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We have previously argued from a theoretical basis that the standard practice of regression
of the Global Signal from the fMRI time series in functional connectivity studies is ill
advised, particularly when comparing groups of participants. Here, we demonstrate in
resting-state data from participants with an Autism Spectrum Disorder and matched
controls that these concerns are also well founded in real data. Using the prior theoretical
work to formulate predictions, we show: (1) rather than simply altering the mean or
range of correlation values amongst pairs of brain regions, Global Signal Regression
systematically alters the rank ordering of values in addition to introducing negative values,
(2) it leads to a reversal in the direction of group correlation differences relative to other
preprocessing approaches, with a higher incidence of both long-range and local correlation
differences that favor the Autism Spectrum Disorder group, (3) the strongest group
differences under other preprocessing approaches are the ones most altered by Global
Signal Regression, and (4) locations showing group differences no longer agree with those
showing correlations with behavioral symptoms within the Autism Spectrum Disorder
group. The correlation matrices of both participant groups under Global Signal Regression
were well predicted by our previous mathematical analyses, demonstrating that there is
nothing mysterious about these results. Finally, when independent physiological nuisance
measures are lacking, we provide a simple alternative approach for assessing and
lessening the influence of global correlations on group comparisons that replicates our
previous findings. While this alternative performs less well for symptom correlations than
our favored preprocessing approach that includes removal of independent physiological
measures, it is preferable to the use of Global Signal Regression, which prevents
unequivocal conclusions about the direction or location of group differences.
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INTRODUCTION
Interest in the functional organization of large-scale brain cir-
cuitry in normal and disordered populations has exploded in
recent years. Out of the variety of methods and techniques in
use to study this organization, much effort has been focused
on studies of very slow fluctuations of brain activity during rest
using BOLD fMRI (see Fox and Raichle, 2007, for review). In
part, resting-state studies of inter-regional brain correlations, also
referred to as “functional connectivity,” have proliferated because
of the ease of acquiring the data. However, there are also promis-
ing potential benefits of the method for studying participant
groups that are less able to perform complex behavioral tasks,
including clinical populations (e.g., Fox and Greicius, 2010),
human infants (e.g., Fransson et al., 2007), and animals (e.g.,
Vincent et al., 2007; Margulies et al., 2009).

The study of Autism Spectrum Disorders (ASD), in particu-
lar, has benefited from these methods, with a growing number
of studies evaluating the hypothesis that the behavioral impair-
ments in ASD result from abnormal brain connectivity (e.g.,
Castelli et al., 2002; Belmonte et al., 2004; Just et al., 2004;

see Müller et al., 2011,for review). To date, most resting-state
(as well as task-based) fMRI studies of ASD have found evidence
of decreased correlations throughout a variety of brain regions
involved in social processing (e.g., Kennedy and Courchesne,
2008; Monk et al., 2009; Assaf et al., 2010; Weng et al., 2010;
Anderson et al., 2011b; Ebisch et al., 2011; Gotts et al., 2012; von
dem Hagen et al., 2012). However, not all studies have found this
pattern. A recent resting-state study with a relatively large partic-
ipant sample (N ≈ 40 per group) reported a mixture of increased
and decreased correlations in ASD relative to typically develop-
ing (TD) control participants (Rudie et al., 2013). Another recent
study, given the well-publicized concern about residual head-
motion artifacts in functional connectivity studies (e.g., Deen and
Pelphrey, 2012; Power et al., 2012; Van Dijk et al., 2012), carefully
examined head motion artifacts and failed to find large group
differences in connectivity between ASD and TD participants
(Tyszka et al., 2013).

Indeed, time-varying artifacts are a large source of concern in
functional connectivity studies. Major sources of artifact include
head motion (e.g., Power et al., 2012; Satterthwaite et al., 2012,
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2013; Jo et al., 2013; Yan et al., 2013), non-neural physiologi-
cal variation resulting from cardiac and respiration cycles (e.g.,
Glover et al., 2000; Birn et al., 2006, 2008; Shmueli et al., 2007;
Chang and Glover, 2009; Chang et al., 2009), as well as hard-
ware artifacts (e.g., Cordes et al., 2002; Jo et al., 2010). Much
recent attention has been given in the literature to the confound-
ing impact of head motion on group differences in correlation,
while much less has been given to physiological and hardware
artifacts, perhaps because many researchers still do not collect
the independent cardiac and respiration measures and/or utilize
the analysis tools that would permit more direct examination.
The goal of preprocessing steps in resting-state fMRI studies is
to remove as much nuisance or “noise” variation from the time
series as possible in order to allow observed correlation patterns
(and group differences) to reflect the underlying neural inter-
actions rather than non-neural artifacts. Not all preprocessing
recipes are as comprehensive or direct in addressing the myriad
of noise sources as others, and there is no currently accepted stan-
dard in the field for these critical noise cleaning procedures. A
principal difficulty is to remove noise/artifact components of the
time series data without removing neurally-derived components.

The goal of the current paper is to draw attention to the
detrimental effects of the still common practice of removing the
Global Signal (GS), the average time series in a whole-brain mask,
from the data prior to comparing groups of participants. Multiple
motivations for including the GS as a nuisance regressor have
been articulated, including that it helps to remove uninterest-
ing global fluctuations that mask circuit-level organization, that

it captures global physiological artifacts that other tissue-derived
measures from the ventricles or white matter fail to capture,
and that it enhances the strength and reliability of experimental
results (e.g., Fox et al., 2009; Keller et al., 2013). Most recently,
the GS has been argued to provide additional aid in attenuating
residual motion artifacts that can confound group comparisons
(Satterthwaite et al., 2013; Yan et al., 2013). However, including
the GS as a nuisance regressor can also have a number of undesir-
able effects. Its role in introducing negative correlations that are
otherwise largely absent from fMRI correlations has been widely
discussed (Fox et al., 2009; Murphy et al., 2009; Anderson et al.,
2011a). It has also been demonstrated in monkeys that the GS in
fMRI is tightly coupled with electrical neural activity (local field
potential recordings) across a range of frequencies (Schölvinck
et al., 2010). Removing it will therefore be expected to alter the
actual pattern of neural interactions that one desires to measure,
a point recently acknowledged by some of the originators of the
practice (Snyder and Raichle, 2012).

Less widely discussed to date are the detrimental effects for
interpreting group comparisons. In a recent paper (Saad et al.,
2012), we used simulation and mathematical analyses to show
the impact of GS regression on correlation patterns and group
comparisons, a summary of which is provided graphically in
Figure 1. We simulated two groups of participants, A and B,
for which the circuit-level structure differed in a simple way. In
Group A, three simulated patches of voxels had positive corre-
lations within but not across patches (correlations of zero). In
Group B, correlations within patches were identical to A, with the

FIGURE 1 | Distortion of simulated group differences in correlation by

GS regression. Adapted from Figure 4 in Saad et al. (2012), patterns of
correlation are shown for two simulated groups of participants, Group A
and B (N = 30 in each). Pre-GS regression (left panels), both groups have
three patches of simulated voxels (counter-clockwise from lower left:
patches 1, 2, and 3) that have average within-patch correlations of 0.5 (see
color bar to the right). Group B also has a correlation across patches 1 and
2, with all other inter-patch correlations in both groups set to be
approximately 0. The presence of the across-patch correlation in Group B

leads to an overall larger level of global correlation (GCOR values shown to
left in green). After GS regression (middle panels), negative correlations
are introduced among many of the patches and a larger amount of global
variation is removed from patches 1 and 2 in Group B. Significant group
correlation differences (right panel) are then found at all locations instead
of at the one appropriate location (correlation between, not within, patches
1 and 2). The appropriate group differences are most distorted (�) by GS
regression in and between patches 1 and 2, the locations involved in the
largest true differences.
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only difference between groups being a positive correlation of 0.5
between patches 1 and 2. After GS regression (middle column of
Figure 1), negative correlations were inappropriately introduced
between patches for Group A, and the within-patch correlations
were slightly reduced. For Group B, the presence of correlations
among patches 1 and 2 led these time series to contribute rela-
tively more to the GS than the time series in patch 3 (since they
will weight into the global average more). Correspondingly, GS
regression led more shared variation to be removed in patches
1 and 2, decreasing the related “local” and “long-range” corre-
lations. In all, this procedure led to significant group differences
being expressed at every location, rather than just at the single
appropriate location (between patches 1 and 2) (rightmost col-
umn of Figure 1). The virtue of this demonstration is that the
true statistics are known in all of their details, so it is clear that
the effects one would observe after GS regression are artifactual.
While the complexity of real data (and the absence of perfect
knowledge about what patterns of data to expect) make these
kinds of artifacts harder to examine, it is possible to derive three
main predictions from this simulation and from a more com-
prehensive mathematical understanding of how GS regression
should affect correlation matrices:

(1) The equations that describe the influence of GS regression on
any given correlation matrix show that the new matrix will
depend in a complex manner on the initial matrix, with all
of the values being “warped” to varying degrees (Saad et al.,
2012, 2013). The prediction for real data is that rather than
simply re-centering or re-scaling correlation values around a
new mean value in an all-to-all matrix (0 after GS regression:
Fox et al., 2009), the rank ordering of these values should
also be altered. Furthermore, the alterations to the correla-
tion matrix relative to the absence of GS regression can be
predicted in a straightforward manner;

(2) If two groups differ in their global level of correlation (as
might be expected for ASD participants relative to TD partic-
ipants), then the resultant re-centering of the corresponding
correlation matrices to 0 after GS regression will necessarily
lead to group differences in both directions and in locations
where they should not occur, both in “local” correlations and
in “long-range” correlations—even if the underlying group
differences go in a single direction (see Jones et al., 2010, for
an example of this in task-based functional connectivity of
ASD). Note that the global level of correlation (GCOR), the
grand average of the all-to-all correlation matrix, is lower in
Group A than in Group B (green text in the left column of
Figure 1);

(3) Group comparisons will not be altered indiscriminately. They
will tend to be altered most in locations that exhibit the
largest underlying group differences - differences that are
large enough and coherent enough over the spatial extent
of the brain that they affect the GS measure. This is shown
in the rightmost column of Figure 1, with the magnitudes
of distortion (�) from the underlying group differences
being the largest within and across patches 1 and 2. There
is a simple mathematical explanation for this phenomenon.
Whole-brain “connectedness” measures have been used in

a number of studies to find locations of high connectiv-
ity with the rest of the brain (i.e., “hubs”: Buckner et al.,
2009; Cole et al., 2010) and locations that differ between
two groups in their interaction with the rest of the brain
(e.g., Salomon et al., 2011; Gotts et al., 2012). The primary
difference between whole-brain connectedness and correla-
tion with the GS is simply whether whole-brain averaging
is done before or after the correlation calculation. Indeed,
if the time series are first transformed to z-scores with unit
variance (allowing each voxel to contribute equally to the
GS), whole-brain connectedness using Pearson correlation is
directly proportional to both correlation and regression with
the GS, with the effect of GS removal being greater removal
of the largest connectedness differences.

In the remainder of this paper, we systematically vary the pre-
processing procedures in order to evaluate these predictions in
our own previously published ASD and TD resting-state data
(Gotts et al., 2012). In addition to the GS and our preferred
ANATICOR de-noising approach, which more explicitly mod-
els physiological and hardware artifacts (Jo et al., 2010), we
evaluate a simple alternative to GS regression when indepen-
dent cardiac and respiration measures are not available. The
alternative, referred to as GCOR (for Global Correlation, Saad
et al., 2013), treats the level of global correlation amongst all
brain voxels as a nuisance covariate at the group-level of anal-
ysis, after the relevant correlation measures have already been
calculated for each individual participant without the use of
GS regression.

MATERIALS AND METHODS
PARTICIPANTS
The full details of our participant sample have already been
published previously (Gotts et al., 2012). Twenty-nine typically
developing (TD) participants (28 males, 1 female) between 12 and
23 years of age and 31 high-functioning participants (29 males,
2 females) with an autism spectrum disorder (ASD) between
12 and 23 years of age took part in the study. ASD partici-
pants were recruited from the Washington, DC metropolitan
area, and all met Diagnostic and Statistical Manual-IV diagnos-
tic criteria as assessed by an experienced clinician (20 Asperger’s
syndrome, 7 high-functioning autism, and 4 pervasive develop-
mental disorder-not otherwise specified). Thirty ASD partici-
pants received the Autism Diagnostic Interview (ADI or ADI-R)
(Le Couteur et al., 1989; Lord et al., 1994) and the Autism
Diagnostic Observation Schedule (ADOS, Modules 3 or 4; Lord
et al., 2000), administered by a trained, research-reliable clinician.
All scores from participants with ASD met cut-off for the category
designated as ’broad autism spectrum disorders’ according to cri-
teria established by the National Institute of Child Health and
Human Development/National Institute on Deafness and Other
Communication Disorders Collaborative Programs for Excellence
in Autism (see Lainhart et al., 2006). Because the ADI and ADOS
do not provide an algorithm for Asperger’s syndrome, Lainhart
and colleagues developed criteria that include an individual on
the broad autism spectrum if s/he meets the ADI cut-off for
“autism” in the social domain and at least one other domain or
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meets the ADOS cut-off for the combined social and commu-
nication score. Scores on the Social Responsiveness Scale (SRS)
(Constantino, 2002), an informant-based rating scale used to
assess ASD social and communication traits quantitatively over
the full range of severity, were obtained from parents for 29 ASD
participants. IQ scores were obtained for all participants, and
all full-scale IQ scores were ≥ 85 as measured by the Wechsler
Abbreviated Scale of Intelligence (26 ASD, 29 TD), the Wechsler
Adult Intelligence Scale-III (3 ASD), or the Wechsler Intelligence
Scale for Children-IV (2 ASD). Participant groups did not dif-
fer in terms of full-scale IQ, age, or sex ratio (see Gotts et al.,
2012, Table 1). Informed assent and consent were obtained from
all participants and/or their parent/guardian when appropriate
in accordance with a National Institutes of Health Institutional
Review Board-approved protocol.

fMRI IMAGING METHODS
fMRI data were collected using a GE Signa 3 Tesla whole-
body MRI scanner at the NIH Clinical Center NMR Research
Facility using standard imaging procedures. For each participant,
a high-resolution T1-weighted anatomical image (MPRAGE)
was obtained (124 axial slices, 1.2-mm slice thickness, Field
of View = 24 cm, 224 × 224 acquisition matrix). Spontaneous,
slowly-fluctuating brain activity was measured during fMRI using
a gradient-echo echo-planar series with whole-brain coverage
while participants maintained fixation on a central cross and
were instructed to lie still and rest quietly (TR = 3500 ms, TE =
27 ms, flip angle = 90◦, 42 axial contiguous interleaved slices
per volume, 3.0-mm slice thickness, FOV = 22 cm, 128 × 128
acquisition matrix, single-voxel volume = 1.7 × 1.7 × 3.0 mm).
Each resting scan lasted 8 min and 10 s for a total of 140 con-
secutive whole-brain volumes. Independent measures of nuisance
physiological variables (cardiac and respiration) were recorded
during the resting scan for later removal in the majority of par-
ticipants (24 ASD, 22 TD). Seven additional participants without
these measures were included in each group after comparing
descriptive statistics of the whole-brain-averaged EPI time series
post-preprocessing to those calculated for the participants with
measures present (see Gotts et al., 2012, Supplementary Materials
and Methods, for full description). A GE 8-channel send-receive
head coil was used for all scans, with a SENSE factor of 2 used to
reduce gradient coil heating during the session.

fMRI PREPROCESSING
Four preprocessing models were compared in the current study.
All preprocessing conditions utilized the AFNI software package
(Cox, 1996) and had the following series of steps in common.
The first 4 EPI volumes were removed from the resting scan,
and large transients in the remaining volumes were removed by
constraining values to be within 4 standard deviation units of
the mean (using AFNI’s 3dDespike). Volumes were then slice-
time corrected, co-registered to the anatomical scan, resampled to
2.0-mm isotropic voxels, smoothed with an isometric 6-mm full
width half maximum Gaussian kernel, normalized by the mean
signal intensity in each voxel to reflect percent signal change,
and transformed into the standardized Talairach and Tournoux
(1988) volume for the purposes of group analyses. Tissue-based

nuisance regressors were created by segmenting the anatomical
scan into tissue compartments using Freesurfer (Fischl et al.,
2002). Ventricle and white-matter masks were created, eroding
the outer voxels of the masks to prevent partial volume effects
with grey matter. Eroded masks were then applied to the volume-
registered EPI data (prior to smoothing) in order to yield nui-
sance time series with minimal contribution from gray matter
signals for the ventricles, as well as a local average, at each voxel, of
the EPI signal from the (eroded mask) white matter voxels within
a 15 mm radius of the central voxel.

Basic Model: Motion + Ventricles + Local WM
The “basic model” is a reduced version of our full ANATICOR
model without the independent physiological measures. It is com-
mon to the other three preprocessing models considered in this
study. As indicated by the label above, nuisance variables for each
voxel included the 6 head motion parameters (3 translation, 3
rotation) derived from the volume registration step, one average
time series from the eroded ventricle mask, and the “local” aver-
age white matter time series. Throughout the remainder of the
paper, the shorthand label “Basic” model refers exclusively to this
preprocessing pipeline. The Basic model has two essential virtues
that convey to the remaining preprocessing models: (1) it virtu-
ally eliminates the distance-dependent artifacts that result from
transient head motion, even for the high movement cohorts such
as the children cohort reported in Power et al. (2012) (Jo et al.,
2013; see also Gotts et al., 2012, Supplementary Figures 5–11),
and (2) the local white matter regressor (Local WM) markedly
attenuates transient hardware artifacts that result from faulty
channels in send/receive head coils and that generate spatially
restricted signals in adjacent white and gray matter voxels (Jo
et al., 2010). Indeed, TD participants from our study served as
examples of the artifact in Jo et al. (2010). The EPI time series
and all nuisance time series were detrended with fourth-order
polynomials prior to least-squares model fitting to each voxel’s
time series. No further temporal filtering was applied to the Basic
model, since cardiac and respiratory cycles (frequencies above
the Nyquist frequency of 0.5 ∗ 1/TR ≈ 0.14286 Hz) are aliased
to lower frequencies, preventing a bandpass filter from removing
them appropriately.

Basic Model + GCOR
The temporal preprocessing steps in the +GCOR model are iden-
tical to the Basic model. The only addition is the use of the Global
Correlation (or GCOR) measure as a nuisance covariate in the
group analyses, after the correlation values of interest have already
been calculated. This is explained in full in the section fMRI
Analyses.

Basic Model + GS regression
In the +GS Regression model, the GS has been added to the
list of nuisance regressors in the Basic model. The GS is calcu-
lated by applying a whole-brain mask for each participant to the
volume-registered EPI time series to yield one average time series.
As with the other nuisance regressors and the BOLD time series,
the GS was detrended with fourth-order polynomials prior to
least-squares model fitting.
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ANATICOR
This is the preprocessing model used in our prior study (Gotts
et al., 2012). It consists of the Basic model plus regressors for
RETROICOR (Glover et al., 2000; estimated for slice time 0) and
Respiration Volume Per Time (RVT) (Birn et al., 2008), created
from independently acquired cardiac and respiration measures
during the EPI scan (sampling rate 50 Hz). These physiological
regressors are intended to estimate: (1) aliased cardiac and res-
piration cycles, and (2) slower, BOLD-like effects of respiration
(end-tidal CO2) that are typically below 0.1 Hz. These influences
are not small for data in the current study, accounting for approx-
imately 10–20% of variance in the EPI/BOLD signal and leading
to Type II statistical errors if they are not removed (Gotts et al.,
2012, Supplementary Figure 1).

fMRI ANALYSES
In Gotts et al. (2012), we developed an analysis approach to iden-
tifying resting-state correlation differences between ASD and TD
participants throughout the entire brain (see also Anderson et al.,
2011b; Salomon et al., 2011). In the current paper, we adopt a
mixture of approaches intended to illustrate the impact of prepro-
cessing steps on correlation differences calculated between pairs
of regions that are sampled throughout the brain, as well as to
estimate correspondences with our previously reported results.

Large-scale sampling of whole-brain mask with 1880 ROIs
As one relatively comprehensive approach, we uniformly sam-
pled spherical ROIs (6 mm radius) within our previous group
brain mask (each voxel present in >85% of participants in each
group). ROI centers were chosen by down-sampling the origi-
nal voxel grid in Talairach coordinates to a new 4 × 4 × 4 grid
of the original voxels (a new volume of 8 × 8× 8 mm3), resulting
in a total of 1880 ROIs (from 119,751 original voxels). Example
ROI centers (each of which represents a 6 mm-radius sphere) are
shown in Figure 2 in red, overlaid on the group brain mask in
green. Note that the mask excludes ventricles, white matter, and
the sagittal sinus, focusing on signals from the gray matter and
subcortical structures. Correlations of the preprocessed average
time series from each ROI for each participant were calculated in
an all-to-all fashion and transformed to approximately normally
distributed values (Fisher’s z transform). Average group ROI-
ROI correlation matrices were then calculated across participants
within the ASD and TD groups and compared with two-sample
t-tests. The relative rank ordering of correlation values within
the ROI-ROI matrix was compared across preprocessing models
using the Spearman rank correlation.

Assessing agreement with previous results using Gotts et al. (2012)
ROIs
The 27 ROIs identified in Gotts et al. (2012) as showing greater
correlation in TD than in ASD participants were also applied to
the de-noised data from each preprocessing model in order to
evaluate consistency with our previously reported group compar-
isons, as well as with our previous ASD symptom correlations
using the SRS total score (Constantino, 2002). These ROIs are
shown in Figure 3, with each ROI assigned a unique color. As with
the analyses using 1880 ROIs, the all-to-all ROI correlation matrix

FIGURE 2 | Sampling the group brain mask with 1880 ROIs. The original
group brain mask from Gotts et al. (2012) (voxels shared in >85% of
participants in both ASD and TD groups; shown in green) was sampled by
choosing every fourth voxel from the original voxel grid (in X,Y,Z directions in
Talairach coordinates). Each chosen voxel (red voxels) served as the center
for a 6-mm radius sphere, totaling 1880 ROIs. The original group brain mask
excluded voxels in white matter, the ventricles, and the sagittal sinus.

was calculated for each participant, comparing groups using two-
sample t-tests after first transforming to normally distributed
values (Fisher’s z). In analyses of correlation with SRS total score,
partial correlations were calculated across participants using the
values in the ASD group at each ROI-ROI combination, remov-
ing the shared variation with Age and Full Scale IQ. Predictions
regarding the influence of preprocessing model on “short-range”
correlations were also assessed for these 27 ROIs. For these anal-
yses, the average voxel-to-voxel Pearson correlation within each
ROI was calculated for each ASD and TD participant, these values
were then transformed using Fisher’s z, and then they were com-
pared across groups in each ROI using two-sample t-tests. The
Pearson correlation was chosen for ease of implementation, and
the results are not expected to depart markedly from those using
canonical correlation and other similar methods (e.g., Regional
Homogeneity or ”ReHo“: Zang et al., 2004; Paakki et al., 2010;
Shukla et al., 2010; see also Jiang et al., 2013).

GCOR preprocessing model and analyses
The +GCOR model, as discussed above in the section Basic
Model + GCOR, involves the same preprocessing steps as the
Basic model. After the calculation of correlation coefficients
between a pair of ROIs(/voxels) and the application of the Fisher’s
z transform, the GCOR method involves partialling out the
influence of the global level of correlation (grand mean corre-
lation of all voxels with all voxels in a whole-brain mask) on
the group comparison of correlation values using an Analysis
of Covariance (ANCOVA) approach (Saad et al., 2013). The
top panel of Figure 4 provides a simplified illustration of the
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FIGURE 3 | ROIs showing the largest group differences (TD > ASD) in

Gotts et al. (2012). ROIs 1–27 are shown using a distinct color for each
ROI, ranging from cool colors (blue = 1) up to hot colors (red = 27).

partialling process for a single participant group (the 29 TD
participants) using an example pair of ROIs. The blue dots form
a scatterplot of the Fisher’s z GCOR value on the x-axis and
the Fisher z-transformed ROI-ROI r-value on the y-axis across
the TD participants. A frequency histogram of the y-axis val-
ues prior to GCOR removal (“original”) is shown to the left of
the plot using blue-outlined bars. For this single-group example,
the y-values are adjusted (vertical black lines leading away from
the blue dots) using the slope of the best-fit line and the dis-
tance of the GCOR value from the group median GCOR value
(shown with a vertical dashed blue line). The actual ANCOVA is
more complex in implementation (program 3dttest++ in AFNI),
involving the full model of grouping variable (2 levels: ASD and
TD) and the continuous covariate (GCOR). The choice of mean
or median for centering should depend on whether the distribu-
tion is approximately symmetrical or skewed, respectively (the
GCOR distributions are skewed for both ASD and TD popu-
lations, shown in the bottom panel of Figure 4). The effect of
covariate removal is to yield a more narrow distribution with
reduced variance (frequency histogram of solid black bars to the
left of the y-axis). This will tend to have the impact of increasing
the amplitude of corresponding t-values when comparing groups
if correlations in both groups strongly depend on the level of
global correlation. For the analyses in the current paper, separate
medians are used for centering each group, permitting differential

FIGURE 4 | GCOR method of removing global correlations. (top panel)

The x-axis shows the global level of Pearson correlation (GCOR) for each of
the 29 TD participants, calculated among all possible voxel combinations in
a whole brain mask and then transformed with Fisher’s z. The y-axis shows
the Fisher’s z-transformed correlation value between two example ROIs for
each participant, with frequency histograms across participants shown to
the left of the y-axis. The blue dots are the original values of GCOR and
ROI-ROI correlation for each participant under the Basic preprocessing
model. Covariate removal is illustrated here for a single-group of
participants, but appropriate removal for group comparisons is more
complicated, carried out using Analysis of Covariance (ANCOVA), which is
implemented in AFNI with the program 3dttest++ for two-level grouping
variables. For a single group, the best-fit regression line (dashed red) is
used to adjust y-values as a function of the distance from the median
x-value (dashed blue vertical line). The adjusted values are shown relative to
the blue dots using black vertical lines, with the new values at the
endpoints. The adjusted values have a reduced standard deviation on the
y-axis relative to the original distribution (see histogram of solid black bars
on the left). (bottom panel) Frequency histograms of GCOR values are
shown for TD (black) and ASD (red) participants. Distributions are
overlapping and skewed for both groups, which motivated the choice of
median rather than mean for re-centering.

levels of average correlation between the groups (as in Figure 1).
If a single grand-mean or median is desired for centering both
groups (depending on the study and hypotheses), then it is criti-
cal to verify that the groups being compared have similar overall
ranges of GCOR. Otherwise, distortions similar to GS regression
are expected to occur to a certain extent (see Saad et al., 2013, for
further discussion).

Comparisons of whole-brain “connectedness”
In our prior study (Gotts et al., 2012), we compared functional
connectivity levels between ASD and TD groups in a whole-brain
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manner by first finding the average correlation of each voxel
with the rest of the brain mask (i.e., whole-brain “connected-
ness”; see also Salomon et al., 2011). Connectedness is similar, but
not necessarily identical, to the measure of “degree centrality” in
graph theory, and it is related to GCOR through calculation of
a simple average over connectedness values. By comparing con-
nectedness maps between groups, we identified good candidate
“seeds” to be tested in subsequent analyses. We utilize this same
whole-brain approach in the current study in order to identify
the locations of strongest correlation differences between groups.
Results for the Basic model and ANATICOR models were already
presented in the prior study (see Gotts et al., 2012, Figures 2, 3,
and Supplementary Figure 1). In the current paper, we conducted
these analyses for the +GS regression and +GCOR models. The
same statistical and cluster-size thresholds were used as in the
prior study to afford direct comparisons of the preprocessing
models (p < 0.05, uncorrected, with a spatial extent of at least
100 voxels).

Mathematical prediction of GS correlation matrices
Saad et al. (2012, 2013) have provided mathematical descriptions
of the distortion in correlations induced by GS regression. In the
current paper, we use these equations to predict the values of
the correlation matrices for ASD and TD participants under the
+GS preprocessing model using the time series data under the
Basic model (without GS regression). These equations would be
exact (i.e., equivalent to carrying out GS regression) if we were
to use all voxel time series in a whole-brain mask. Here, we will
use only data from the 1880 ROIs sampled from the group brain
mask, excluding time series from white matter, ventricles and the
sinuses. Therefore, the equations will only serve as predictive esti-
mates, and these predictions will be accurate to the extent that the
effects of GS regression depend primarily on gray matter signals
and do not depend on signals in the excluded “non-neural” tissue
compartments.

The equations used for these analyses are derived in detail
in Saad et al. (2013), but we repeat them briefly here for
convenience:

Z =
(

I − g
(

gTg
)−1

gT
)

Y

where Z is the data matrix after GS regression (N time points
x M voxels), I is the identity matrix, g is the GS of the NxM
data matrix Y prior to GS regression. The time series in Y are
presumed to have been de-meaned (i.e., means set to 0). Then:

P = 1/N YTY

Q = 1/N ZTZ = P −
(

P11TP
)

/(1TP1)

R = P ∗σPσT
P

where P and Q are the MxM covariance matrices of the Y
and Z data matrices, R is the full correlation matrix based
on Y , ∗ is the Hadamard element-wise matrix product, σP

is the reciprocal square root (1/sqrt) of the diagonal elements

(variances) of P. Next,

S = Q ∗σQσT
Q

=
(

P −
(

P11TP
)

/
(

1TP1
))

∗σQσT
Q

where S is the correlation matrix after GS regression, 1 is an Mx1
vector of ones, and σ Q is the reciprocal square root of the diagonal
elements of Q. From this equation, it is clear that S is a func-
tion of the covariance matrix P of the data prior to GS regression.
The “warping” effect of GS regression on the original correlation
matrix R can then be seen by examining the difference S-R:

S − R =
(

P −
(

P11TP
)

/
(

1TP1
))

∗σQσT
Q − P ∗ σPσT

P

This final equation shows that GS regression warps every value of
the correlation matrix in a complex manner that depends solely
on the covariance matrix P (the variance terms of Q are also
dependent solely on P).

For the purposes of the current analyses, we use the average
time series calculated in the 1880 ROIs (Figure 2) under the Basic
preprocessing model (without GS regression). This is tantamount
to applying GS regression serially after the nuisance regressors in
the Basic model have already been removed. This simplification
will serve as a further potential source of inaccuracy in the esti-
mation of S, since the regression in the +GS model removes all
nuisance variables simultaneously.

RESULTS
As discussed above, the main goal of the current paper is to
evaluate three central theoretical predictions about the distort-
ing effects of GS regression on group comparisons of functional
connectivity in real data. To this end, we re-analyze resting-state
data from 31 ASD and 29 TD participants that were originally
reported in Gotts et al. (2012) using four different preprocessing
models: (1) the Basic model (Motion + Ventricles + Local WM),
(2) the Basic model +GCOR, (3) the Basic model +GS regres-
sion, and (4) our preferred ANATICOR model (Basic model +
RETROICOR and RVT physiological regressors).

PREDICTION 1: CORRELATION MATRICES ARE “WARPED” UNDER GS
REGRESSION
We begin by evaluating the first prediction articulated in the
introduction, namely that the effect of GS regression is not sim-
ply to re-center (alter the mean) or re-scale (alter the standard
deviation) the correlations amongst a collection of voxel time
series. Rather, the values are also “warped” as a function of the
initial data covariance matrix, altering the rank orderings of the
values within the all-to-all matrix. Correlations were calculated
among all combinations of the 1880 ROIs (Figure 2) for the 31
ASD and 29 TD participants using the four preprocessing models.
These results are shown averaged within each group in Figure 5
by preprocessing model. Also shown are the two-sample t-tests by
ROI-ROI combination and thresholded t-maps (p < 0.05, uncor-
rected), with corresponding colorbars shown to the right of each
plot. Few if any negative correlations were observed in either
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FIGURE 5 | Effect of preprocessing model on ROI-ROI correlations and

group differences. Correlation matrices for the TD and ASD groups and the
corresponding group comparisons are shown for each of the four
preprocessing models using 1880 ROIs sampled from the group brain mask.
Results for the “Basic” model (Motion+Ventricles+Local WM) are shown in
the upper left, the Basic+GCOR model in the upper right, the Basic+GS
regression model in the lower left, and the full ANATICOR model in the lower

right. The upper two plots of each model show the average ROI-ROI
correlation matrices for the TD and ASD groups (see corresponding colorbars
for scale), the lower left plot of each model shows the unthresholded
t-values, and the lower right plot of each model shows the t-values
thresholded at p < 0.05 (uncorrected). ROIs are ordered by scanner
coordinates (ranked by Inferior-Superior, then by Anterior-Posterior, then by
Right-Left).

participant group for the Basic, +GCOR or ANATICOR mod-
els, whereas negative correlations were common in both groups
under the +GS Regression model, yielding an average correlation
value of approximately 0 for both groups. For both groups, the
average correlation matrices are quite similar, both in scale and in

rank-order for the Basic, +GCOR, and ANATICOR models. The
grand mean (and standard deviation) of the correlation matri-
ces for the ASD group were 0.2138 (0.1105), 0.2155 (0.1128), and
0.2028 (0.1111) for the Basic, +GCOR, and ANATICOR mod-
els, respectively. These same numbers for the TD group were
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0.2222 (0.1133), 0.2275 (0.1160), 0.2240 (0.1166). Note that the
TD group had an average correlation greater than the ASD group
of approximately 0.01–0.02 across these three models. In contrast,
for the +GS model the means (standard deviations) of the ASD
and TD groups were 0.0155 (0.1165) and 0.0146 (0.1215), with
the average correlation slightly larger for the ASD group. As with
the mean correlations, the rank orderings of values within the
ROI-ROI matrices were highly similar for the Basic, +GCOR, and
ANATICOR models. Spearman rank correlations among these
models were 0.9885 or larger for the ASD matrices and 0.9844
or larger for the TD matrices. In contrast, the Spearman rank
correlation of the +GS model with the Basic, +GCOR, and
ANATICOR models was 0.6896,0.6963, and 0.7125 for the ASD
group and 0.6976,0.6930, and 0.6794 for the TD group. In other
words, while better than 96.9% of the variance (R2 values) was
shared in the rank orderings of group-average correlation val-
ues among the Basic, +GCOR, and ANATICOR models for both
groups, approximately 50% of the variance was shared between
the correlation matrices under the +GS model and those of the
other models for both groups.

While it is difficult to compare these numbers statistically
for the group-average matrices (there are statistical dependencies
amongst the rows and columns), deriving the same measures for
the ASD and TD individuals allowed comparisons and assessment
of reliability across participants. Paired t-tests across participants
within both the ASD and TD groups showed that the Spearman
rank correlations of the +GS correlation matrices with the Basic
and ANATICOR models were significantly reduced relative to the
Spearman rank correlations between the Basic and ANATICOR
models (+GCOR is applicable only to group-level analyses and
was not part of these analyses). For the 31 ASD participants,
average Spearman rank correlations of the +GS model with
Basic and ANATICOR models were 0.7535 and 0.7261, respec-
tively, whereas the average rank correlation between the Basic and
ANATICOR models was 0.9362 [paired t(30) > 8.50, p < 1.0e-08,
for both; Bonferroni-corrected P-value = 0.05/3 = 0.0167]. For
the 29 TD participants, Spearman rank correlations of the +GS
model with the Basic and ANATICOR models were 0.7494 and
0.6971, respectively, whereas the rank correlations between the
Basic and ANATICOR models was 0.9329 [paired t(28) > 8.61,
p < 1.0e-08, for both]. In summary, the rank ordering of the
ROI-ROI correlation values for both ASD and TD participants
is significantly altered or “warped” by GS regression, consistent
with Prediction 1.

PREDICTION 2: GS REGRESSION WILL ALTER THE DIRECTION OF
GROUP COMPARISONS
The second prediction articulated in the introduction is that GS
regression should alter the direction of group comparisons. In
the case of Autism Spectrum Disorders, the prediction is that GS
regression should lead to a higher incidence of ROI-ROI pairs
for which ASD correlations are greater than TD correlations.
This can occur for at least two reasons in the current context.
First, if the average level of correlation differs between groups
prior to GS regression (as shown in the previous section: TD
> ASD), the re-centering of the average correlation (to approx-
imately 0) will be differential in magnitude for the two groups,

with a larger subtraction of correlation values from the TD group
than from the ASD group. This will necessarily lead to reverse
group differences (with ASD>TD) in some locations that did not
differ prior to GS regression (possible Type I errors). Differential
re-centering should also lead to the attenuation of real group
differences in locations where they should be found (possible
Type II errors). The second reason that correlation differences can
become reversed after GS regression has to do with differential
warping of the correlations in the two groups. A clear example
of this phenomenon is shown in Figure 1, where larger shared
variation is removed from patches 1 and 2 in Group B after GS
regression compared to Group A. In either case, the expectation
for real data is that the incidence of ASD>TD group differences
should increase for the +GS model relative to the other mod-
els. For a previous task-based study (verbal fluency) of functional
connectivity of ASD and TD participants in our lab, this phe-
nomenon has already been demonstrated (Jones et al., 2010). In
this section, we evaluate the effects of preprocessing model on the
warping of the entire matrix of t-values, as well as on the relative
incidence of significant group differences in both directions (TD
> ASD and ASD > TD).

Warping of group comparisons by GS regression
As with the average group correlation values for the ASD and TD
groups among the 1880 ROIs (section Prediction 1: Correlation
matrices are “warped” under GS regression), it was possible to
evaluate the alteration of the corresponding t-values by prepro-
cessing model. The means (standard deviations) of the t-values
of the Basic, +GCOR, +GS regression, and ANATICOR mod-
els were 0.0593 (0.9438), 0.3127 (1.1015), −0.0327 (1.1015),
and 0.4606 (1.0081) (see Figure 5 and summary histograms in
Figure 6A). The Spearman rank correlations for the t-values
among the Basic, +GCOR, and ANATICOR models were 0.8989
and greater (Basic with +GCOR:0.9899; Basic with ANATICOR:
0.8989; +GCOR with ANATICOR:0.9057). In contrast, the
Spearman rank correlations of the +GS model with the others
were 0.7504, 0.7604, and 0.6662 with the Basic, +GCOR, and
ANATICOR models. In summary, the contrast t-values were most
positive under the +GCOR and ANATICOR models, slightly pos-
itive for the Basic model, and slightly negative for the +GS model
(i.e., greater correlations for the ASD participants). The rank
orderings of the t-values were similar for the Basic, +GCOR, and
ANATICOR models, despite differences in the mean values, shar-
ing at least 80% of the variance among any combination of these
models. In contrast, the rank orderings under the +GS model
shared between 44 and 58% of the variance with those under the
remaining models. All of these distributions are highly discrim-
inable from one another, with t-values from paired t-tests well
above 100 for all comparisons due to the diminishing standard
error values for these very large sample sizes (N = 1766260 values
in each).

Incidence of group differences in both directions as a function of
preprocessing model
Both differential re-centering and warping of the correlation val-
ues by participant group predict a relatively higher incidence
of group differences favoring the ASD group under the +GS
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FIGURE 6 | Effect of preprocessing model on the distributions of group

differences. (A) Full distributions of t-values (TD-ASD) over all unique
combinations of the 1880 ROIs (N = 1766260) under all four preprocessing
models. (B) (top panel) Ratio of positive to negative t-values that survive the
threshold t-value, shown as a function of the threshold on the x-axis (ranging
from p < 0.05 to p < 0.0005, uncorrected). (bottom panel) Percentage of
tests that yield significant negative t-values (i.e., favoring the ASD group) as a

function of threshold t-value and preprocessing model. These values serve
as the denominator in the ratios of the top panel. (C) Mean t-value across all
1880 ROI for each ROI as the seed (i.e., averaging across the rows of the full,
unthresholded t-matrix of each model), rank-ordered from small to large by the
mean t-values in the Basic model. These curves demonstrate that the largest
alterations to the group comparisons by GS regression are for ROIs that elicit
the largest average t-values under the +GCOR and ANATICOR models.

model (the other models favor the TD group to varying degrees).
Information about the relative likelihood of TD > ASD and
ASD > TD group differences is present in graphical form in
Figures 5, 6. The full matrices of t-values in Figure 5 show that
the +GS model yields the most blue colors, indicating greater
correlations for the ASD group. This is apparent both in the
unthresholded and thresholded plots (lower left and right for each
of the four models). In contrast, the +GCOR and ANATICOR
models yielded the most positive (yellow/red) t-values, and the
Basic model yielded fewer significant values in either direction
(upper left panels of Figure 5). This can be quantified by count-
ing the number of significant positive and negative t-values for
a given significance threshold. Using p < 0.05 (uncorrected), out
of 1766260 unique ROI-ROI combinations (1880 ROIs), the Basic
model yielded 1.9155% significant positive t’s and 1.5759% neg-
ative t’s (+/−ratio: 1.2154), the +GCOR model yielded 6.1231%
positive t’s and 1.8582% negative t’s (+/−ratio: 3.2952), the
ANATICOR model yielded 5.6807% positive t’s and 1.035% neg-
ative t’s (+/−ratio: 5.4888). In contrast, the +GS model yielded
3.2192% positive t’s and 3.7507% negative t’s (+/−ratio: 0.8583).
As the P-value threshold is lowered (down to p < 0.0005), ratios
of positive to negative counts increase slightly for the +GCOR

and ANATICOR models whereas they decrease for the +GS
model (see Figure 6B). Combined with the information from sec-
tion Warping of group comparisons by GS regression that the
overall distributions of t-values are significantly shifted to more
negative values for the +GS model relative to the other three
models, it is clear that Prediction 2 (greater incidence of ASD>TD
group differences) holds for this dataset across choice of statistical
threshold (see also Jones et al., 2010). Indeed, the average TD-
ASD t-value over all ROI-ROI combinations is significantly less
than 0 under GS regression, a notable departure from the other
models [mean = −0.0327, median = −0.0301, SD = 1.1015;
one-sample t-test: t(1766259) = −39.44, p < 1.0e-10].

PREDICTION 3: GS REGRESSION WILL MOST ALTER THE STRONGEST
GROUP DIFFERENCES UNDER OTHER PREPROCESSING MODELS
The third prediction articulated in the introduction is that GS
regression will not alter group comparisons indiscriminately.
Rather, it will tend to alter results most in locations that exhibit
the largest underlying group differences. One relatively simple
way to evaluate this prediction for the current dataset is to
first find regions out of the 1880 that yield the largest aver-
age group differences. This was done by averaging the t-values
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across the rows of the 1880 × 1880 t-matrices in Figure 5 for
each preprocessing model. Then, these column-averaged t-values
can be rank ordered from smallest to largest. Given the results
in the section on Prediction 2, one expects the rank order-
ings of the Basic, +GCOR, and ANATICOR models to have
quite similar rank orderings, whereas the +GS model should
differ—at least relatively—in its rank orderings from these mod-
els. The critical prediction is that the ROIs with the largest
average t-values for the Basic, +GCOR, and ANATICOR mod-
els should be the most altered in value for the +GS model.
Rather than rank ordering the average t-values for each model
separately (which would make it difficult to evaluate the agree-
ment of particular ROIs in the rank ordering across models),
we chose to rank order the ROIs relative to a single reference
model, in this case the Basic model that is common to all of the
other models. Figure 6C shows that the ROIs with the largest
average t-values are quite similar for the Basic, +GCOR, and
ANATICOR models (the black, green, and red curves, respec-
tively). Indeed, the Spearman rank correlations of these 1880
column-averaged values ranged between 0.8848 and 0.9863 for
these three models. In contrast, the average t-values of the +GS
model are relatively flat when sorted by the t-values of the
Basic model, indicating a strong alteration in the rank order-
ing. Accordingly, the Spearman rank correlation of the +GS
model with the Basic, +GCOR, and ANATICOR models is
0.255, 0.2678, and 0.2623 respectively. Visually, it is clear from
Figure 6C that the average t-values under the +GS model are
most different from the +GCOR and ANATICOR models at the
highest average t-values. In order to evaluate this phenomenon
statistically, we compared the slopes of the best-fit regression
lines to these curves. The slopes of the best-fit lines to the
+GCOR and ANATICOR curves were 8.1509e-04 and 7.3080e-
04, respectively, while the best-fit slope to the +GS curve was
0.73161e-04. The 99% confidence intervals calculated for the
slope estimates were non-overlapping for the +GS model and
those of the +GCOR and ANATICOR curves, demonstrating that
they are significantly different from each other. The larger posi-
tive slopes for the +GCOR and ANATICOR models guarantees
that they will differ most from the +GS model at their largest
t-values.

MATHEMATICAL PREDICTION OF ASD AND TD CORRELATION
MATRICES UNDER THE +GS MODEL
In the sections above, we evaluated and confirmed three main
predictions about effect of GS regression on group comparisons
in real data. The purpose of the current section is to evaluate the
extent to which the distorting effect of GS regression on a matrix
of correlation values is captured by the equations of Saad et al.
(2012, 2013). As described in section Mathematical prediction of
GS correlation matrices, if we were to use all voxel time series in
a whole brain mask, these equations would be exact (i.e., equiva-
lent to performing GS regression). What makes this analysis more
interesting is that only time series from the 1880 ROIs sampled
from the group brain mask (Figure 2) were used for the estima-
tion. Since the group brain mask excluded the brain tissue types
that have been argued to contain the largest global nuisance sig-
nals (white matter, ventricles, and sinuses), successful prediction

of +GS model correlations using only data from the Basic pre-
processing model in these sampled ROIs would demonstrate that
the main distorting effects of GS regression derive from averag-
ing signals in gray matter voxels. Successful prediction will also
highlight the fact that the equations describe the warping effect
of GS regression correctly and that the reported distortions of
group comparisons should not come as a surprise. Figure 7 shows
the group-average ROI-ROI correlation matrices under the +GS
preprocessing model for the ASD and TD groups in the left col-
umn and the matrices predicted from the sampled ROIs using
the Basic model and the equations from Saad et al. (2013) in
the middle column. Both Pearson correlation and Spearman rank
correlations (scatterplots in right column) reveal that approxi-
mately 95% or better of the variation (R2 values) in the actual
matrices are captured by the predicted matrices for both partic-
ipant groups. These results indicate excellent performance of the
equations, despite using only a subset of the voxel time series that
were concentrated in gray matter. Note further that the agree-
ment of the actual and predicted matrices is substantially higher
than that between the +GS model correlation matrices and those
under the other three models (approximately 50–55% of the
variance shared).

ANATOMICAL LOCATIONS OF THE STRONGEST GROUP DIFFERENCES
UNDER THE +GS VERSUS +GCOR MODELS
Under one method of correcting for global correlations, GS
regression, correlation matrices and group comparisons are dis-
torted. Under another, GCOR, results appear to be qualitatively
similar in many respects to our previously published results using
ANATICOR. In order to facilitate more direct comparisons with
the anatomical locations of our previous results in Gotts et al.
(2012) (the 27 ROIs shown in Figure 3), we calculated whole-
brain connectedness measures for each participant using both the
+GS and +GCOR models and compared across groups using
two-sample t-tests (see also Salomon et al., 2011). Using the same
statistical and cluster-size thresholds as in the previous study,
the results are shown for both models in Figure 8. The results
for the +GCOR model are in good accord with our previous
results, with greater connectedness values in the TD relative to
the ASD group being observed throughout social brain areas, par-
ticularly in limbic-related brain regions (compare to Figure 3).
In contrast, the +GS model yielded many more locations for
which connectedness values were greater for the ASD group
(note the results in cerebellum and striatum) and with relatively
weak overall agreement with either the +GCOR or ANATICOR
results.

EFFECT OF GS REGRESSION AND OTHER PREPROCESSING MODELS ON
“LOCAL” CORRELATIONS
In Figure 1, we highlighted the inter-dependence of long- and
short-range correlations under GS regression. “Long-range” dif-
ferences between groups that are large enough to manifest in the
GS measure will have a tendency to be aliased into the “short-
range” correlations involving the same voxels, although in the
opposite direction as the long-range differences (note the reverse
within-patch group differences in patches 1 and 2 after GS regres-
sion). In the current paper, we evaluated whether this same
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FIGURE 7 | Mathematical prediction of correlation matrices under GS

regression. The left two panels show the group average ROI-ROI
correlation matrices for the TD and ASD groups under the +GS
preprocessing model (shown also in Figure 5). The middle two panels
show the matrices predicted by the equations developed by Saad et al.
(2013) when applied to the time series data under the Basic
preprocessing model (for equations used, see section Mathematical

prediction of GS correlation matrices). Scatterplots of the agreement
between the left and middle panels are shown in the rightmost panels,
with Pearson and Spearman rank correlations shown to quantify the
level of agreement. The predictions are accurate despite only estimating
the distortions under GS regression from 1880 ROIs sampled in the
group brain mask (excluding nuisance tissue signals such as white
matter, ventricles, and sinuses).

phenomenon occurs in our ASD/TD data by calculating “local”
correlations among voxel time series within each of the 27 ROIs
that we have shown exhibit greater long-range correlations for the
TD group (Gotts et al., 2012; see Figure 3). If the groups exhib-
ited equal levels of local correlation prior to GS regression, then
there should be a tendency for significantly greater local corre-
lations in the ASD group after GS regression. If the TD group
exhibits larger local correlations prior to GS regression, then these
differences should be attenuated or reversed after GS regression.
In the event that the ASD group exhibits greater local corre-
lations than the TD group prior to GS regression, then these
differences should become enhanced after GS regression. In sum-
mary, since the long-range differences in these 27 ROIs favor the
TD group, the influence of GS regression should be to shift the
local correlations in these regions toward favoring the ASD group
regardless of the initial direction of these differences. The results
for the four preprocessing models, shown in Figure 9, are pre-
sented left-to-right from ROIs 1 to 27 (listed in the same order
as Table 1 from Gotts et al., 2012). The Basic, +GCOR, and
ANATICOR models all show a tendency for greater local corre-
lations in the TD group, with results significant at p < 0.05 for
3, 6, and 6 ROIs out of the 27, respectively, and no ROIs show-
ing significant differences favoring the ASD group. In contrast,
the +GS model yielded results in 17/27 ROIs that numerically

favored the ASD group (compared to 5, 4, and 3 out of 27 for
the Basic, +GCOR, and ANATICOR models), with 2/27 ROIs
showing significant differences (ROIs 4 and 16: the right ven-
tromedial anterior temporal ROI and the left anterior superior
frontal ROI). The +GS model also yielded results favoring the
TD group in 2/27 ROIs, although with smaller t-values than for
the +GCOR and ANATICOR models. The distributions of these
t-values across ROIs did not differ from normality for any of the
models, permitting their comparison with t-tests. The only two
models that failed to show significant differences with each other
are the +GCOR and ANATICOR models (p < 0.1). The +GS
model yielded t-values that were significantly more negative than
all of the other models [vs. Basic: paired t(26) = −8.7585, p <

3.1055e-09; vs. +GCOR: paired t(26) = −13.2229, p < 4.7379e-
13; vs. ANATICOR: paired t(26) = −11.8368, p < 5.6743e-12]. In
accordance with the predictions articulated above, these results
establish that the same aliasing of long-range correlation differ-
ences into reversed local correlations (as in Figure 1) occurs in
our ASD/TD data. They also provide additional new evidence that
local correlation differences between ASD and TD participants
have a tendency to occur in the same direction as the long-range
correlation differences when GS regression is not applied (i.e.,
favoring the TD participants; e.g., Khan et al., 2013; for further
discussion, see Belmonte et al., 2004; Müller et al., 2011).
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FIGURE 8 | Group comparisons of whole-brain connectedness for the

+GS and +GCOR preprocessing models. Whole-brain connectedness
(i.e., the average correlation of each voxel time series with the rest of
the voxels in the brain mask) was compared separately for the +GS
regression and the +GCOR models. The +GS regression model, shown
in the left plots, led to a larger number of locations with ASD

connectedness values larger than TD values, as well as the absence of
TD > ASD effects in locations found previously using ANATICOR. In
contrast, the +GCOR method of removing global correlations, shown in
the right plots, largely replicated the results found with ANATICOR
(compare to ROIs in Figure 3 from the same sagittal and axial views).
See text for full description.

ANATOMICAL ALIGNMENT OF GROUP DIFFERENCES AND
CORRELATIONS WITH ASD SOCIAL SYMPTOMS
One critical demonstration of our prior study (Gotts et al., 2012)
is that the brain locations showing the largest group differ-
ences between ASD and TD groups are also those that exhibit
the largest associations between correlation level and the sever-
ity of social impairment within the ASD group (indexed by
SRS total score). In particular, among the 3 clusters of ROIs
that we examined, the largest effects of both types (group dif-
ferences and SRS correlations) occurred between the limbic-
related ROIs of Cluster 1 (ROIs 1–7) and the remaining social
brain regions in Clusters 2 and 3 (ROIs 8–27). In the cur-
rent study, we evaluated the agreement of the group differences
and SRS correlations for the four preprocessing models using
these same 27 ROIs (see Figure 3). Results are presented in
Figure 10, with group differences (t-tests: TD-ASD) shown in
the top row and correlation with SRS total score, partialling
Age and IQ (as in our previous study), shown in the bot-
tom row. Symptom correlations in the case of the +GCOR
model were conducted using the participant-specific correlation
matrices under the Basic model, partialling the GCOR value
for each participant along with Age and IQ. Yellow/red col-
ors for the group comparisons indicate greater correlations for
the TD group, blue colors indicate greater correlations for the
ASD group, and light green indicates t-values that fail to reach
a two-tailed significance level of p < 0.05. For the correlations
with SRS within the ASD group, blue colors indicate that low

ROI-ROI correlation levels predict high SRS total scores (i.e.,
lower correlation → higher social impairment), whereas yel-
low/red colors indicate the opposite relationship. Figure 10 shows
that the locations of the strongest group differences (TD > ASD)
are quite similar for the Basic, +GCOR, and ANATICOR mod-
els (between ROIs 1–7 and ROIs 8–27), while the +GS model
shows weak or non-significant differences in these same loca-
tions. The relative lack of results in these locations is in agreement
with the earlier results reported for Prediction 3 and shown in
Figures 6C, 8.

On visual examination, the only preprocessing model of the
four that exhibited good agreement between the group com-
parisons and symptom correlations was the ANATICOR model.
This was examined in more detail statistically with the use of
permutation tests (e.g., Maris and Oostenveld, 2007), as the
column/row interdependencies of the matrices prevented easy
estimation of the appropriate degrees of freedom. The quanti-
tative agreement between the matrices in the top and bottom
rows for each model was first assessed using Pearson correla-
tion. Rather than using the t-values in the top row directly
for these analyses, the group mean difference of the correlation
values (TD-ASD) was used so that the same type of measure
(with the same numerical scale/distribution) was being associ-
ated in both matrix types. After calculation of the r-values for
the group difference and behavioral correlation matrices using
the original data, P-values were estimated empirically by ran-
domly re-labeling participants as either ASD or TD. The group
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FIGURE 9 | Effect of preprocessing model on group comparisons of local

correlation. Group t-tests of local correlation (TD-ASD) under the four
preprocessing models are shown for regions in Gotts et al. (2012) that
exhibited greater long-range correlations for TD participants (ROIs 1-27; see

Figure 3). Dashed red (TD > ASD) and blue horizontal lines (ASD > TD) mark
the p < 0.05 significance level for individual tests. On average, the +GS
model yielded more negative t-values (favoring the ASD participants) relative
to the other three models.

FIGURE 10 | Effect of preprocessing model on the agreement of

group differences and social symptom correlations within the ASD

group. Group t-tests are shown for the four preprocessing models in the
top row using ROIs 1–27 (Figure 3) (see colorbar for scale of t-values to
the right). Partial correlations of SRS total score with ROI-ROI correlation
level within the ASD group, removing shared variation with Age and full

scale IQ, are shown in the bottom row (see colorbar for scale of partial
r -values to the right). Only the ANATICOR model produced significant
correspondence between the group differences and behavioral
correlations solely within the ASD group (see text for details). The +GS
model also failed to exhibit strong group differences using these ROIs,
consistent with the results of Figure 6C.

comparisons and behavioral correlations were re-calculated for
these randomly formed groups along with the corresponding
Pearson r-value between matrices, and the entire randomization
process was repeated 1000 times. The P-value (Type I error) for

the original matrix agreement measures corresponded to the per-
centage of random iterations with an agreement value stronger
than that observed for the original data. The Pearson r-values
(and P-values) for the Basic, +GS, +GCOR, and ANATICOR
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models were −0.0477 (p > 0.3), −0.0198 (p > 0.4), −0.1051
(p > 0.1), and −0.2777 (p < 0.027), respectively. The signifi-
cant negative r-value for the ANATICOR model indicates that
ROI pairs with group differences favoring the TD group tended
to be the same ROI pairs as those with a significant negative
correlation with SRS score, as originally reported (Gotts et al.,
2012).

The anatomical agreement of the group differences and symp-
tom correlations could also be examined in a whole-brain fash-
ion using the voxel-wise whole-brain connectedness values for
each participant under the four preprocessing models (see also
Figure 8 in the current paper; Figures 2, 5 in Gotts et al., 2012).
These results are shown in Figure 11 using a single axial slice that
captures the largest overlap of the two effects for the ANATICOR
model (z = −14). As previously reported, the ANATICOR model
shows a good agreement between the two effects, with spatial
overlap of the results in three out of seven of the Cluster 1 ROIs
(ROIs 1–7). Isolated locations of overlap between the two effects
also exist for the Basic and +GCOR models (e.g., in the ventro-
medial prefrontal cortex), although the overall strength of the SRS
correlations is notably weaker for these models. Group differences
and SRS correlations were both robust when using whole-brain
connectedness with the +GS model. However, they had little or
no spatial overlap with one another. Furthermore, it was not just
the group comparisons that were altered by GS regression rela-
tive to the other models: the SRS correlations solely within the

ASD group were also strongly altered. This last effect underscores
the point that the warping effect of GS regression on correlation
matrices can be just as problematic for analyses involving single
groups of participants.

DISCUSSION
The main goal of the current paper was to examine several theo-
retically motivated predictions regarding the detrimental impact
of GS regression on group comparisons of functional connec-
tivity. We tested these predictions in our previously published
resting-state data of ASD and TD participants relative to three
other preprocessing models of interest, including our original
ANATICOR approach and a novel alternative to GS regression
that we refer to as GCOR (see also Saad et al., 2013). In summary,
we have demonstrated the following points:

(1) GS regression does not simply re-center and/or re-scale a
matrix of correlation values. It “warps”the values differen-
tially in different voxel/ROI pairs as a function of the initial
covariance matrix (see also Saad et al., 2012, 2013). This
effect is not small. It reduced the Spearman rank correlations
of matrices pre- and post-GS regression to approximately
0.7, sharing around 50% of the variance. This was not sim-
ply a function of removing unwanted global artifacts that
influence BOLD fMRI. Results from two alternative meth-
ods, our ANATICOR approach that models physiological

FIGURE 11 | Effect of preprocessing model on the agreement of

group differences and ASD social symptom correlations using

whole-brain connectedness. Whole-brain connectedness was
compared between groups for each of the four preprocessing models
(top row; see colorbar to right for scale and direction of effects).
Whole-brain connectedness for the ASD participants was also
correlated with SRS total score, partialling Age and IQ, for the four
models (bottom row; see colorbar to the right for scale and direction

of effects). While select locations overlapped between the two effects
for the Basic and +GCOR models, the best correspondence was still
obtained under the ANATICOR model. The two effects were robust
individually under the +GS model, but they exhibited little spatial
overlap with each other and only minor overlap with the effects under
the other models (e.g., TD > ASD in the ventromedial prefrontal
cortex). Only the +GS model exhibited prominent reversed effects
(ASD > TD) for the group comparisons (see also Figure 8).
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nuisance signals more explicitly and GCOR that partials the
influence of the global level of correlation from the single-
participant correlation values, were not altered comparably,
with Spearman rank correlations of approximately 0.9 or
higher (sharing better than 80% of the variance). The dis-
tortion of correlation values under GS regression was also
well predicted by our prior mathematical analyses (corre-
lations above 0.97 and 95% of variance accounted for),
despite the fact that signals were not included from nui-
sance brain tissue compartments (white matter, ventricles,
sinuses). Given that the distortion is a systematic function of
the initial covariance matrix, results are expected to replicate
well across labs and studies. In fact, the use of GS regres-
sion does increase the consistency of correlation estimates
and correlation differences due to a reduction in brain-wide
noise sources when such sources are otherwise unaccounted
for (e.g., Fox et al., 2009; Keller et al., 2013). However this
increased consistency is not a justification for the use of GS
regression because it comes at the cost of rendering con-
trasts between groups with differing correlation structures
uninterpretable, as illustrated in theory (Saad et al., 2012,
2013) and in practice here. Even single-group results will
become distorted with GS regression (see bottom panels of
Figures 10, 11).

(2) GS regression substantially increases the number of loca-
tions that demonstrate greater correlation for ASD relative
to TD participants, both long-range and local. Indeed, under
GS regression the average t-value observed across all regions
sampled (N = 1880) was significantly different from zero,
favoring the ASD group. Greater correlations for the ASD
relative to the TD group were not prominently observed in
any of the other preprocessing models. Furthermore, the two
alternative preprocessing methods that address more global
artifacts (ANATICOR, GCOR) produced qualitatively similar
results to one another, with reasonable agreement about the
direction of effects and regions involved as in another recent
whole-brain study of functional connectivity in ASD that
did not apply GS regression (e.g., Anderson et al., 2011b).
The locations involved also agree well with task-based stud-
ies of evoked responses in ASD and TD participants that
employ social and linguistic stimuli (e.g., Castelli et al., 2002;
Just et al., 2004; Di Martino et al., 2009; Kaiser et al., 2010;
Lombardo et al., 2010; Dinstein et al., 2011; Weisberg et al.,
2012). In contrast, a recent whole-brain resting-state study of
ASD that applied GS regression found a mixture of increased
and decreased correlations relative to TD participants (Rudie
et al., 2013). Indeed, the negative correlations present under
GS regression for both groups led to separate effects in both
directions for the positive versus the negative correlations.
Given the results reported in the current paper, it is not
clear whether the greater correlations observed for the ASD
group in the Rudie et al. study are real or produced by GS
regression.

(3) GS regression has a tendency to distort group comparisons
most in locations that exhibit the strongest effects under
other preprocessing models. ROIs that elicited the largest
average seed-based correlation differences were the same

ROIs for which the average correlation differences were most
attenuated under GS regression (Figure 6C). When examin-
ing correlation differences among the 27 ROIs that yielded
the largest effects in our prior study (Gotts et al., 2012), group
differences were also mostly non-significant after GS regres-
sion (Figure 10). As discussed in the introduction, this occurs
for a relatively simple mathematical reason: whole-brain con-
nectedness is a direct function of the fit to the GS. The process
of GS regression is to subtract this portion of variation from
the results. This is not to say that all studies that employ
GS regression will fail to find group differences similar to
what we report here for ANATICOR or GCOR. Indeed, we
already know from functional connectivity studies using a
more restricted number of seed locations that a similar sub-
set of results can be obtained when using GS regression (e.g.,
Kennedy and Courchesne, 2008; Ebisch et al., 2011; von dem
Hagen et al., 2012; see Di Martino et al., 2013, for related
discussion). However, we would expect such results to be
larger in amplitude if an alternative such as GCOR were used,
and we would also expect convergence toward the pattern
of mixed increases and decreases if more seed locations are
used.

(4) Locations exhibiting group differences and ASD social symp-
tom correlations no longer overlap with one another after
GS regression. Using the matrix of 27 ROIs from our
previous study to assess the quantitative agreement of
these two effects, the correlation was near zero after GS
regression, whereas there was a significant level of agree-
ment using the ANATICOR model (r = −0.277, p < 0.03)
(Figures 10, 11).

Taken together, our results strongly argue against using GS
regression when comparing correlation values between groups
of participants. It is difficult to avoid the conclusion that noth-
ing can be demonstrated unequivocally about either the loca-
tion or direction of group differences when this form of “de-
noising” is applied. Given the further alteration of the SRS
correlations solely within the ASD group (Figures 10, 11), it is
clear that the “warping” effects of GS regression on individ-
ual correlation matrices may also affect results obtained within
single groups of participants (e.g., whole-brain parcellations of
functional areas/networks that utilize correlation measures). It
may therefore be prudent to re-examine such results with an
alternative approach, perhaps with GCOR or preferably with
de-noising approaches that avoid signals from the gray mat-
ter regions of interest (e.g., Jo et al., 2010; Anderson et al.,
2011a).

IS THERE EVER A LEGITIMATE REASON TO APPLY GS REGRESSION?
While our conclusions here regarding GS regression are quite
negative, we would like to emphasize that there are good rea-
sons for examining—and perhaps removing—global fluctuations
in fMRI time series. In many respects, the Basic preprocessing
model produced highly similar matrices to those produced by
ANATICOR and GCOR; the Spearman rank correlations are all
above 0.9 for both the average matrices and those of individual
participants. However, the group comparisons using the Basic
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model failed to yield robust results, and it is worth consider-
ing why this occurred. The effect of removing global sources
of variation, either by modeling physiological variation directly
(ANATICOR) or partialling out the influence of the global level
of correlation (GCOR), was not primarily to modulate the aver-
age correlation values for the ASD and TD groups (see results
related to Prediction 1). Rather, the larger impact appeared to
be on the variation across participants for a given pair of ROIs
(as in Figure 4, top panel). A relatively small number of par-
ticipants have large global levels of correlation in both groups
(Figure 4, bottom panel), which when comparing the two groups
has the effect of making the standard deviations that contribute
to the denominator of the t-values large and thus the t-values
themselves become small and non-significant. Attenuating the
variation in each group then has the effect of shifting all of the t-
values to be more positive (Figure 6A). Indeed, this is one of the
primary motivations for applying GS regression, and it demon-
strates that if global artifacts in the data are not modeled and
removed sufficiently, then one will be at risk of making Type II
statistical errors.

One possible example of doing too little to remove global
artifacts is provided in the recent study by Tyszka et al. (2013).
These authors did an admirable job of assessing the impact of
head motion on group differences, which is one source of global
artifact in fMRI time series. They found mostly weak and non-
significant group differences between ASD and TD participants,
smaller on average than the influence of high versus low lev-
els of head motion. This led them to conclude that resting-state
correlations in ASD participants are largely typical. However,
no aspect of the preprocessing in this study directly addressed
global artifacts other than head motion, and GS regression was
not applied. Physiological variation will not typically be well
removed by the popular bandpass filtering step (Tyszka et al.,
2013, removed independent components with more than 33%
of spectral power above 0.1 Hz), since the problematic frequen-
cies (∼0.3 Hz for respiration cycles and ∼0.9–1 Hz for cardiac
cycles) have already been aliased to frequencies below the Nyquist
frequency (0.25 Hz in Tyszka et al. for TR = 2 s). Slower fluctua-
tions in the BOLD response that result from spontaneous breath
withholding during fMRI scans, due to end-tidal CO2 effects on
BOLD measurements (Chang and Glover, 2009) and that are
modeled by our RVT regressors (Birn et al., 2008), can have
quite a large impact on resting-state correlations (>20–30% of
total variance in some of our participants; see Supplementary
Figure 1, Gotts et al., 2012). Since RVT regressors have most
of their power (>90%) in frequencies below 0.1 Hz, bandpass
filtering below 0.1 Hz will also fail to address this source of vari-
ation. Overall, one expects a preprocessing pipeline that does not
address more global physiological artifacts to fail to find strong
group differences, as shown in the supplement to our original
paper (Gotts et al., 2012) and in the Basic model of the current
paper (using regressors for motion, ventricles, and local white
matter). In that sense, the results of Tyszka et al. (2013) are exactly
in accord with our expectations. It would be quite useful to re-
examine their results with a method such as GCOR to establish
whether the t-values would shift to be more positive and signif-
icant as in our current study. Hardware artifacts, addressed by

the local white matter regressor in all of the models in the cur-
rent study (see Jo et al., 2010, 2013 for discussion), are another
source of relatively global artifact that has received much less
attention than merited. We agree with advocates of GS regression
that removing the GS will be expected to attenuate all of these
more global artifacts in the data, leading to stronger group dif-
ferences, higher reliability of results, etc. This is the case for our
current results relative to the Basic model. However, it will do
so at the high cost of warping the matrices of interest, prevent-
ing any straightforward conclusions about group comparisons.
Therefore, we cannot recommend its application, especially when
cleaner alternative methods exist for removing global artifacts—
including the distant-dependent effects of transient head motion
documented by Power et al. (2012) and addressed recently in Jo
et al. (2013).

GCOR AS AN ALTERNATIVE TO GS REGRESSION
The GCOR model yielded a pattern of group differences that
largely replicated what we reported originally for ANATICOR.
The strongest group differences were between limbic-related
(ROIs 1–7) and non-limbic social brain regions (ROIs 8-27)
(Figures 8, 10, 11). If anything, the group comparisons under
GCOR were larger in magnitude. However, it failed to replicate
the correlations with SRS score within the ASD group. This fail-
ure was not entirely unanticipated, since the approach explicitly
alters the variation in individual correlation values around the
mean (or median), which is the same as the primary measure
used for the SRS correlations. Under the GCOR approach, there
is no a priori way to correctly partition the global level of corre-
lation into different sources, some of which should be removed
(global artifacts such as head motion, physiological and hard-
ware artifacts) and some of which should not (neurally generated
global variation; e.g., Schölvinck et al., 2010). It is this issue that
prevents us from enthusiastically endorsing it for general use as
a covariate. However, its good performance for the group com-
parisons in the current study suggests that it may be useful for
conducting group comparisons in seed-based correlation studies
when physiological de-noising is not possible due to lack of car-
diac and respiration measures. It is also useful as a diagnostic tool
to assess the distribution of global correlation levels in different
groups. With subsequent work on this and other forms of data
standardization (e.g., Yan et al., 2013), a post-hoc correction that
works well for both group comparisons and symptom correla-
tions may eventually be discovered, preserving datasets that were
acquired without independent physiological measures. However,
any time that nuisance measures are taken from the data that
they are intended to clean, the risk is high for collinearity with
the grouping variable, necessarily leading to GS-regression-like
effects to some degree (Saad et al., 2013). It will be essential to
examine any such methods with both simulations and mathemat-
ical analyses for the biases that they can introduce into single- and
multi-group analyses. For example, in the current GCOR method,
it is critical to examine the issue of data centering and to ver-
ify that the distributions of the covariates in the two groups are
substantially overlapping (see Figure 4). If covariate distributions
are non-overlapping in the two groups and a single grand mean
center for the covariate is used, GCOR will introduce distortions
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similar to those introduced by GS regression (Saad et al., 2013),
although such distortions will likely fail to reach significance
because the covariate is highly collinear with the grouping vari-
able. If group-specific centering is chosen (as in the current
study), then it is possible that the difference in average correla-
tion between the two groups is based on an artifactual source
of global variation rather than a real neural difference. The best
current alternative is to collect independent measures of physio-
logical variation, modeling their influences separately. Given the
impact that these preprocessing choices can have on the results
that one obtains, it is difficult to overstate the importance of col-
lecting heart rate and respiratory waveforms at the time of data
acquisition.

ARE STUDIES OF FUNCTIONAL CONNECTIVITY DOOMED BY
ARTIFACTS?
One reaction to the data that we have presented is that the pattern
of data one finds is strongly influenced by choice of preprocess-
ing model. Without knowing which model is the correct one to
use, how can we be confident in any of the results? Our reac-
tion to the data is more optimistic than that. For three of the
models examined (Basic, GCOR, and ANATICOR), the over-
all ROI-ROI structure of the correlation matrices and group
comparisons was remarkably similar across models. One would

not be led down a substantially different theoretical pathway
by either of the two non-GS models that address global arti-
facts. Instead, our results highlight the importance of address-
ing all of the major classes of time-varying artifacts that MR
methods research has identified for BOLD fMRI (i.e., head
motion, physiological, and hardware). In principle, many pre-
processing models - including ICA-based models, can do a
sufficient job at addressing this family of artifacts. We view
certain alternatives to standard regression-based data cleaning,
such as multi-echo fMRI with ICA to sort BOLD from non-
BOLD variation (Kundu et al., 2012), as extremely promising.
Future studies comparing such alternatives with single-echo fMRI
that is acquired along with independent physiological measures
should help to clarify which data-cleaning approaches work the
best.
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