lattices. Dirac cones and flat bands arising from the interaction
of on-site s, p, ... orbitals were explicitly discussed in 2014,
using atomistic calculations.20 It is interesting to see that,
provided that hybridization between the s and p orbitals is
absent, the band structure of a honeycomb lattice is generic
and holds for artificial lattices and semiconductors. The band
structure has been predicted by theory on several levels, from
simple tight-binding approaches260 to the muffin-tin approx-
imation247,262 to atomistic theories for semiconductor.339 This
generic band structure in the low-energy region consists of two
s-bands that form a Dirac cone, followed by for p-bands, i.e., a
Dirac cone between two flat bands (see Figure 7)

Magneto-optical and Magneto-electrical Experiments

So far, 2D semiconductors with a superimposed honeycomb
potential were investigated with magneto-optical spectroscopy
in the far IR and with transport measurements in the Hall
geometry. Soibel et al. reported a 2D electron gas in an GaAs/
AlGaAs heterostructure in which an array of metallic gates
formed a honeycomb lattice with 150 nm unit cell constant.340

The magneto-resistance showed weak features of the honey-
comb potential, increasing with increasing gate voltages.
Similar results were reported for alternative GaAs devices, in
which the honeycomb potential was obtained by a hexagonal
array of holes.250 With magneto-optical spectroscopy, the
energy difference between subsequent Landau states was
measured.15,249 The splitting of the light absorptance peaks (in
the meV) region and the fact that the splitting between the
Landau states increased sublinearly with the applied magnetic
field were attributed to the effect of the superimposed
honeycomb potential. Very similar results were reported for
a two-dimensional electron gas residing in GaAs modulated by
an array of electron-attractive gates by Singha et al.15 The
splitting between subsequent Landau states was measured, and
more importantly, the clear degeneracy breaking of a single
Landau state due to Coulomb interactions was observed, with
a Hubbard gap in the 5 meV region. The same group of
researchers reported results that point more explicitly to the
existence of Dirac carriers. Using resonant inelastic light
scattering (RILS), band transitions in the lowest conduction
bands of honeycomb GaAs could be studied;18 see Figure 15.
The authors attribute features in the RILS spectrum to
transitions between the M points in the lowest Dirac cone,
while higher-energy transitions were attributed to transitions
between the lowest Dirac cone and higher bands.

Prospects for Semiconductors with Massless Dirac Carriers

Despite all these efforts, strong evidence for the existence and
action of massless Dirac electrons in 2D honeycomb
semiconductors has not yet been provided. The modulation
of the effect of the arrays of metallic gates in the region of the
electron gas is rather weak and is estimated to be in the 10
meV range. Moreover, the translation vector had magnitudes
in the 100 nm range, resulting in Dirac cones with a weak
energy-wave vector dispersion. It is also clear that detection of
the local density of states and energy-resolved wave function
mapping with scanning tunneling microscopy and spectrosco-

py can provide more direct evidence for Dirac-type band
structures than nonlocal methods (see section 7), especially in
the early phases of the research and development.
Looking to the future of this field, it is worth mentioning

that modern lithographic techniques and state-of-the art
templating with coblock polymers allow the preparation of
III−V semiconductors with a honeycomb periodicity in the 30
nm range. This automatically results in more dispersive Dirac
cones, now over an energy scale in the tens of millielectron
volts. Furthermore, self-assembled nanocrystal honeycomb
structures are predicted to have Dirac cones with widths in
the 100 meV range, provided that the nanocrystal sites are well
coupled.20 This opens new perspectives for the creation of
semiconductors in which electron and/or hole excitations are
robust massless Dirac carriers. Understanding that intrinsic
spin−orbit coupling is strong in these systems, flawless
honeycomb semiconductors with a small periodicity open an
entire new materials field in which the band structure can be
modulated by the nanoscale geometry, interactions, and spin−
orbit coupling.21,41 Strong spin−orbit coupling could open
topological gaps in the 30 meV range, offering quantum spin
Hall edge states for technology under affordable conditions.
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