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Abstract

Background: Microarray and DNA-sequencing based technologies continue to produce enormous amounts of
data on gene expression. This data has great potential to illuminate our understanding of biology and medicine,
but the data alone is of limited value without computational tools to allow human investigators to visualize and
interpret it in the context of their problem of interest.

Results: We created a web server called SHOE that provides an interactive, visual presentation of the available
evidence of transcriptional regulation and gene co-expression to facilitate its exploration and interpretation. SHOE
predicts the likely transcription factor binding sites in orthologous promoters of humans, mice, and rats using the
combined information of 1) transcription factor binding preferences (position-specific scoring matrix (PSSM) libraries
such as Transfac32, Jaspar, HOCOMOCO, ChIP-seq, SELEX, PBM, and iPS-reprogramming factor), 2) evolutionary
conservation of putative binding sites in orthologous promoters, and 3) co-expression tendencies of gene pairs
based on 1,714 normal human cells selected from the Gene Expression Omnibus Database.

Conclusion: SHOE enables users to explore potential interactions between transcription factors and target genes
via multiple data views, discover transcription factor binding motifs on top of gene co-expression, and visualize
genes as a network of gene and transcription factors on its native gadget GeneViz, the CellDesigner pathway analyzer,
and the Reactome database to search the pathways involved. As we demonstrate here when using the CREB1 and
Nf-κB datasets, SHOE can reliably identify experimentally verified interactions and predict plausible novel ones, yielding
new biological insights into the gene regulatory mechanisms involved. SHOE comes with a manual describing how to
run it on a local PC or via the Garuda platform (www.garuda-alliance.org), where it joins other popular gadgets such as
the CellDesigner pathway analyzer and the Reactome database, as part of analysis workflows to meet the growing
needs of molecular biologists and medical researchers. SHOE is available from the following URL http://ec2-54-150-223-
65.ap-northeast-1.compute.amazonaws.com
A video demonstration of SHOE can be found here: https://www.youtube.com/watch?v=qARinNb9NtE
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Background
The analysis of gene regulatory regions is a centrally im-
portant problem in biology. Many experimental [1–3] and
computational methods [4, 5] have been developed to ad-
dress this problem. Despite these efforts and considerable

progress, the analysis of eukaryotic gene regulatory re-
gions remains difficult. One fundamental reason for this is
that the binding sites of transcription factors (TFs) are
only partially determined by their intrinsic sequence speci-
ficity; they are also strongly affected by factors including
post-translational modification, interactions with other
proteins, and the epigenetic state of the genome. More-
over, TF binding events are not necessarily all functional.
Thus, effective promoter analysis is not just a simple mat-
ter of reporting motif matches or scores, but rather it de-
mands careful consideration of multiple sources of
supporting evidence such as the evolutionary conservation
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of potential binding sites and the coherence of the set of
genes with promoters containing them regarding
co-expression and cellular pathways.
Ideally a computer program could automatically and re-

liably combine all available evidence, but this has not yet
been achieved. While many excellent motif discovery
tools, such as CONSENSUS [6], the Gibbs sampler [7, 8],
CRMD [9], and MEME [10], and alignment-based pro-
grams, such as rVista [11], ConSite [12, 13], Footer [12],
and GPminer [14], have been developed, the current ana-
lytical demands require more than a simple output of pu-
tative TF binding sites. One example of an attempt to
build an analysis workflow is PAINT [15] where regula-
tory analysis is represented in gene networks utilizing
public software tools with original analysis.
SHOE takes a different approach; it tries to provide

human biology experts with an interactive, visual presen-
tation of the available evidence to facilitate the explor-
ation and interpretation of transcription regulation
analysis results. We demonstrate the SHOE analytical
workflow by analyzing the CREB1 and Nf-κB datasets.

Implementation
SHOE consists of a server application and front-end
interface. The server application and its database run on
Vagrant. Vagrant is virtualization software that enables
the setting up of a software environment on any plat-
form such as Windows or OS X. The server application
is implemented in PHP 5, which is one of the most
well-known Web application languages. The SHOE ser-
ver connects and stores analysis data in a MySQL data-
base. Some of the back-end programs are implemented
in C language, Perl, and shell script. The client-side ap-
plication is written in HTML and JavaScript.
GeneViz is a network visualization application created

for SHOE. It shows multiple graphs of genes and tran-
scription factors in one window. Users can compare com-
mon or different elements on these graphs and search for
genes on them. GeneViz is written in JavaScript and is
seamlessly integrated with SHOE, which can easily import
data from it. SHOE also provides a gadget for the Garuda
platform implemented in Java and installed as a plugin for
CellDesigner (http://www.celldesigner.org). Garuda is an
open platform that provides a framework to connect, dis-
cover, and navigate through different applications in the
fields of biology and medicine [16]. SHOE can interact
with CellDesigner and other applications on the Garuda
platform. A manual explaining how to connect SHOE to
CellDesigner is available on Garuda.

Input and output
As input, SHOE takes a list of human, mouse, or rat
Refseq gene ids. First, SHOE assesses if the received gene
has orthologs in the other two species. If so, SHOE

extracts the promoter and undertakes the computational
steps depicted in Fig. 1 and all steps are descibed in the
following Algorithm part. As output, SHOE returns a list
of genes with motif hits that are common among the three
species with the SHOE criteria and gene co-expression.
Users can view this output in several ways, as shown in
Fig. 2. A motif hit table and gene network window are
provided with options that can help users to select the
part of the data of their interest, sort by scores, change
cutoffs, and save data in text and graphical formats. In
order to obtain information on the transcription factor
binding, ArrayExpess [17] ChIP-seq data on Liver has
been added to the results table. By clicking on the motif in
the table User can judge how close the peak location to
the motif identified. For further addition of tissue-specific
data upon users request the workflow is provided in
SHOE Manual “Adding ChIP-seq Array Express
tissue-specific data” page. The user can change the expres-
sion interaction threshold, and these changes will be
reflected in the results table and saved. All tables can be
reset. SHOE returns a gene co-expression network. Pareto
front selection allows the user to stipulate how strongly
evolutionary conservation should be weighted vis-à-vis
PSSM scores. Emphasizing the former might be suitable
for those who are looking for novel motifs in
well-conserved alignment blocks, while the dominance of
the latter will be more interesting for clinicians working
on human data.

Algorithm
A flowchart of the execution of the web-tool SHOE al-
gorithm is shown in Fig. 1.
An ortholog gene list of 6,669 human, mouse, and rat

genes was obtained from the DBTSS database [18] of ex-
perimentally verified transcriptional start sites on the
level of mRNA expression.

Local pairwise and multiple local alignments
Each human promoter was aligned with his/her ortholo-
gous partners from the list of orthologs (mouse and rat)
by using the SEARCH local alignment program [19]; the
execution of this program was repeated for promoters de-
fined with length 1000, 2000 and 5000 nt, respectively. In
the cases where the same human promoter region was
aligned to mouse and rat promoters with a similarity
higher than 50%, the three genomes’ respective regions
were extracted, realigned with ClustalW [20], and finally
stored in a MySQL database to avoid recomputing.

Multiple alignment (MA) score
To evaluate the degree to which an observed region in
an alignment of the three species should contribute to
our belief that it is part of a conserved region, we
adopted an estimate of the likelihood ratio of observing
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Fig. 1 (See legend on next page.)
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the region in an alignment of orthologous promoters
versus that of observing the region in an alignment of
unrelated promoters.
To obtain this estimate, first, we randomly selected 1,000

orthologous triplets (human, mouse, and rat genes) and re-
peatedly aligned their orthologous promoters of length
5,000 nt. After 835 orthologous three-species alignments
(238,800 bp total length) were obtained with ClustalW, the
frequency of each alignment column was observed and
stored in an orthologous alignment frequency table, i.e., an
ortho table. In the same manner, 1,000 non-orthologous

triples were randomly selected, and their promoters of
length 5,000 nt were repeatedly aligned. After 1,260
non-orthologous three-species alignments (239,600 bp total
length) were obtained with ClustalW, the frequency of each
possible alignment column was observed and stored as a
random alignment frequency in a table.
We refer to the obtained alignment column frequencies

as the “ortho” alignment and “random” alignment frequen-
cies, respectively. Using those column frequency tables, we
define the multiple alignment (MA) scores using the fol-
lowing formula:

(See figure on previous page.)
Fig. 1 Flowchart of the execution of web-tool SHOE. Promoter extraction is followed by pairwise and multiple alignment of three species. Open
source public matrices are matched to the human sequence if mouse and rat are aligned to human sequence region with similarity higher 50%.
Finally, motifs with similarity score≥ 0.5 are collected. Pearson correlation computes the co-regulation of genes in the dataset. (Detailed can be
found in Algorithm section)

Fig. 2 Example of SHOE-Garuda workflow. SHOE is a member of the Garuda platform. It can output results and acquire data from other tools,
such as Panther, CellDesigner, and others via gadget connecting SHOE and Garuda platform. To CellDesigner SHOE connects with and without
Garuda gadget, using a solely CellDesigner plugin. SHOE has its native gadget GeneViz for the visualization of the gene network obtained on Pearson
correlation analysis. GeneViz does a straightforward search in the Reactome database to visualize pathways present in the analysis dataset
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MAscore ¼ log10

Y

m

Pr c ortho alignmentjð Þ
Y

m

Pr c random alignmentjð Þ ; ð1Þ

where c is the probability of the observed pattern in
each column (calculated using pattern frequencies from
orthoalignment and random alignment tables), and m is
the length of the alignment region, which for our appli-
cation is equal to the motif length m.

Position-specific scoring matrix (PSSM) score
After multiple alignment scores have been calculated for
the human-mouse-rat regions of length m to evaluate the
degree of similarity between the identified conserved se-
quence and known transcription factor binding sites,
SHOE uses its motif-scoring module, which calculates
similarity scores with matrices in public databases such as
Transfac32 (492 matrices) [21], Jaspar (138) [22], HOCO-
MOCO (1,986) [23], ChIP-seq (381) [2], SELEX (791) [1],
PBM (302) [24], and iPS factor matrices (9) [25], which
was created by the authors and is described in the SHOE
manual page.
The PSSM-related score is calculated using the follow-

ing formula:

PSSMscore ¼
Xm

i¼1

log2
countxi þ pseudocountxiX

x¼ A;T ;G;Cf g
countxi þ

X

x¼ A;T ;G;Cf g
pseudocountxi

;

ð2Þ
where pseudocount = 1, and m is the motif length.
To represent the scores as positive values, the PSSM

score is subtracted from 10.

Pareto-optimal front for motif selection
Since SHOE identified putative TF binding sites via two
sources of information (multiple alignment scores and
PSSM scores), we decided to apply the Pareto-optimal
front method to optimize this multi-objective solution
[26]. The problem of exploring solutions under multiple
objectives has traditionally been tackled in engineering,
utilizing a so-called “desirability function”, whose value
is 1 when the response takes values considered valid by
the analyst and 0 otherwise. The Pareto number evalu-
ates the degree to which both the PSSM score and the
MA score are favorable. The application of the Pareto
front in SHOE is shown in Additional file 1: Figure S1.
The Pareto number of (xi,yi), where xi is the MA score

and yi is the PSSM score, is calculated by

Pareto xi; yið Þ ¼ # x∈MA; y∈PSSM; xi < x∧yi < yf g þ 1;

ð3Þ
where MA and PSSM are the sets of scores.

Motif enrichment score (MES)
To compare the frequencies of motifs in two user data-
sets, we acquired the motif enrichment score (MES)
[27], which is applied to the standard deviation of a bi-
nomial distribution and is a measure of the evolutionary
conservation of motifs. Here, we use that metric in a dif-
ferent context as a sample size-dependent measure of
the enrichment of matches to a motif in a gene set. In
our application, the MES of a motif m is given by

MES ¼ K−Np0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np0 1−p0ð Þp ; ð4Þ

where K is the number of genes with a match to motif
m in the gene set of interest, N is the total number of
genes in the gene set, and p0 is the frequency of the
same motif in a background set of genes.

Computing gene co-regulation on Eigen cell
Considering that genes with similar transcriptional pro-
files might be affected by the same transcriptional mech-
anism, we calculated the Pearson correlation coefficients
for all gene pairs in the datasets based on 112 “Eigen
cell” synthetic expression profiles available from the Cell
Montage web site (http://cellmontage.cbrc.jp/) [28].
For the reader’s convenience, here we briefly outline

whom those Eigen cells were computed for. First, 5000
human cell profiles from the Gene Expression Omnibus
database [29] were classified into 1,714 normal cell pro-
files consisting of 89 cell or tissue types. Then, a standard
principal component analysis was conducted to reduce
the number of dimensions. The 1,714 profiles were trans-
formed by eigenvectors and reduced to the top 112 in-
formative “Eigen cells” using the Keiser-Guttman criteria
[30]. The reduced “highly informative gene expression
data” or “Eigen cell profiles” as well as the raw cell data
are freely available on the Cell Montage website and are
adopted in SHOE for calculation of co-expression of genes
in the gene set received by SHOE as an input.

Results
To test SHOE, from ChIP Atlas (http://chip-atlas.org)
we selected 1000 human promoters (1000 nt length) as
the target genes of the CREB1 transcription factor and
1000 human promoters (1000 nt length) as the target
genes of the Nf-κB1 transcription factor. With predicted
target genes, gene-interaction maps have been visualized
in CellDesigner (Figs. 3, 4 and 5). The following two par-
agraphs give a biological discussion of the results of
SHOE analysis of CREB1 and Nf-κB1.

CREB1 dataset
For the 1000 target genes tested with CREB1, 37 had
orthologs in both mouse and rat genes. Additional file 2:
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Figure S2 shows the changes in the number of genes
in the dataset depending on the similarity threshold
with the consensus sequence. For the visualization, we
applied a strict selection criteria, selecting only 13
genes with a similarity PSSM consensus score of ≥0.75
and a Pearson correlation score of |r| ≥ 0.6, as shown
in Additional file 2: Figure S2. Those 13 genes
predicted as CREB1 targets are visualized in the
CellDesigner [31] map through the original SHOE-
CellDesigner plugin, as shown in Fig. 3, and compared
to the known interactions in GeneMANIA [32], as
shown in Fig. 4. By comparing our CREB map to Gen-
eMANIA data, we found that several SHOE predicted
interactions have already been discovered and experi-
mentally verified.

Verified gene/protein experiment-based interactions
between SHOE and GeneMANIA
The blue lines on the CellDesigner map in Fig. 3 and
GeneMANIA in Fig. 4 point to the interactions based on
co-retention frequencies using radiation hybrid genotyp-
ing data [33]. Due to the fact that many of the potential
interactions identified by SHOE are known, it is highly
likely that some of the remaining predicted interactions
are genuine novel ones. Another example is the protein
interaction between AP2B1 and TXN2 (Figs. 3 and 4,
interaction no. 6, respectively) that was found when
screening all pairwise combinations of open reading
frames from human ORFeome v 5.1 generated by a bin-
ary protein-protein interaction map [34]. As AP2B1 is
part of intracellular transports and TXN2 plays a role in

Fig. 3 CellDesigner Map shows the SHOE predicted genes and transcription factors of the CREB1 regulated genes visualized in the CellDesigner
pathway editor. Blue lines correspond to experimentally verified interactions from the GeneMANIA database. Genes are positively co-regulated
and connected with red lines

Polouliakh et al. BMC Genomics  (2018) 19:715 Page 6 of 11



the control of mitochondrial reactive oxygen species
homeostasis and apoptosis regulation according to the
DAVID database [35], the two proteins could interact in
multiple pathways.

Verified experiment-based co-localization between SHOE
and GeneMANIA
The co-localization of BTG1 and RPL23 (Figs. 3 and 4,
interaction No. 8) was identified when microarray data
was combined with extensive genome annotations [36].

The co-localization of BTG1 and TPT1 (Figs. 3 and 4,
interaction no. 9, respectively) was found when microar-
rays were used to monitor splicing, providing experi-
mental evidence for alternative splicing events [37]. As
TPT1 is a regulator of cellular growth and proliferation,
BTG1 is a regulator of the cell cycle in the DAVID data-
base, and they are co-localized, it is likely that these
genes will genuinely interact. The prediction of an inter-
action between TPT1 and RPL23 (Figs. 3 and 4, inter-
action no. 11, respectively) was found by constructing a
functional protein network by extending curated path-
ways with non-curated sources [38].

Verified predictions between SHOE and GeneMANIA
Some of the genes identified such as mitogen-activated
protein kinase kinase 1 (MAP2K1), ribosomal protein
L23 (RPL23), and ribosomal protein S29 (RPS29) are
part of the conserved structures or pathways in the
DAVID database. RPL23 and RPS29 (Figs. 3 and 4, inter-
action no. 7, respectively) are ribosomal proteins that
take part in nuclear-transcribed mRNA catabolic pro-
cesses essential to the survival of cells. MAP2K1 is part
of multiple signaling pathways and many pathways in
cancer. Identifying MAP2K1 as a potential target of
CREB is a step closer to uncovering its regulation, net-
work, and what role it might play in different cancer
types. CREB was identified as part of the transcriptional
regulation of antioxidant enzymes in brain tissue and as

Fig. 5 CellDesigner Map shows the SHOE predicted genes and transcription factors of the Nf-κB-regulated network. Interactions between transcription
factors (orange; literary evidence for interaction with Nf-κB, green; no evidence for interaction with Nf-κB) and genes (red; literary evidence of Nf-κB
regulation, yellow; no evidence of Nf-κB regulation) are depicted with dashed lines. The co-regulations between genes are shown; positive (red lines)
and negative (blue lines)

Fig. 4 SHOE-predicted CREB1 regulated genes visualized in GeneMANIA
database. Numbers correspond to SHOE-predicted interactions in Fig. 3
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a regulator so that the animal responds properly to stress-
ful conditions [39]. Several of the genes SHOE identified
such as MAP2K1 and TXN2 are listed on DAVID as part
of a stress response. TXN2, which is an oxidoreductase,
was identified as being a potential CREB target gene [40].
This further supports our predictions and strengthens the
credibility of SHOE as a predictor of interactions be-
tween genes.

Nf-κB dataset
Out of the 1000 genes tested for Nf-κB, SHOE identified
17 genes containing conserved Nf-κB binding domains
with a similarity score in the PSSM consensus of ≥0.5.
Thirteen genes depicted in the CellDesigner Nf-κB map,
where genes whose ratio of similarity scores to consensus
sequence is higher than 0.6, are visualized in Fig. 5. Ten
genes are confirmed by the literature to be target genes of
Nf-κB (Fig. 5, red rectangles), making the other three the
predicted new candidates (Fig. 5, yellow rectangles).

Apoptosis
It is known that transcription of tumor necrosis factor
(TNF), which is involved in apoptosis, is induced by
Nf-κB in mice [41]. HIF1A included in our map demon-
strates that Nf-κB is a direct modulator of HIF1A expres-
sion [42]. The literature reported that it is possible for
NR4A1 (Nur77) to assist Nf-κB binding to promoters of
anti-apoptotic genes [43]. Another apoptotic gene in our
network is LGALS1 (galectin-1) whose expression is con-
trolled by the Nf-κB signaling pathway, and the LGALS1
gene is a direct target of the Nf-κB p50 subunit [44].

Immune system and insulin
Many Nf-κB target genes are part of the immune system
such as the ICAM1 gene. qPCR analysis identified
ICAM1 as a target of Nf-κB [45], and Nf-κB activation
was shown to induce ICAM1 expression [46]. PSMB9
(LMP2) was found to be coordinately regulated by using
an Sp1-GC box and Nf-κB site [47]. Sp-1 itself is pre-
dicted by SHOE to target PSMB9. Nf-κB is found to be
essential for the basal activity of the mouse TAPBP
(tapasin) promoter [48]. Furthermore, in neuroblastoma
cells, Nf-κB was found to synergize with IRF1 in enhan-
cing tapasin [48]. The IRF1 regulatory region itself was
found to bind Nf-κB [49]. Published experimental results
demonstrate that in colonic epithelial cells, using the
Nf-κB pathway, IL-1β may induce CXCL10 [50]. INPPL1
(SHIP2) is involved in the regulation of insulin and also
plays a role in actin remodeling [51]. It is known that
palmitate could induce SHIP2 expression in skeletal
muscle via the activation of Nf-κB pathways [51].

Known and new transcription factors predicted by SHOE
SHOE predicted another three genes that have not yet
been associated with Nf-κB in mice and rats but have been
predicted by SHOE: TRIP10, STRN, and GABBR1. Also,
several transcription factor candidates were found to po-
tentially co-regulate these genes together with Nf-κB.
TRIP10 (CIP4), which is involved in insulin signaling

and actin reorganization, has been identified as a poten-
tial target gene of Nf-κB. TRIP10 (CIP4) is required for
the translocation of GLUT4 to the plasma membrane
(http://www.uniprot.org).
SHOE predicted that LEF1 and Sp1 among other tran-

scription factors affect TRIP10 expression. Nf-κB was
found to regulate the LEF1 transcription factor and inter-
act with the Sp1 transcription factor [52]. The above result
supports the idea that Nf-kB co-regulates with TRIP10,
LEF1, and Sp1. Since both TRIP10 and INPPL1 are part of
insulin signaling and actin remodeling and are predicted
to be regulated by Nf-kB, they might be involved in the
insulin-signaling pathway together.
STRN, which is a calmodulin-binding protein, and

GABBR1, which is a receptor for gamma-aminobutyric
acid, are also predicted by SHOE to have Nf-kB binding
sites in their promoters. Interestingly, Nf-kB is reported to
be a constitutive transcription factor in glutamatergic neu-
rons [53]. Thus, STRN and GABBR1, as part of an insulin
pathway, may be involved in learning and memory.
We report that CREB, Egr-3, E2F, and p53 regulate

STRN, and accordingly, Nf-κB was found to regulate
CREB [54]. Egr-3 [55] and E2F1, [56] both separately
interact with Nf-kB. P53 and Nf-kB were found to syner-
gistically upregulate multiple genes. Sp1 and E2F bind to
the GABBR1 promoter, and these two transcription fac-
tors interact with Nf-kB.
Bach2 [57], IRF family members [58–60], SP3 [61], SRF

[62], ETS proteins [63], SMAD4, and TGF-β [64] tran-
scription factors are also known to interact with Nf-kB,
which give us a chance to extend the present biological in-
sights into Nf-kB activity. Out of 33 predicted transcrip-
tion factors, 13 had been confirmed in combinatorial
interactions with Nf-κB (Fig. 5, orange), supporting the
possibility of Nf-κB co-regulating these genes.

Exploration ChIP-seq peaks with SHOE
In order to provide Users with the insight of how the re-
sults of SHOE are overlapping with experimentally pre-
dicted transcription factor binding sites, we incorporated
ChIP-seq Liver enhancer data into SHOE. With this
amendment whichever geneset is analyzed the results
can be viewed in overlap with ChiP-seq peaks in Liver,
or other tissues by User request. On SHOE Manual page
we put the detailed protocol of how to add ChIP-seq
data from Array Express to SHOE. Thus all dataset we/
users analyzed could be investigated on the presence of
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overlap with ChiP-seq peaks. As an additional example,
we brought the dataset of 154 genes overexpressed in
type 2 Diabetic Mouse Liver and present in SHOE
orthologous list [65]. SHOE 24 identified genes of 154 as
having cross-species conserved regions (Liver_ChIP-seq
dataset in “Query List”). Several genes such as FIF4B,
PKLR, IGFBP4, ATP5D shown overlap with ChIP-seq
peaks (Additional file 3: Figure S3a). In the mTOR
pathway dataset ChiP-seq locations have been found
for two genes TNF and EIF4B, and in the promoter of
TNF gene two peak locations were correctly predicted
(Additional file 3: Figure S3b). Other genes in the
mTOR pathway dataset did not have peak information.
The above means that the analysis by SHOE might
bring helpful information for the identification of pos-
sible transcription factor candidates within ChIP-seq
regions of binding peaks.
To capture more Chip-seq peaks several consider-

ations should be included into the methodology: a) since
enhancer regions are less conserved comparing to pro-
moters, they can have weaker scores in multiple se-
quence alignment, thus being left out, as in the case of
ATP5D gene, when both sides of peak are very well con-
served but peak itself is missed because of weaker mul-
tiple alignment similarity; b) motifs in peaks are more
corrupted/(having more mismatches) with consensus se-
quence of known binding site, as it is observed by SHOE
(similarity scores to consensus around 0.5, thus the cut-
off threshold should be set significantly lower for
ChIP-seq peaks analysis); c) some peaks are distantly al-
located from the TSS (to more than 10,000 bp), which
means that more sensitive, i.e. partial sequence search
directly on those regions might be more appropriate.
Despite the above considerations are not included in
current SHOE methodology, SHOE is successfully find-
ing ChiP-seq locations in a range of cases thus increas-
ing the confidence of the results that will augment the
interest of the user to the software.

Conclusions
Through case studies we demonstrate the utility of SHOE
in visualizing and exploring potential regulatory interac-
tions involving TFs. The analysis made by SHOE further
emphasizes the evolutionary importance of CREB in
stress-regulated responses and the regulation of antioxi-
dant enzymes. Moreover, for the example of Nf-kB, 10 out
of 13 predicted target genes had evidence in the literature
supporting the predictions. Not only known but also novel
potential target genes in the insulin pathway and the ner-
vous system were identified, which may give insight into
new pathways and how Nf-kB is involved in their regula-
tion. For 11 out of 33 transcription factors, there were
studies showing interactions with Nf-kB, portraying SHOE
as a strong predictor of not only target genes but also

potential transcription factors that might co-regulate tar-
get genes. Analysis on the MAPK pathway using the
SHOE method have been discussed in a previous study
[66]. By identifying the roles of genes and their relations
to other genes, SHOE can be used to help create a poten-
tial network of gene interactions.
SHOE is connected to such tools as the CellDesigner

pathway editor and analyzer [31], Percellome database
[67], and Reactome database [68] via the Garuda plat-
form and uses its native visualizer GeneViz to represent/
compare several networks at once. As future work,
shortly we plan to add other tools to join the SHOE ana-
lytic workflow to meet the growing needs of molecular
biologists and medical researchers.
We also are considering adding the option to consider

tissue-specific data such as ChIP-seq binding data and
epigenetic data such as DNA methylation and histone
modification.

Availability and requirements
Project name: SHOE: Interactive visual tool for pro-
moter analysis.
Project home page: http://ec2-54-150-223-65.ap-north

east-1.compute.amazonaws.com
Project demo: https://www.youtube.com/watch?v=qAR

inNb9NtE
Operating system(s): Windows / macOS / Linux.
Programming language(s): C, Perl, PHP, JavaScript.
Other requirements: Vagrant, VirtualBox.
Restrictions for use by non-academics: None.

Additional files

Additional file 1: Figure S1. Pareto front score optimization on SHOE.
A) Illustration of the conflict between two scores (MA score and PSSM
score) and the concept of dominance; B) Visualization of several groups
of scores using Pentachlorophenol response dataset (PCP), PCP_raw (red)
denotes random score zone, PCP_ma (purple) denotes zone where MA
score is high, PCP_pssm (blue) is the zone where the PSSM score is high,
and PCPtrimmedLog (green) is the zone where a trade-off between two
scores is taken. C) Example of the analysis with 30 top Pareto fronts with
each type of motif shown in different shape and color. (PDF 360 kb)

Additional file 2: Figure S2. Trade-off on the number of genes in the
dataset basing of motif similarity threshold to the consensus when Pearson
correlation thresholds |r|≥ 0.0 and |r|≥ 0.6 are applied. (PDF 20 kb)

Additional file 3: Figure S3. Visualization of ChiP-seq peaks from
ArrayExperss database idenyified in SHOE predictions. A) Demosntrates
two genes from overexpressed in mouse liver in Diabet 2 condition; B)
Demonstrate TNF genes of mTOR human pathway in which promoter
two peaks according ChIP-seq analysis have been identified. (ZIP 499 kb)
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