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ABSTRACT

3dSS is a web-based interactive computing server,
primarily designed to aid researchers, to superpose
two or several 3D protein structures. In addition,
the server can be effectively used to find the invari-
ant and common water molecules present in the
superposed homologous protein structures. The
molecular visualization tool RASMOL is interfaced
with the server to visualize the superposed 3D struc-
tures with the water molecules (invariant or common)
in the client machine. Furthermore, an option is pro-
vided to save the superposed 3D atomic coordinates
in the client machine. To perform the above, users
need to enter Protein Data Bank (PDB)-id(s) or upload
the atomic coordinates in PDB format. This server
usesa locallymaintainedPDBanonymousFTPserver
that is being updated weekly. This program can be
accessed through our Bioinformatics web server at
the URL http://cluster.physics.iisc.ernet.in/3dss/ or
http://10.188.1.15/3dss/.

INTRODUCTION

In the post-genome era, the structural and conformational
properties of the 3D protein molecules are of considerable
interest owing to its importance in various biological
processes. Owing to the recent technological advances like
high power tunable synchrotron radiation, powerful number
crunching computers and due to ambitious structural genomics
programs in different parts of the world, there has been a tre-
mendous increase in the number of protein structures in
the Protein Data Bank (PDB) (1). Now there are �34 000
3D structures available in this entity. Analysis of the 3D struc-
ture of protein molecules is greatly enhanced by understanding
the relationship between the individual protein molecules.
Furthermore, knowledge of the 3D structural relationship
between different protein molecules is a key issue in

understanding the structure and function. In order to find
the common structural region, one need to lay one molecule
over the other by appropriate rotation and translation and this
process is termed as superposition of the 3D structures. Several
programs are available in the literature (2–9) for this purpose.
Most of these programs are stand-alone versions and have
their own merits and demerits. Two most recent ones are
web-based servers, namely, SSM (8) and SuperPose (9).
The program SSM uses the procedure of matching graphs
generated using the secondary structural elements followed
by the alignment of Ca atoms of the protein molecule.
Using one of the programs (9), SuperPose, we experienced
problems while trying to superpose multiple structures as
well as portions of molecules. In fact, it was difficult to super-
pose different subunits available in multi-subunit protein
structures. In addition, most of the existing programs use
only the first model of the ensemble in the case of structures
solved using NMR technique and there is no provision for the
users to superpose all the models in the ensemble.

It is well known that water molecules play a vital role in
protein structures, aiding in stabilizing the protein fold and in
ligand design (10–14). In addition, investigations on the
invariant water molecules in several well studied homologous
protein structures shed light on the specific roles of water
molecules such as catalytic, structural and functional (15–18).
Thus, it is necessary to find the invariant and common water
molecules (for definition see below) in homologous protein
structures, for which 3D structural superposition step is
crucial. But the existing programs do not have provisions
for the users to identify the invariant and common water
molecules. Hence, we created a unique computing server to
superpose the three-dimensional structures and to find the
invariant and common water molecules in homologous protein
structures.

BACKGROUND

The water molecules present in two highly similar (the best
example is native structure and its mutant structure) or highly
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homologous structures (the inhibitor free and inhibitor bound
structure) are known as invariant water molecules. Further,
such situation is also possible in multi-subunit protein struc-
tures. For example, if a molecule has four identical subunits,
the water molecules that interact with the residues in the same
position in different subunits (e.g. subunit A and B) can be
considered as invariant water molecules. On the other hand,
common water molecules are those, which lie at the interface
and interact with the selected subunits.

In the computing server, two widely recognized programs
STAMP (19) and ProFit (A. C. R. Martin, http://www.bioinf.
org.uk/software/profit/) are deployed for superposition
purposes. The program STAMP uses multiple sequence align-
ment using the amino acid sequence information followed by
an initial superposition of structures. In contrast, the program
ProFit uses the McLachlan fitting algorithm, essentially a
steepest descent minimization (3). The user-friendly molecu-
lar visualization tool RASMOL (20) is interfaced to view the
superposed molecules in the client machine. This server is
developed using PERL, HTML and JAVASCRIPT. Ploticus
[Copy right 1998–2002, Stephan C. Grugg (scg@jax.org)],
a data display engine is used for generating plots to display
root mean square deviation (r.m.s.d.) graphically.

DATA PRESENTATION AND AVAILABILITY

The software is developed and optimized for Intel based
Solaris (Version 10.0) and is driven by 3.0 GHz pentium IV

processor equipped with 2 GB RD RAM. This operating
system is chosen for better security, scalability and reliability.
The software and its functionalities are well tested on
Windows 95/98/2000, Linux and SGI platforms. During val-
idation of the software, we realized that two web browsers,
namely, NETSCAPE (version 4.7 and 7.2) and MOZILLA
behaved well. To visualize the superposed 3D structures in
the client machine, user needs to interface the molecular visu-
alization tool RASMOL (only for the first time usage of the
software) and the necessary instructions are provided in the
link (http://cluster.physics.iisc.ernet.in/3dss/rasmol.html). The
following are the four major options provided in the proposed
computing server.

(a) Superpose only two structures,
(b) Superpose several structures,
(c) Superpose subunits within a structure, and
(d) Superpose different models present in NMR ensemble.

All the above options, allow users to select the structures
available in the PDB by providing its unique PDB-id or by
up-loading the 3D atomic coordinates (PDB format) from the
local hard disk of the client machine. Once the file is uploaded,
the program automatically culls the input PDB file and dis-
plays all the chain details of the structure in a convenient
form. Using the check box, users can select the entire file,
a particular chain or a portion of the chain(s) for superposi-
tion. For the option (b), firstly the user needs to provide the
number of molecules to be superposed on the fixed molecule.

Figure 1. The screen snapshot shows the superposition of 12 structures of recombinant phospholipase A2. The top panel shows the status of superposition and the
rightRASMOLgraphics panel displays the superposition in different colors (see the last columnof the top panel for coloring scheme). The bottom left panel shows the
graphical display of the r.m.s.d. values of the 12 structures and is generated using the data display engine, Ploticus. It is clear from the plot that the region 60–70 is
having large deviations compared with the remaining portion of the molecule.
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Based on this number, provisions will be available to the
user to either supply the PDB-id’s or upload the 3D atomic
coordinates from the client machine. By default, the server
produces only the structural superposition output. It is worth
mentioning that necessary check boxes are provided in the
options (a) and (b) to find the invariant water molecules
present in the structures. Owing to computational complexity,
the number of structures to be superposed on the fixed
molecule is limited to 20 at any given time. For option (c),
the molecule needs to contain more than one copy of the same
polypeptide chain. Using this option, the users can perform
three different calculations: (i) superpose different subunits
present in a selected structure, (ii) superpose and identify
the invariant water molecules and (iii) identify the common
water molecules. The option (d) performs structural super-
position of various models present in a NMR ensemble
and the user can select the models of interest. Here again,
the number of mobile molecules is limited to 20 for super-
position. In the first three major options, the server displays all
models of NMR structure so that the users can select any
particular model using the pull-down menu. As mentioned
above, two superposition programs (STAMP and ProFit)
are deployed for structural superposition and the user has
the freedom to choose a program of interest. A detailed output
containing r.m.s.d. values, sequence identity, rotation matrix,
translation vector and so on will be displayed. Most import-
antly, users can save the superposed atomic coordinates in
the local client machine for further analysis. The users of
the program are requested to cite this article and the URL
address in their research proceedings.

CASE STUDY

The output of a typical superposition of 12 (native, mutants
and inhibitor complexes) structures of recombinant phospho-
lipase A2 (21–23) (1VL9, 1UNE, 1MKS, 1FDK, 1MKV,
1MKT, 1KVX, 1O2E, 1VKQ, 1IRB, 1GH4 and 1C74 solved
using X-ray crystallography is shown in Figure 1. The PDB-id
1VL9 is used as a fixed molecule and the remaining 11 struc-
tures are treated as mobile molecules (molecules to be super-
posed on the fixed molecule). The program STAMP is used
for superposition. The top panel shows a detailed output like
status of superposition, sequence identity, stamp score and
r.m.s.d. values. The RASMOL graphics panel on the right
shows the superposition of all the structures in different colors.
Figure 2 displays the invariant water molecules in six different
crystal structures of Oligo-peptide binding proteins (OppA)
(24). The structure (1B4Z {457}) is used as fixed molecule and
the remaining five (1B32 {437}, 1B3F {455}, 1B3G {356},
1B46 {374} and 1B51 {433}) are treated as mobile molecules.
The number within braces represents the number of water
molecules present in the 3D structures. The server reports
209 invariant water molecules in all the structures. It is inter-
esting to note that 58.7% (209/356) of the water molecules is
invariant. The invariant water molecules are identified after
superposition within a distance of 1.8 s (between the water
molecules). Figure 3 shows the invariant water molecules
between different subunits of a tetramer. The PDB-id used
here is 1JAC (25) and it has eight different chains [four
heavy chains (A, C, E, G) and four light chains (B, D,
F, H)]. The superposition of different chains A, B, C, D
(green) and E, F, G, H (red) along with 36 invariant water

Figure 2. The screen shot displays the superposition of six OppA along with 209 invariant water molecules. This is carried out using the option (b), ‘Superpose
several structures’ and ‘Superpose and identify invariant water molecules’.
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Figure 4. The output shows the common water molecules between the subunits A and B. The RASMOL panel shows eight common water molecules (blue color).
This is carried out using the option (c) ‘Superpose subunits within a structure and ‘identify common water molecules’.

Figure 3. The output panel depicts the superposition of eight different chains alongwith 36 invariantwatermolecules in PDB-id: 1JAC.The chainsA, B, C,D (fixed)
are colored green and the color red is used for the chains E, F, G, H (mobile). The invariant water molecules are having the same color as the corresponding subunits.
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molecules and their interactions with the subunits are shown.
The calculation is performed using the options ‘Superpose
subunits within a structure’ and ‘identify invariant water
molecules’. The common water molecules between two dif-
ferent subunits (only subunit A and B are used) of a tetrameric
protein [PDB-id 1J4S (26)] are shown in Figure 4. Here, the
options (c), ‘Superpose subunits within a structure’ and
‘Identify common water molecules’ are used. The subunits
A and B are shown in green and red colors, respectively.
There are eight water molecules (blue), which are common
between the chains A and B.

CONCLUSIONS

At the outset, 3dSS is created to better serve the research
community working in the area of structural bioinformatics.
This computing server is very useful to superpose either
complete or partial structures. Furthermore, the server can
effectively be used to identify the invariant and common
water molecules. The knowledge base (PDB) used by the
server is up-to-date and hence the user will be able to access
the latest information available in the PDB. As described, it
is tempting to conclude that the software will certainly be
beneficial for many macromolecular crystallographers and
the undergraduate/graduate students working in the area of
structural bioinformatics.
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