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Abstract The mammalian circadian clock exerts control of daily gene expression through cycles 
of DNA binding. Here, we develop a quantitative model of how a finite pool of BMAL1 protein 
can regulate thousands of target sites over daily time scales. We used quantitative imaging to 
track dynamic changes in endogenous labelled proteins across peripheral tissues and the SCN. 
We determine the contribution of multiple rhythmic processes coordinating BMAL1 DNA binding, 
including cycling molecular abundance, binding affinities, and repression. We find nuclear BMAL1 
concentration determines corresponding CLOCK through heterodimerisation and define a DNA 
residence time of this complex. Repression of CLOCK:BMAL1 is achieved through rhythmic changes 
to BMAL1:CRY1 association and high-affinity interactions between PER2:CRY1 which mediates 
CLOCK:BMAL1 displacement from DNA. Finally, stochastic modelling reveals a dual role for 
PER:CRY complexes in which increasing concentrations of PER2:CRY1 promotes removal of BMAL1:-
CLOCK from genes consequently enhancing ability to move to new target sites.

Editor's evaluation
The transcriptional negative feedback loop of the mammalian circadian clock is mainly regulated by 
interactions among BMAL1, CLOCK, PER1/2 and CRY1/2 in the nucleus. While the binding of CRY 
with BMAL1:CLOCK is known to block the transcriptional activity of BMAL1:CLOCK and the binding 
of PER:CRY dissociates BMAL1:CLOCK from DNA have been known, our understanding is limited 
in qualitative level. Koch et al., quantified the dynamic interactions among the core clock molecules 
such as their diffusion coefficients, binding affinity, and abundances in the nucleus. This greatly 
improves our understanding of the mammalian circadian clock. Importantly, this dynamic information 
is incorporated via a mathematical model to understand BMAL1-CLOCK binding to the target site 
(e.g., circadian proteins operate within an optimal range to modulate E-box binding), providing a 
coherent view on the mechanism driving the oscillation.

Introduction
The 24  hr light-dark cycles inherent to our planet have led to the evolution of molecular circuits 
capable of conveying time of day information, commonly known as circadian clocks. In mammals, 
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cell-autonomous circadian clocks operate in virtually all cells across tissues and enables coordination 
of numerous biological processes, including metabolism, immunity, and cell cycle progression (Bhadra 
et  al., 2017; Gibbs et  al., 2014). Autonomous cellular clocks are characterised by transcription-
translation feedback loops (TTFLs), leading to cycles in protein and mRNA tuned to the 24 hr rhythms 
of the day-night cycle. Central to the mammalian circadian clock is the heterodimeric transcription 
factor comprised of CLOCK (circadian locomotor output cycles protein kaput) and BMAL1 (brain and 
muscle ARNT-like 1) that searches the genome to bind consensus sequence E-box sites (CANNTG), 
inducing expression of several hundred clock-controlled output genes every day. Targets include key 
circadian negative feedback regulators, Period (Per1, Per2, Per3), Cryptochrome (Cry1 and Cry2) and 
a secondary loop regulated by Nr1d1 and Nr1d2 (Buhr and Takahashi, 2013; Gekakis et al., 1998; 
Huang et al., 2012; Liu et al., 2008). These proteins act to repress the activity of CLOCK:BMAL1 to 
form a delayed negative feedback loop driving daily oscillations. In a current model, it is proposed that 
PER and CRY proteins dimerise to form a repressive complex with CK1 (casein kinase 1) to promote 
the removal of CLOCK:BMAL1 from DNA and thereby repress transactivation of target genes, while 
CRY1 independently binds the PAS domain core of CLOCK:BMAL1 and the BMAL1 transactivation 
domain leaving DNA binding intact whilst repressing recruitment of additional transcriptional coacti-
vators (Chiou et al., 2016; Xu et al., 2015). An additional feedback loop is conferred by the protein 
REV-ERBα, which operates as a transcriptional repressor of Bmal1, resulting in a cycle of BMAL1 
protein abundance (Liu et al., 2008).

Ultimately, a prerequisite for generation and output of cellular circadian rhythms is the ability of a 
finite pool of CLOCK:BMAL1 heterodimer protein to bind rhythmically to specific target sequences 
leading to the regulation of circadian gene expression in cells (Koike et al., 2012). Currently, we have 
very little insight into the quantitative biology of this process. Heterodimeric formation of transacti-
vating and repressive complexes is a well-defined feature of the circadian molecular circuit, including 
the formation of CLOCK:BMAL1 and PER:CRY complexes (Chiou et al., 2016; Huang et al., 2012; Xu 
et al., 2015). Recently, PER:CRY proteins have been described as part of very large macromolecular 
complexes within the cell (Aryal et al., 2017). We have previously visualised several core circadian 
proteins, and from this measured the spatiotemporal profile and protein abundance for BMAL1 and 
PER2 (Smyllie et al., 2016; Yang et al., 2020). PER2 was found to cycle with a maximum amplitude 
of 12,000 copies per cell in fibroblasts and without circadian gating of nuclear localisation, contrary 
to observations in the Drosophila clock (Shafer et al., 2002; Smyllie et al., 2016). Only a relatively 
small amount of CRY1 is needed to localise PER2 to the nucleus, as shown in live SCN studies, with 
PER2 localisation remaining predominantly nuclear throughout the day (Smyllie et al., 2022). A recent 
study using a cancer cell line model has also shown that CRY1 protein remains nuclear at all circadian 
phases and at markedly higher abundance than its partner protein PER2 (Gabriel et al., 2021). In 
order to gain insight into the operation of core circadian clock proteins, we generated a genetically 
modified mouse in which CRY1 has been C-terminally fused with a fluorescent protein. We crossed 
this line to a previously described strain of mice expressing fluorescent-tagged BMAL1. We then used 
advanced imaging in both ectopically transformed cell lines and endogenously modified mice to char-
acterise governing parameters in the regulation of CLOCK:BMAL1 DNA binding, including repression 
by PER2 and CRY1. We constructed mathematical models of the complex interactions and phased 
timings from multiple molecular species and experimentally inaccessible complexes, demonstrating 
how DNA binding in the peripheral circadian clock is regulated.

Using a combination of mathematical modelling and experimental validation, our data reveal that 
high-affinity interactions between circadian protein complexes serve to offset the low abundances 
of circadian proteins. In this way, the abundance of key components of the molecular clockwork is 
positioned optimally to regulate E-box binding. This is partly facilitated through PER2:CRY1 mediated 
displacement of CLOCK:BMAL1, such that PER2 protein serves a dual role, acting as both a compo-
nent of the negative feedback arm but also to redistribute CLOCK:BMAL1 to new target sites. Thus, 
the stochiometric balance of PER:CRY with CLOCK:BMAL1 is critical for the elucidation of the full 
cellular circadian repertoire.

https://doi.org/10.7554/eLife.73976


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Chromosomes and Gene Expression

Koch, Bagnall, et al. eLife 2022;0:e73976. DOI: https://doi.org/10.7554/eLife.73976 � 3 of 30

Results
BMAL1 determines nuclear localisation and mobility of CLOCK
To quantify the properties of BMAL1 and CLOCK proteins (Figure 1A), we first used NIH/3T3 fibro-
blasts expressing fluorescent fusion proteins via a ubiquitin ligase C promoter, delivered by lentiviral 
transduction either singly (LV1) or as two sequential transductions (LV2) (Figure 1B; Bagnall et al., 
2015). Expression of the transgene was in >10 fold excess over the native unfused protein, as deter-
mined by single molecule Fluorescence In Situ Hybridisation (Figure  1—figure supplement 1B). 
Confocal microscopy of tagRFP::CLOCK or BMAL1::EGFP showed BMAL1 expression to be strongly 
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Figure 1. Short-lived DNA binding of BMAL1 and CLOCK. (A) Schematic representation of parameters regulating CLOCK:BMAL1 dimers binding to 
target DNA sites. (B) NIH/3T3 cells are either singularly or sequentially transduced to express fluorescent fusions with CLOCK or BMAL1 (wildtype and 
mutant variants).(C) Confocal microscopy images of cells solo-expressing (LV1) either tagRFP::CLOCK or BMAL1::EGFP or co-expressing (LV2) them 
together (including BMAL1 L95E DNA-binding mutant). (D) Confocal microscopy images for photobleaching of LV2BMAL1::EGFP-RFP::CLOCK labelled 
cells, either with wild-type or BMAL1 L95E DNA binding mutant. Images show nuclei and highlight region of bleaching. (E) Representative fluorescence 
recovery curves of bleach region for B. following normalisation. (F) Residence time calculated as the inverse of kOFF (‍s−1‍), determined from fitting the 
recovery data with a single component binding model (n = 69, 58, and 51 cells). Bar represents median values. Source data for panel F available as 
Figure 1—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. BMAL1 residence times.

Figure supplement 1. Ectopically expressed mRNA is the major form in a lentivirus transduced system.

Figure supplement 1—source data 1. Summary statistics.

Figure supplement 2. Binding plays a significant role in BMAL1 mobility.

https://doi.org/10.7554/eLife.73976
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localised to the nucleus, whereas CLOCK was predominantly cytoplasmic when expressed alone 
(Figure 1C). Co-expression of both proteins in the same cells caused localisation of tagRFP::CLOCK to 
move to the nucleus, in agreement with earlier studies which showed cytoplasmic CLOCK localisation 
in BMAL1-deficient cells, and that circadian regulation of nuclear localisation of CLOCK correlated 
with BMAL1 availability (Kondratov et al., 2003; Stratmann et al., 2012). We also transduced cells 
with a fluorescent fusion of a DNA-binding mutant of BMAL1, in which a leucine is substituted for 
glutamic acid in the basic helix-loop-helix region of the protein; referred to as L95E. The mutant 
BMAL1 also re-localised tagRFP::CLOCK protein to the nucleus from the cytoplasm in an manner 
equivalent to WT BMAL1 (Figure 1C; Huang et al., 2012). We next performed Fluorescence Recovery 
After Photobleaching (FRAP) experiments to test the impact of CLOCK on the recovery dynamics of 
a bleached nuclear region of BMAL1::EGFP, by comparing responses with or without co-expressed 
tagRFP::CLOCK (Figure 1D–F). BMAL1 recovery half-life was found to be insensitive to the diameter 
of the bleached region, indicating that binding contributes to the recovery profile rather than this 
being a solely diffusion-led process (Figure 1—figure supplement 2; Sprague and McNally, 2005). 
Reaction binding equations were fitted to determine the rate of dissociation, ‍kOFF‍, for BMAL1::EGFP, 
the reciprocal of which equates to an average characteristic duration of binding or residence time. 
Residence time of BMAL1::EGFP was increased in the presence of tagRFP::CLOCK (p < 0.0001), 
consistent with a requirement for CLOCK to bind DNA (Figure 1F). The mean residence time for the 
fluorescent CLOCK:BMAL1 complex was 4.13 s (95% CI, 0.57), a value consistent with DNA residence 
times for similar transcription factors (Hettich and Gebhardt, 2018; Stratmann et al., 2012). Using 
the L95E DNA-binding mutant protein, we saw significantly reduced residence time of 2.83 s (95% CI, 
0.54; p = 0.0002). Notably, the initial publication of the BMAL1 L95E mutant showed a twofold reduc-
tion in PER2::LUC expression and so suggests a strong relationship between DNA binding and tran-
scriptional output (Huang et al., 2012).

To investigate this further we used Fluorescence (Cross) Correlation Spectroscopy (F(C)CS) (Yu 
et al., 2021), a technique used to determine live-cell concentration and diffusion properties of individ-
ually fluorescent-labeled BMAL1 and CLOCK proteins, as well as their interactions when co-expressed 
(Figure  2A). A normal diffusion model fitted the majority of data collected from cells expressing 
free EGFP or nuclear only NLS::EGFP proteins, as previously reported (Dross et al., 2009), whereas 
anomalous diffusion models – sub-diffusion caused by a range of factors such as DNA interactions 
and molecular crowding – accounted for a > 20% fraction, which in this instance may be explained 
by molecular crowding (Tsekouras et al., 2015). In comparison, for the fusion proteins, anomalous 
diffusion models accounted for >80% of all BMAL1 data sets (Figure 2—figure supplement 1). We 
used an anomalous diffusion model for all further analyses of circadian proteins to calculate diffusion 
coefficients and protein concentrations.

Singly expressed fluorescent BMAL1 and CLOCK were found to diffuse rapidly with a median 
coefficient of 9.2 ‍m2 s−1‍ (SD, 3.3) and 12.6 ‍m2 s−1‍ (SD, 6.1), respectively. In contrast, co-expression 
significantly reduced the rate of diffusion to 1.9 ‍m2 s−1‍ (SD, 1.3; p < 0.0001) and 4.7 ‍m2 s−1‍ (SD, 3.2; 
p < 0.0001) for BMAL1 and CLOCK ,respectively (Figure 2B). The L95E mutant diffused more rapidly 
than WT BMAL1, consistent with fewer interactions with DNA in the nucleus (Figure  2C). When 
co-expressed, WT BMAL1 and CLOCK exhibited a 2:1 concentration ratio in the nucleus (Figure 2D, 
Figure 2—figure supplement 2E), presumably arising from a combination of differences in protein 
turnover, shuttling and direct interaction. F(C)CS was then used to observe this interaction and deter-
mine a live-cell dissociation constant (‍KD‍; reciprocal measure of affinity) (Krieger et al., 2015). A posi-
tive cross correlation curve was observed between BMAL1::EGFP and tagRFP::CLOCK that was not 
apparent in cells expressing NLS::EGFP with tagRFP::CLOCK (Figure 2E). To calculate ‍KD‍, we fitted 
a one-site saturating binding curve to the relationship between heterodimer and monomer which 
yielded a value of 148 ‍nm‍ (SD, 9.8) for WT BMAL1::EGFP and tagRFP::CLOCK (Figure 2F). The ‍KD‍ was 
measured for cells with the reverse fluorescent protein labelling, namely EGFP::CLOCK and BMAL1::-
tagRFP, finding similar a value of 145 ‍nm‍ (SD, 4.8), although a stronger interaction was found in 
vitro by surface plasmon resonance (Figure 2—figure supplement 2F). Previous work found that the 
V435R mutation of BMAL1 in the PAS-B domain, leads to reduced dimerisation with CLOCK (Huang 
et al., 2012). We used the V435R mutation to confirm our F(C)CS measurements by co-expressing 
V435R-BMAL1 and WT-CLOCK. This elicited a ≈1.5-fold reduction in interaction affinity, resulting in 
a ‍KD‍ of 201 ‍nm‍ (SD, 14) (Figure 2G) and a reduction from 2:1 to a 4:1 ratio of BMAL1 and CLOCK in 

https://doi.org/10.7554/eLife.73976
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Figure 2. Live-cell interaction measurements demonstrate BMAL1 and CLOCK mobility is regulated by dimerisation and DNA binding. (A) Schematic of 
confocal volume used in FCCS with corresponding photon count traces. Interaction may be seen by correlation between both channels. Representative 
auto- and cross- correlation data showing raw data and fit lines for monomeric and complexed fluorescent proteins. (B) FCS data showing diffusion 
for BMAL1 and CLOCK in solo- and co-expressed conditions (n = 173, 152, 198, and 185 cells). (C) FCS results for BMAL1::EGFP diffusion for NIH/3T3 
cells that co-express tagRFP::CLOCK. Data shown is for comparison of BMAL1 as either wild-type of L95E DNA-binding mutant. Bars show median and 
interquartile range. (D) Correlation of nuclear protein quantification showing relationship of BMAL1::EGFP with tagRFP::CLOCK for both wildtype and 
DNA binding mutant (n = 221 cells from three biological replicates). (E) Average cross-correlation curves for BMAL1::EGFP (WT) with tagRFP::CLOCK 
(n = 140) compared to a non-interacting control of NLS::EGFP co-expressed with tagRFP::CLOCK (n = 408). (F) Dissociation plot from FCCS data for 
BMAL1::WT and tagRFP::CLOCK. (G) Summary of calculated dissociation constants across all conditions, including BMAL1 dimerisation mutant, V435R 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.73976
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the nucleus (Figure 2—figure supplement 2E). In contrast, the BMAL1 L95E DNA binding mutant 
showed no difference in interaction affinity compared to WT BMAL1 protein. These data demonstrate 
that BMAL1 is a critical determinant of the localisation, mobility and concentration of CLOCK in the 
nucleus.

From this, we can infer the abundance of nuclear CLOCK from measurements of BMAL1, and 
make use of available endogenously labelled Venus::BMAL1 mice to measure remaining DNA binding 
parameters. First, we confirmed our cell line measurements for binding rates and diffusion using 
the Venus::BMAL1 mice (Yang et al., 2020), finding that they remain within a similar range across a 
number of primary cell types, including macrophages and pulmonary fibroblasts (Figure 3—figure 
supplement 1). We also measured protein number of the endogenous BMAL1, observing that total 
copies per nucleus vary from 1000 to 10,000 between individual cells, likely due to desynchrony and 
differing nuclear volumes. Moreover, a large overlap in nuclear copy numbers was observed across all 
cell types despite substantial changes in the mean. These data are critical in our understanding of the 
ratio of BMAL1 to target sites, effectively determining the capacity to regulate the full repertoire of 
target genes within a specific cell type.

Quantification of strong rhythmic interaction of BMAL1 with CRY1
The ability to measure BMAL1 amounts to infer copy number of CLOCK, allows us to measure other 
critical pairings with BMAL1. This includes the repressive action of CRY1 binding to CLOCK:BMAL1, 
resulting in reduced transactivation. To explore the interaction between BMAL1 and CRY1, we gener-
ated a genetically modified mouse in which CRY1 has been C-terminally fused with the red fluorescent 
protein mRuby3 using CRISPR-mediated genomic editing to insert the coding sequence, replacing the 
endogenous CRY1 stop codon (Figure 3—figure supplement 3A; Bajar et al., 2016; Bennett et al., 
2021). First, to test any potential impact on circadian pace-making, we measured CRY1::mRuby3 
fluorescence in whole-field organotypic SCN slices (Figure 3—figure supplement 3B) which exhib-
ited regular cycles in red fluorescence with a period of 23.9 hr (SD, 0.6) (Figure 3—figure supple-
ment 3C; Smyllie et al., 2016). Additionally, wheel running measurements of these mice confirmed 
normal behavioural rhythmicity (Figure  3—figure supplement 2). We next crossed these mice to 
the Venus::BMAL1 mouse line (Yang et  al., 2020), previously inter-crossed with a PER2::LUCIF-
ERASE background (Yoo et al., 2004) to provide an independent circadian phase-reference marker 
(referred to as BMAL1xCRY1 labelled mouse). Using isolated lung fibroblasts from BMAL1xCRY1 mice 
we assessed bioluminescence in response to dexamethasone (DEX) synchronisation, and observed 
23.3 hr cycles (SD, 0.6) which were sustained for >4 days (Figure 3—figure supplement Figure 3—
figure supplement 3D, E). From this, we are confident that the fluorescent fusion proteins do not 
disrupt the normal operation of the circadian pacemaker.

Using the same synchronisation approach, we then measured BMAL1xCRY1 fluorescence in single 
cells every 4 hr from 24 to 48 hr post-DEX synchronisation, using F(C)CS (Figure 3A-B). Both fluores-
cent signals were localised to the nucleus. Venus::BMAL1 showed a consistent diffusion pattern over 
a circadian cycle, with a mean diffusion coefficient of 0.58 ‍m2 s−1‍ (SD, 0.03), whereas CRY1 mobility 
exhibited circadian variance, with slow diffusion 28 hr post-DEX and elevated diffusion rates 12 hr 
later (Figure 3C). Interestingly, this change in mobility is consistent with a binding to a mass equiva-
lent to the molecular weight of PERIOD2. Peak protein concentrations of BMAL1 and CRY1 had an 
approximate and appropriate phase-separation of 8 hr (Fustin et al., 2009). Auto-correlation analyses 

(n = 156, 274, and 244). Mann-Whitney non-parametric test to determine significance (values are denoted as p > 0.05 ns, p < 0.05 *, p < 0.01 **, p < 
0.001 *** and p < 0.0001 ****). Source data for panels B,C available as Figure 2—source data 1 and panel E as Figure 2—source data 2.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. BMAL1 and CLOCK FCS diffusion rates. 

Source data 2. BMAL1 and CLOCK paired FCS concentrations. 

Figure supplement 1. Anomalous diffusion best fits protein movement.

Figure supplement 2. Fluorescent BMAL1 and CLOCK proteins behave similarly when colours are swapped.

Figure 2 continued

https://doi.org/10.7554/eLife.73976
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revealed the concentration of BMAL1 is on average 1.92 fold (SD, 0.32) higher than CRY1, with a 

mean concentration of 29.3 ‍nm‍ and 13.4 ‍nm‍ respectively (equating to approximately 16,000 and 7000 

molecules per nucleus), consistent with the range we reported earlier for PER2 (Smyllie et al., 2016). 

The amplitude of CRY1 was found to be shallow, cycling from 11.9 ‍nm‍ (SD, 5.7) at T28 to 15.2 ‍nm‍ (SD, 

14.0) at T32, comparable to the approx. 25% amplitude observed for CRY1 in the SCN (Figure 3—
figure supplement 3C). BMAL1 demonstrated a larger amplitude, cycling from 20.1 ‍nm‍ (SD, 7.1) at 

T28 to a peak of 33.3 ‍nm‍ (SD, 13.6) 40 hr after DEX (Figure 3D).
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Figure 3. A rhythmic and strong interaction observed between slow-diffusing BMAL1 and CRY1 facilitates repression. (A) Schematic of triple-labelled 
mice from which primary lung fibroblasts were isolated (B) Confocal images of two cells shown for Venus::BMAL1 and CRY1::mRuby3 over time. FCS 
determined measurement for diffusion coefficient (C) and protein concentration (D) of Venus::BMAL1 and CRY1::mRuby3 (n = 136, 143, 173, 131, 158, 
121, and 132; line shows the mean and error envelopes show the SEM). (E–F) Interaction strength between BMAL1 and CRY1 was also measured over 
time as illustrated by the schematic of affinity as well as plotted values of dissociation constant (error envelope shows the standard deviation). Kruskal-
Wallis test used to determine significance (values are denoted as p > 0.05 ns, p < 0.05 *, p < 0.01 **, p < 0.001 *** and p < 0.0001 ****). Source data for 
panels B,C available as Figure 3—source data 1, Figure 3—source data 2, Figure 3—source data 3, Figure 3—source data 4.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. CRY1 FCS diffusion rates.

Source data 2. BMAL1 FCS diffusion rates.

Source data 3. BMAL1 FCS concentration.

Source data 4. CRY1 FCS concentration.

Figure supplement 1. BMAL1 concentration and DNA binding parameters minimally vary across cell types.

Figure supplement 1—source data 1. CRY1::mRuby3 mouse genotyping.

Figure supplement 2. Generation of CRY1::mRuby3 mouse line.

Figure supplement 3. Triple endogenous labelled mice used to assay rhythms in SCN and peripheral lung fibroblasts.

https://doi.org/10.7554/eLife.73976
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We then analysed the interaction affinity between BMAL1 and CRY1 over time (Figure 3F). This 
interaction exhibited significant changes over a 24 hr cycle (p = < 0.0001), with the strongest inter-
action at T28, ‍KD‍ = 38.8 ‍nm‍ (SD, 2.1), and weakest at T40, ‍KD‍ = 65.1 ‍nm‍ (SD, 3.4) (Figure  3F). 
These profiles were found to correlate with the diffusion profile of CRY1 (Figure 3C). Intriguingly, the 
mean interaction strength between BMAL1 and CRY1 is >2 fold stronger than that between BMAL1 
and CLOCK (Figure 2G). A similar relationship was found in vitro when measuring interactions using 
biolayer interferometry (Fribourgh et al., 2020). Although, these interaction measurements do not 
distinguish between whether either proteins are complexed with other partners, diffusion data is 
consistent with BMAL1 being bound to CLOCK, and are compatible with a model in which the low 
abundance of the CRY1 repressor is offset by a high affinity for the CLOCK:BMAL1 heterodimer.

The changes in the diffusion profile of CRY1 are consistent with its association with an additional 
binding partner, such as PER2, thereby altering the affinity of CRY1 for CLOCK:BMAL1 (Fribourgh 
et al., 2020; Ye et al., 2014). To measure the interaction between CRY1 and PER2 directly, we trans-
duced NIH/3T3 cells with lentivirus so that cells constitutively express EGFP::PER2 or CRY1::tagRFP 
fusion proteins. In both cases, the expressed protein was found to localise predominately to the 
nucleus, although some cytoplasmic fluorescence was observed. When co-expressed, subcellular 
localisation was unchanged, although large punctate aggregates of signal were observed (Figure 4A). 
PER2 was found to have the slowest diffusion coefficient recorded within all our F(C)CS measure-
ments, when in the non-aggregate space. PER2 mobility was not altered following co-expression with 
CRY1, whereas CRY1 exhibited reduced mobility in the presence of ectopic EGFP::PER2 (Figure 4B). 
The diffusion coefficient for CRY1 co-expressed with PER2 was similar to measurements of the endog-
enous protein (Figure 3C), suggesting PER2 and CRY1 exhibit similar stoichiometry within these cells. 
The anomalous diffusion model fit the majority of data sets, including LV1CRY1, LV1PER2, and LV2PER2. 
However, normal diffusion models accounted for >50% of LV2CRY1 correlation analyses suggesting a 
distinct change in CRY1 following interaction with PER2 (P < 0.0001), potentially from a loss of signif-
icant DNA binding of the CLOCK:BMAL1 complex (Figure 4—figure supplement 1). Best fit models 
for each data set demonstrated a strong affinity between PER2 and CRY1 with a ‍KD‍ of 81.8 ‍nm‍ (SD, 
4.9) (Figure 4C) and consistent with previous in vitro measurements (Schmalen et al., 2014).

Figure 4. PER2 modulates CRY1 mobility via a high-affinity association. (A) Confocal images of transduced NIH/3T3 cells that either solo- or co- express 
PER2 and CRY1. (B) FCS data showing diffusion for PER2 and CRY1 in solo- and co-expressed conditions (n = 165, 174, 274, and 274 cells; diffusion rate 
means of 0.2, 0.2, 1.1, 0.2). (C) Dissociation plot from nuclear FCS measurements for EGFP::PER2 and CRY1::tagRFP (n = 274). Significance determined 
by Mann-Whitney test (values are denoted as p > 0.05 ns, p < 0.05 *, p < 0.01 **, p < 0.001 *** and p < 0.0001 ****). Source data for panels B available 
as Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. PER2 and CRY1 FCS diffusion rates.

Figure supplement 1. CRY1 mobility is affected by co-expression with PER2.

https://doi.org/10.7554/eLife.73976
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Quantitative data are an enabling and often essential component of stringent mathematical 
modelling of cell signalling (Bagnall et al., 2018). Having quantified the necessary parameters, we 
then sought to use them in developing a mathematical model of CLOCK:BMAL1 DNA binding, with 
the aim of understanding how the multiple regulatory motifs of changing molecular concentrations, 
interactions and binding kinetics coalesce to regulate DNA binding and transcriptional activation of 
BMAL1. We explored multiple topologies that were able to fit BMAL1 binding rhythms, carrying the 
simplest model forward that incorporated our measured data. We modelled the system using a set of 
ordinary differential equations (ODEs) to depict a current understanding of the system; BMAL1 dime-
rises with CLOCK, which may subsequently bind and unbind to DNA target sites. To model repres-
sion, CRY1 may either inactivate CLOCK:BMAL1 via direct binding or, via dimerisation to PER2, form 
PER2:CRY1 (mimicking complexes with CK1) to displace CLOCK:BMAL1 from DNA (Figure 5A; Chiou 
et al., 2016; Huang et al., 2012; Koike et al., 2012; Xu et al., 2015). The latter would presumably 
lead to rhythmic changes in the residence time of BMAL1 and provide a sensible option to fit and 
complete the model.

To assess dynamic changes in inferred DNA binding rates of BMAL1, we isolated lung fibroblasts 
from BMAL1xCRY1 mice and determined the ‍kOFF‍ values by FRAP following DEX synchronisation. 
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Figure 5. PER2 acts via CRY1 to mediate rhythmic displacement of CLOCK:BMAL1 from DNA. (A) Schematic representation of model topology used 
for the deterministic model of CLOCK:BMAL1 DNA binding. (B) Primary lung fibroblasts from BMAL1 x CRY1 x PER2 mice were synchronised with 
dexamethasone. Plot shows PER2 concentration as measured via FCS by Smyllie et al., 2016 as well as mean BMAL1 binding time (showing SEM 
error envelope). Binding time was measured by confocal FRAP measurements performed on the Venus::BMAL1 fluorescence. Orange line shows the 
inverse of kOFF (s-1), determined from fitting the recovery data with a single component model (n = 48, 70, 82, 63, 82, 64, and 65 cells). (C) ODE model 
was fit to FRAP binding data from E. and using a measured input for PER2 nuclear concentration previously determined in Smyllie et al., 2016. Model 
output showing (D) inferred nuclear concentrations for molecular complexes (E) and CLOCK:BMAL1 without and with CRY1 bound to target sites (see 
supplementary materials for parameters). Panel B has been adapted from Figure 3C from Smyllie et al., 2016.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. ODE model of CLOCK:BMAL1 DNA binding using measured inputs and modelled perturbations.

https://doi.org/10.7554/eLife.73976
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Measurements of BMAL1 protein recovery were taken every 4  hr from 24 hr to 48 hr post-DEX, 
showing ‍kOFF‍ to be rhythmically regulated (Figure 5B). The BMAL1 ‍kOFF‍ profile was in antiphase to 
recordings of nuclear PER2 concentrations from Smyllie et al., 2016 (Figure 5B). To fit all parame-
ters to the model (Table 1), the measured concentrations of PER2 (Smyllie et al., 2016), CRY1 and 
BMAL1 were used as inputs, using data described 
in (Figs. Figures 3D and 5C). On/Off rates were 
constrained to measured dissociation constants 
from F(C)CS (Table 1), with the ‍KD‍ value between 
BMAL1 and E-box sites set at 10 ‍nm‍, as measured 
by Huang et al., 2012. Using a mean value from 
multiple published ChIP-Seq data, the potential 
number of DNA target sites was set as 3,436 
(Table 2).

The ODE model was then fitted by simulating 
FRAP so that a model-derived ‍kOFF‍ could be used 
against our experimental data (Figure  5B) via 
Chi2 minimisation (Chi2, 7.46) to mean and stan-
dard error on the mean (Figure 5C, Table 1). In 
order to confirm identifiability of the unknown 
parameters, we calculated the eigenvalues of 
the Hessian matrix of the fit, finding that it is 
non-singular and reasonably well conditioned 
(Table  1). Next, we used this model to infer 

Table 1. Summary of ordinary differential equation model parameters.
Model fit ‍χ

2 = 7.46‍.

Input parameters

Parameter Unit Description Value±SD

‍KD(C:B - E-Box)‍ nM CLOCK:BMAL1 - E-Box dissociation constant 10 (Huang et al., 2012)

‍KD(C-B)‍ nM CLOCK - BMAL1 dissociation constant 147.6 ± 9.8

‍KD(B-C1)‍ nM BMAL1 - CRY1 dissociation constant Time-point dependent, Figure 3F

‍KD(C1-P2)‍ nM CRY1 - PER2 dissociation constant 81.8 ± 4.9

Fitted parameters

Parameter Unit Description Value±SD (Inverse Hessian eigenvalue of fit)

‍kON‍ ‍nm−1 s−1‍ CLOCK:BMAL1 - DNA binding on rate ‍0.027 ± 1.034 (1.96)‍

‍dON‍ ‍nm−1 s−1‍ BMAL1 - CRY1 binding rate ‍0.237 ± 1.003 (3.42 × 10−2)‍

‍aON‍ ‍nm−1 s−1‍ PER2 - CRY1 binding rate ‍6.34 ± 1.00 (6.79 × 10−8)‍

‍ROFF‍ ‍s−1‍ CLOCK:BMAL1:CRY1:PER2 - DNA unbinding rate ‍(1.23 ± 0.33) × 101 (1.00)‍

‍bON‍ ‍nm−1 s−1‍ CLOCK - BMAL1 binding rate ‍9.17 ± 1.29 (1.00)‍

Derived parameters

Parameter Unit Description Value±SD

‍kOFF‍ ‍s−1‍

CLOCK:BMAL1 - DNA binding unbinding 
rate ‍kON × KD(C:B - E-Box) = 0.27 ± 10.34‍

‍bOFF‍ ‍s−1‍ CLOCK - BMAL1 unbinding rate ‍bON × KD(C-B) = (1.35 ± 0.21) × 103
‍

‍dOFF‍ ‍nm−1 s−1‍ BMAL1 - CRY1 unbinding rate Time-point dependent,‍dON × KD(B:C1)‍

‍aOFF‍ ‍s−1‍ PER2 - CRY1 unbinding rate ‍aON × KD(C1-P2) = (5.19 ± 0.88) × 102
‍

Table 2. BMAL1 ChIP reports.

No. Tissue BMAL1 peaks Reference

1 Liver 2049 Rey et al., 2011

2 Liver 5952 Koike et al., 2012

3 U2OS 2001 Wu et al., 2017

4 PECS 2026 Oishi et al., 2017

5 Liver 4813
Beytebiere et al., 
2019

6 Kidney 4034
Beytebiere et al., 
2019

7 Heart 2520
Beytebiere et al., 
2019

8 NIH3T3 4740 Chiou et al., 2016

9 Skeletal muscle 2787 Dyar et al., 2018

Mean average 3436

https://doi.org/10.7554/eLife.73976
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experimentally inaccessible complexes, specifically PER2:CRY1, CLOCK:BMAL1, and CLOCK:B-
MAL1:CRY1 (Figure 5D). We find that free CLOCK:BMAL1 (unbound to DNA) cycles in remarkably 
low abundance from 0.9 ‍nm‍ to 2.4 ‍nm‍, which equates to a change of ca. 809 molecules, similar to that 
of the PER2:CRY1 complex. Furthermore, predicted DNA binding of CLOCK:BMAL1 has an average 
baseline of 194 sites bound at any one time, rising to 526 sites at the peak, in agreement with the 
expected ≈2-fold peak enrichment from ChIP reports (Beytebiere et al., 2019; Koike et al., 2012; 
Figure 5E). The model also suggests ≈50% of the available transcription factor complex is engaged 
with site-specific interactions with availability predominantly limited by the ‍KD‍ with CLOCK. Finally, 
DNA-bound CLOCK:BMAL1:CRY1 complex was persistent, with low abundance cycling from 32 to 69 
target sites (accounting for 11% of total BMAL1 bound sites).

Circadian proteins are within an optimal expression range to modulate 
E-Box binding
The topology of the circadian molecular circuit is preserved across all cell types, yet it is also known 
that different cell types have widely differing repertoires of target genes and accessible genomic 
target sites for CLOCK:BMAL1 to bind (Beytebiere et al., 2019). We therefore pursued the extent to 
which varying the number of target sites may have an impact on the available pool of CLOCK:BMAL1 
to bind target sequences, as calculated by site occupancy (the % sites occupied at any given moment). 
We simulated the model over a biological range of binding sites (1000 – 10,000), informed by multiple 
BMAL1 and CLOCK ChIP data sets (Figure 6A; Beytebiere et al., 2019; Koike et al., 2012). We 
found target site occupancy decreased marginally from 16.2% to 13.6%, showing that any variance 
between different numbers of available target sites has minimal impact. We then explored how 
varying binding parameters affected site occupancy, relating them to the variability observed in our 
data sets but considering values beyond these limits. The CLOCK:BMAL1 unbinding rate accounted 
for a 21.5% change when residence times across the observed physiological range are considered 
(Figure 6B); outside of this range occupancy begins to saturate so that a further 30 s increase in resi-
dence time only accounts for an additional 12.5% binding. Therefore, the unbinding rate, as measured 
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Figure 6. Circadian proteins operate within an optimal range to modulate E-Box binding. Sensitivity analysis of the deterministic binding model 
showing relationship of measured parameters (bottom) against model for occupancy of active BMAL1:CLOCK on target sites (top). (A) Changing 
number of target sites with data matched to BMAL1 ChIP data sets. (B) From left to right, the effect of changing residence time of CLOCK:BMAL1, or 
protein concentrations. Histograms show measured concentrations for corresponding proteins across all conditions/cells. The 10th to 90th percentile is 
highlighted. Source data available as Figure 6—source data 1.

The online version of this article includes the following source data for figure 6:

Source data 1. Model OAT outputs.

https://doi.org/10.7554/eLife.73976
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experimentally, is optimally positioned to regulate target site occupancy in a manner consistent with 
the displacement mechanism governed by PER:CRY.

Additionally, protein concentrations vary across circadian time as well as individual cells and cell 
types (Figure 3—figure supplement 1). We therefore simulated target-site occupancy across varied 
biologically plausible concentrations for CRY1, PER2, and CLOCK:BMAL1 and calculated the fraction 
of occupied sites (Figure 6B). Increasing CRY1 and PER2 led to a reduction in target-site occupancy, 
whereas a rise in CLOCK:BMAL1 led to a substantial increase and in both cases. Moreover, the biolog-
ically observed range occupied the most sensitive part of the curve, such that oscillations in protein 
copy number can evoke significant changes of occupancy. Hence, the system is positioned to make 
efficient use of the biological concentrations of the constituent proteins.
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Figure 7. Mathematical modelling demonstrates dual function of PER:CRY mediated repression. Stochastic binding model outputs using parameters 
corresponding to T28, T32 or T40 post dexamethasone BMAL1 x CRY1 data sets. (A) Shows a promoter corresponding to the average binding rate 
of CLOCK:BMAL1, (B) the time to visit 95% of target sites once and (C) number of visits to a single promoter over time. Shaded error envelope shows 
standard deviation. (D) Average number of visits per minute to a target site showing active and CRY1 repressed CLOCK:BMAL1 visits. (E). Comparison 
of the contribution of BMAL1 concentration (blue) and PER2 facilitated displacement (green) on the visits per minute to a target site. Percentage 
contribution indicated. (F) Relationship of PER2 protein concentration to site visitations per minute and occupancy by CLOCK:BMAL1 using parameters 
for T40 explored over different concentrations of PER2. Error bars represent standard deviation. (G) The action of CRY:PER leads to short-lived transient 
binding of CLOCK:BMAL1 to DNA, working as both a repressive action whilst also facilitating binding to new target sites.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Stochastic binding model using experimentally measured parameters (A) Stochastic model showing the average binding (with 
SD) of CLOCK:BMAL1 bound target sites using input measurements from all time points for both WT and without PER2 simulations.

https://doi.org/10.7554/eLife.73976


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Chromosomes and Gene Expression

Koch, Bagnall, et al. eLife 2022;0:e73976. DOI: https://doi.org/10.7554/eLife.73976 � 13 of 30

Mathematical modelling demonstrates dual function of PER2:CRY1 
mediated repression
Site occupancy is a function of the average residence time of transcription factors bound to DNA; 
consequently, highly frequent and short events would appear the same as infrequent and long binding 
events. To infer these masked kinetics, which are obscured in our mean based ODE model, we use a 
stochastic binding model to simulate individual molecules of CLOCK:BMAL1 binding to target DNA 
sites in a well-mixed system (Gillespie, 1976). For our simulations, we have used the average number 
of molecules and effective dissociation rates determined for T28, T32, and T40 hr post-DEX for lung 
fibroblasts (Figure  7A) arising from our previously described ODE model. T28 and T40 represent 
trough and peak of BMAL1 (Figure 3D) respectively, whereas T32 and T40 represent the trough and 
peak of PER:CRY protein amounts (Figure 5D).

Alongside binding of active CLOCK:BMAL1, we also considered target sites bound by CLOCK:B-
MAL1:CRY1, which are thought to be transcriptionally inactive whilst also blocking target site 
access to active molecules. At T40, when there is the maximum amount of CLOCK:BMAL1, 95% of 
the 3,436 target sites would be bound at least once within a minute, changing to ca. 2 minutes at 
T28 (Figure 7B), contributing towards a small degree of heterogeneity. From the perspective of a 
single promoter at T40 there are ≈3.2 visits per minute by CLOCK:BMAL1, which is reduced down 
to ≈1.4 visits per minute at T28 (Figure 7C), with further reductions in individual cells with lower 
concentrations of CLOCK:BMAL1 protein (Figure 7—figure supplement 1). We then separated 
the total visits per minute into those occurring as CLOCK:BMAL1 compared to those occurring 
as the CLOCK:BMAL1:CRY1 complex, finding the latter to remain relatively persistent across time 
points and making up ≈15% of total visits, mirroring results for our ODE model. Our stochastic 
model therefore predicts that oscillating amounts of BMAL1 and CRY1 protein amounts, as well 
as the changing interaction affinity, may actually help preserve the concentration of CLOCK:B-
MAL1:CRY1 target binding events across circadian time (Figure 7D).

Repression of CLOCK:BMAL1 activity by CRY1 requires continuous interaction and hence 
is limited by concentration. We hypothesised that this would be different for the PER2:CRY1-
mediated displacement of CLOCK:BMAL1 from target DNA sites. To test this, we first investigated 
how the number of visits per minute would be affected by clamping the input values of ‍kOFF‍ and 
protein to different time points across different observed nuclear volumes. From this, we found 
that both concentration of protein and ‍kOFF‍ make a substantial contribution to the number of 
target site binding events (Figure 7—figure supplement 1). We then separated the contribution 
of changing amounts of CLOCK:BMAL1 protein and PER2:CRY1 mediated displacement to visits 
per minute by calculating the impact of removal of PER2. We find that changing BMAL1 protein 
abundance accounts for the most variation in number of target site visitations, changing from 
1.3 visits at the nadir to 2.7 visits at peak BMAL1 protein (Figure 7E). CLOCK:BMAL1 mobility 
is supported by the action of PER2:CRY1 across all time points, accounting for a maximum 15% 
of visits at the trough of PER2 protein levels (T40). To explore this relationship further, we tested 
the impact of altering the levels of PER2 in the stochastic model, choosing four PER2 concentra-
tions, ranging from absent to greater than observed physiological levels (0, 10, 20, and 50 ‍nm‍) 
(Figure 7F). In the complete absence of PER2, BMAL1 mobility is hampered so that it visits less 
than three sites per minute. When PER2 spans the physiological range and beyond, a strong rela-
tionship in the visits per minute is forecast, rising by a third and in the opposite relationship to 
site occupancy. Our modelling demonstrates dual modes of action of PER2:CRY1, repression via 
displacement of CLOCK:BMAL1 from target sites and facilitation of CLOCK:BMAL1 mobility to 
promote new target site binding (Figure 7G). In this sense, PER2 acts both as part of a transcrip-
tional repressor complex and as a facilitator of CLOCK:BMAL1 mobility to bind new target sites 
(Cao et al., 2021).

Discussion
The circadian molecular circuit responds to and modulates an extraordinary number of biological 
processes, broadly imparted through DNA binding of CLOCK:BMAL1 to E-box sites (Koike et al., 
2012). Through live cell microscopy of fluorescent ectopically and endogenously expressed circadian 

https://doi.org/10.7554/eLife.73976
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proteins we have sought to understand how the autonomous molecular clock regulates CLOCK:BMAL1 
binding to DNA.

Protein abundance and stoichiometry of the circadian circuit
Mathematical modelling demonstrates that low molecular abundances, as observed for core circa-
dian components, lead to rapid internal and cell-to-cell desynchrony, which may be compen-
sated for by strict control of stoichiometries and interactions (Gonze and Goldbeter, 2006). In 
the first instance, protein concentrations of both activators and repressors exert significant influ-
ence on amplitude as well as robustness of daily DNA-binding cycles. We found approximately 
16,000 BMAL1 and 8000 CRY1 proteins per nucleus, consistent with our earlier reports for PER2 
which found 12,000 proteins per nucleus in skin fibroblasts (Smyllie et al., 2016). Interestingly, 
a recent study by Gabriel et al. found approximately an eight-fold difference between CRY1 and 
PER2 using the U20S, osteocarinoma cancer cell line, highlighting how different cell types and 
cell lines may diverge and influence the circadian network (Gabriel et  al., 2021). Similarly, we 
observed significant disparities of endogenous BMAL1 across a range of cell types, with fibro-
blasts exhibiting a > 2 fold increase in BMAL1 concentration when compared with chondrocytes 
(Figure 3—figure supplement 1). The impact of cell type variation in protein concentrations and 
stoichiometries is difficult to discern but may confer tissue-specific sensitives to clock control 
of output genes without the need for additional regulatory components, or could compensate 
the system, as evidenced by similar single site visitations despite a fourfold decrease in nuclear 
volume (Figure 7—figure supplement 1C).

Balance in affinity between BMAL1 and CLOCK may facilitate crosstalk
CLOCK was found to be cytoplasmic when ectopically expressed without BMAL1, with nuclear 
localisation restored upon addition of BMAL1. This suggests BMAL1 oscillations could affect avail-
ability of nuclear CLOCK, consistent with several studies (Kondratov et al., 2003; Kwon et al., 
2006). Our measures of total BMAL1 and CLOCK reveal a concentration ratio of 2:1, possibly 
reflecting differences in turnover rate, import and export of these two proteins. Strikingly, only 
10% of BMAL1 was bound in complex with CLOCK. This ratio of 2:1 is compatible with recent 
modelling studies defining stoichiometric relationships within the nucleus (Lee et al., 2011; Kim 
and Forger, 2012). Low availability of heterodimeric transcription factor for DNA interactions, 
when compared with free protein, severely limits the potential to bind DNA, yet this is consistent 
with allowing other interactions to occur, including those reported with Hypoxia-inducible factor 
(HIF) and Aryl hydrocarbon receptor (AhR) (Bagnall et al., 2014; Jaeger and Tischkau, 2016). 
Balancing availability of monomeric BMAL1 and CLOCK may therefore enable crosstalk with other 
pathways, or modulate interactions that have different affinities for monomeric versus heterod-
imeric CLOCK:BMAL1, as has been reported for CRY1 (Michael et al., 2017; Xu et al., 2015).

Impact of cycling CRY1 concentration, binding affinities and mode of 
repression on the clock
Substantive evidence for direct repression of BMAL1 transactivation by CRY1 now exists (Gustafson 
et al., 2017; Xu et al., 2015). Here, we have shown in live cells that this interaction is not only 
rhythmic but remarkably strong, with a higher affinity than any other protein pairings we have 
measured. This strong repression of CLOCK:BMAL1 by CRY1 balances against its low abundance. 
When acting without PER2, CRY1 exhibits near-persistent repression over 24 hr, likely owing to its 
regulated interaction with CLOCK and BMAL1, as evidenced by modelling the effect of removal 
of either cycling BMAL1, CRY1 or binding affinity between the two (Figure 3F, Figure 5—figure 
supplement 1F). This cycle in affinity provides evidence that the mammalian circadian clock also 
relies on oscillations in the ability of key proteins to heterodimerise one another. The exact mech-
anisms underlying this regulation of affinity are yet to be determined but could be hypothe-
sised to be an outcome of dimerisation with another partner that hinders or aids binding to 
CLOCK:BMAL1, such as PER2, or post-translational modifications leading to changes in affinity 
with CLOCK:BMAL1 (Ye et al., 2011; Fribourgh et al., 2020; Schmalen et al., 2014). A ≈25% 
shift in the diffusion of CRY1 equating to a change in mass close to that of, and in phase with the 
peak of, PER2 hints at the former proposition but further study is required (Figures 2G and 3E).

https://doi.org/10.7554/eLife.73976
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Individual genes exhibit a range of residence times
We found an average short residence time of 3  s for CLOCK:BMAL1, similar to other DNA 
binding transcription factors including GR, p53, p65, and STAT1 (Hettich and Gebhardt, 2018), 
potentially optimised to reduce gene expression noise (Azpeitia and Wagner, 2020). Here 
we modelled CLOCK:BMAL1 binding to a number of sites using an average off rate resulting 
in all sites behaving the same and demonstrating how DNA binding is globally regulated, in 
contrast with evidence from ChiP-seq, whereby different sites are differentially bound (Koike 
et  al., 2012). Presumably, robustly detected peaks found by ChIP-seq represent genes with 
a slow unbinding rate, such as the E-box sites found in the DBP gene, which is supported by 
previous live cell imaging characterising a longer 8-s residence time for BMAL1 on a DBP E-box 
concatemer (Stratmann et al., 2012). Altering the unbinding rates leads to a non-linear scaling 
in the occupation frequency (Figure 5—figure supplement 1B), highlighting the importance of 
regulating this parameter through post-translational modifications such as via phosphorylation 
of the CLOCK:BMAL1 complex as reported by Qin et al., 2015. Residence time may be tuned 
individually for different genes to ensure optimal transactivation, especially when considering 
recruitment of critical co-factors which do not interact with CLOCK:BMAL1 outside of DNA, as 
the probability of co-occupation increases with binding time. Ultimately, a considerable temporal 
gulf exists between the elaboration of a circadian rhythm (days) with the time-scale of DNA 
binding (seconds), altered by the accumulation of protein (hours). Daily changes in BMAL1 protein 
are moderate, remaining as high as 10,000 molecules per nucleus even at the nadir of expres-
sion, resulting in many non-transcriptionally productive interactions of CLOCK:BMAL1 with DNA 
throughout the circadian cycle; these interactions however may be important, contributing to 
pioneer factor activity and allowing others genes to activate at a different phase to BMAL1 
protein levels (Klemz et al., 2021; Menet et al., 2014).

Compromise between E-box visitations and occupancy via PER:CRY 
mediated displacement
Whereas CRY1 inhibits BMAL1 transactivation via binding and blocking productive interactions with 
transcriptional coactivators, PER:CRY complexes permit an alternative mode of repression (Cao et al., 
2021; Xu et al., 2015). We demonstrate that increasing PER:CRY leads to an overall reduction in the 
ability for CLOCK:BMAL1 to remain bound through direct dimerisation and manipulation of DNA 
unbinding. Work by Cao and Wang et al revealed PER2 removes CLOCK:BMAL1 in a CRY-dependent 
manner from E-Boxes via recruitment of CK1 and subsequent phosphorylation of CLOCK, effectively 
reducing affinity for DNA (Cao et al., 2021). Displacive repression of this kind reduces residency time 
on DNA sites and thus the number of sites bound at any one time. However, reducing residency time 
increases the rate at which a limited pool of transcription factors can move onto new sites, hence 
increasing the likelihood of any one gene to be bound and reducing possible cell-to-cell variation. 
Site-specific residence times, most likely due to cofactor recruitment or chromatin modifications, 
coupled with this phenomenon would permit some gene targets to exhibit maximal CLOCK:BMAL1 
binding beyond the time of the global peak. This supports findings by Menet and colleagues, who 
highlight groups of genes that have maximal binding events, as determined via ChIP-seq, outside of 
the zenith of total genome CLOCK:BMAL1 binding (Menet et al., 2014). Furthermore, evidence of 
CLOCK:BMAL1 behaving as a so-called ‘kamikaze’ transcription factor, a factor most transcriptionally 
potent when phosphorylated and marked for degradation, implies that in addition to an increase in 
visitations per minute, transcriptional potency is also upregulated (Stratmann et al., 2012). Therefore, 
despite the relatively high efficiency of CLOCK:BMAL1 binding to DNA, it may spend much of its 
life performing transcriptionally non-productive tasks until modified via complexes such as PER:CRY. 
PER:CRY displacement played a significant role, even at its nadir of expression, contributing to 15% 
of visitations per minutes at the height of DNA binding and CLOCK:BMAL1 concentration (T40). 
Thus, PER:CRY plays a hidden role of enhancing the mobility of CLOCK:BMAL1 to new DNA sites 
(Figure 7G).

Materials and methods
Key resources table 

https://doi.org/10.7554/eLife.73976
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers

Additional 
information

Genetic reagent 
(M. musclus)

C57BL/6 
Venus::BMAL1 Yang et al., 2020

Venus sequence 
inserted before 
BMAL1 start codon.

Genetic reagent 
(M. musclus)

C57BL/6 
Cry1::mRuby3 This paper

CRY1 stop codon 
replaced with 
mRuby3

Genetic reagent 
(M. musclus)

C57BL/6 
Venus::BMAL1 x 
CRY1::mRuby3 This paper

Crossed from 
Venus::BMAL1 and 
CRY1::mRuby3 mice

Cell line (M. 
musculus) NIH/3T3 ATCC CRL-1658

Transfected 
construct (M. 
musculus) pLNT-NLS::EGFP

Vector Builder 
VB900119-0501njq

Lentiviral construct 
to express nuclear 
EGFP.

Transfected 
construct (M. 
musculus)

pLNT-BMAL1::EGFP 
or pLNT-BMAL1::RFP This paper NCBI reference: NM_007489.4

Lentiviral construct to 
express fluorescent 
BMAL1.

Transfected 
construct (M. 
musculus)

pLNT-BMAL1-
L95E::EGFP This paper NCBI reference: NM_007489.4

Lentiviral construct to 
express fluorescent 
BMAL1 L95E mutant.

Transfected 
construct (M. 
musculus)

pLNT-BMAL1-
V435R::EGFP This paper NCBI reference: NM_007489.4

Lentiviral construct to 
express fluorescent 
BMAL1 V435R 
mutant.

Transfected 
construct (M. 
musculus)

pLNT-EGFP::CLOCK 
or pLNT-RFP::CLOCK This paper NCBI reference: NM_007715.6

Lentiviral construct to 
express fluorescent 
CLOCK.

Transfected 
construct (M. 
musculus) pLNT-EGFP::PER2 This paper NCBI reference: NM_011066

Lentiviral construct to 
express fluorescent 
PER2.

Transfected 
construct (M. 
musculus) pLNT-CRY1::RFP This paper NCBI reference: NM_007771.3

Lentiviral construct to 
express fluorescent 
CRY1.

Chemical 
compound, drug Dexamethasone Sigma Aldrich D4902

Software, 
algorithm GraphPad Prism GraphPad Prism Version 9

Software, 
algorithm

FCCS analysis 
pipeline This paper

https://github.com/LoudonLab/FcsAnalysisPipeline,
(copy archived at 
swh:1:rev:b12e9007ed7f8a033485e57c8605e27c67df74f1; Koch, 
2021)

Plasmids
A set of lentivirus transfer plasmids encoding fluorescent fusions of circadian proteins were gener-
ated utilising the gateway cloning system as previously described Bagnall et al., 2015. In brief, an 
initial entry vector was cloned, containing murine coding sequences for: Bmal1 (NM_007489.4), 
Clock (NM_007715.6), Cry1 (NM_007771.3), and Per2 (NM_011066.3). These vectors were then 
recombined with a target destination vector containing a fluorescent protein sequence to generate 
a terminal lentivirus vector, in which expression is regulated from the constitutive ubiquitin ligase C 
promoter. The NLS::EGFP, BMAL1 L95E, and BMAL1 V435R encoding plasmids were all purchased 
from VectorBuilder.

Primary cell isolates and cell lines
Fibroblasts were isolated from lungs of adult mice. Lung tissue was dissected and homogenised 
before collagenase-1A (1.5 ‍mg ml−1

‍, Cat no. C2674) treatment for 2 hr. The cell suspension was then 

https://doi.org/10.7554/eLife.73976
https://github.com/LoudonLab/FcsAnalysisPipeline
https://archive.softwareheritage.org/swh:1:dir:7be2074d3b3bdeae950b9764635cefd44cdcf610;origin=https://github.com/LoudonLab/FcsAnalysisPipeline;visit=swh:1:snp:e84fef6938a998ada7620ab50ac06ca75b49c11f;anchor=swh:1:rev:b12e9007ed7f8a033485e57c8605e27c67df74f1
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filtered using 40 ‍m‍ cell strainers before plating into DMEM (Cat no. D6429) supplemented with 10% 
fetal bovine serum (HyClone), penicillin-streptomycin (10 ‍U/ml‍) and amphotericin B (2.5 ‍g ml−1

‍). Media 
was refreshed every 2–3 days for 1 week before sub-culturing or experimentation. Cells were sub-
cultured for a maximum of 4 passages. SCN slice cultures were prepared as previously described 
(Smyllie et al., 2016) and imaged after 2–3 days after preparation for confocal imaging, or kept for 
7 days in culture prior to bioluminescence recording. Cultures derived from separate mice were used 
as biological replicates.

NIH/3T3 (ATCC CRL-1658) cells were cultured in DMEM supplemented with 10% fetal bovine 
serum (HyClone).The cells were tested for the absence of mycoplasma using MycoAlert mycoplasma 
detection kit (Cat. No. LT07-418). Cells were passaged every 2–3 days, maintaining cells till passage 
30. Lentivirus transduced derivatives of these cells were made using low passage cultures (6-12). 
Production of 3rd generation lentivirus and subsequent transduction of NIH/3T3 cells was carried out 
as previously described (Bagnall et al., 2015). Singly transduced cells are referred to with a super-
script LV1 prefix before the transgene. Sequential transductions were carried out a minimum of 2 
weeks later and derived cells are then termed LV2. Circadian synchronisation of cells was achieved by 
stimulation with 200 ‍nm‍ dexamethasone (Sigma D4902) for 1 hr before PBS washes and then switched 
to fresh culture media. Cultures were passaged for biological replicates.

Confocal microscopy
For 2D culture imaging experiments, cells were plated into 35 ‍mm‍ glass bottomed imaging dishes 
(Greiner Bio-one) at least 6 hr prior to imaging. Measurements were performed using either a ZEISS 
LSM880 or ZEISS LSM780 microscope equipped with a stage mounted incubator to maintain cells at 
37 °C in humidified 5% CO2; fluorescence image capture was performed using either ZEN 2.1 SP3 
FP2 or ZEN 2010b SP1 software, respectively. Fluorescence samples were excited using the most 
appropriate lasers; making use of an Argon-Ion laser to produce 488 ‍nm‍ or 514 ‍nm‍ excitation or diode 
laser to produce 561 ‍nm‍ excitation. The appropriate emitted fluorescence spectra were then collected 
using Quasar GasP array detectors. All images were made using a FLUAR 40 x NA 1.3 oil immersion 
objective. Nuclear volume recordings were made by collecting a z-stack of images at nyquist rate 
using a one airy unit pinhole diameter and then analysing images using Imaris (version 7.4). Time-lapse 
imaging of SCN: fluorescence timelapse recordings of CRY1::mRuby3 in SCN organotypic slices were 
acquired using Zeiss LSM780/880 inverted confocal system (Zeiss), and maintained at 37 °C. Samples 
were placed in air-tight glass-bottom dishes (Mattek). Images were acquired using 10 x objective, 30 s 
scan time per frame, 2 frames per hour, for 6 days for longer time lapse or 60–70 hr for shorter time 
lapse.

Real-time population bioluminescence recordings
Lung fibroblasts were plated into 35 ‍mm‍ plastic tissue culture dishes (Corning). Cell media was 
replaced with a HEPES buffered and phenol free DMEM. Additionally, D-luciferin was supplemented 
into the media 4–24 hr prior to recordings. To prevent gas-exchange, dishes were sealed with grease 
applied around the edges of the coverslips. Bioluminescence was then recorded by photomultiplier 
tubes (PMTs; Hamatasu) housed in an enclosed incubator at 37  °C and without CO2 as described 
previously (Loudon et al., 2007).

Single-molecule fluorescence in situ hybridisation
Clock and Bmal1 mRNA were visualised using custom probes designed against Clock and Bmal1 
murine coding sequences via the Stellaris FISH Probe Designer (Biosearch Technologies Inc). Clock 
and Bmal1 probes were labeled with the Quasar-570 and Quasar-670 dyes, respectively. Samples 
were imaged with a wide-field DeltaVision microscope as previously described and spot counting was 
performed with FISH-quant (Bagnall et al., 2018; Mueller et al., 2013).

Fluorescence recovery after photo-bleaching
FRAP was performed by time-lapse imaging of cells prior to and after photobleaching to visualise fluo-
rescence recovery. Photobleaching of EGFP and Venus signals was performed using 488 ‍nm‍ or 514 ‍nm‍ 
laser lines respectively using circular regions of 5 ‍m‍ diameter (approximately 10% nuclear area) and 
wholly within the nuclei of cells. Images were recorded every 0.262 s for up to 60 s.

https://doi.org/10.7554/eLife.73976
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We have used FRAP to infer DNA unbinding rates for BMAL1, see Figure 1—figure supplement 2. 
The principle of the approach assumes that a combination of diffusion and binding to an unseen immo-
bile substrate affects the speed in which fluorescent proteins move into the recovery area. Different 
trajectories of recovery therefore inform how the balance between binding and diffusion contributes 
to the apparent diffusion of the observed molecule. This approach has been utilised many times to 
characterise the binding times of transcription factors to DNA, including GR, STAT1, p53, and p65 and 
has been additionally cross validated against single molecule imaging (Groeneweg et al., 2014). For 
our data, the recovery curves of BMAL1::EGFP (co-expressed alongside tagRFP::CLOCK) remained 
consistent when bleaching different sized nuclear regions indicating that binding contributes to the 
recovery profile rather than a solely diffusion-led process (Figure 1—figure supplement 2). For all 
subsequent measurements, a circular bleach region was used that was kept consistent across cells 
and accounted for approximately 10% of nuclear area. FRAP was performed and analysed using the 
appropriate ZEN software version with recovery curves from the bleached region normalised to total 
cell fluorescence as well as background fluorescence (empty spaces away from cells). The normalised 
recovery curve of fluorescence within the bleached region over time, ‍t‍, was then fit with a reaction 
binding model

	﻿‍ f(t) = IE − I1e−
t
τ ,‍� (1)

where ‍τ ‍ is the residence time (reciprocal of unbinding rate ‍kOFF‍), ‍IE‍ and I1 is the immobile and 
mobile fraction, respectively (Sprague and McNally, 2005).

Fluorescence correlation spectroscopy
Experimental setup
FCS measurements were performed in each cell nucleus using acquisition times of 20 s and a collec-
tion volume of 1 airy unit (approximately 0.722 ‍fl‍ and 1.10 ‍fl‍ for 488 ‍nm‍ and 561 ‍nm‍ excitation 
respectively when using the FLUAR 40 x NA 1.3 oil immersion objective) calibrated in the x-y plane for 
maximum signal intensity. The effective confocal volumes were calculated via the equation

	﻿‍
Veff = (2π)

3
2 w2

xywz = (2π)
3
2

(
0.61λ

NA

)2 ( 2nλ
NA2

)
,
‍�

(2)

where ‍wxy‍ and wz is the beam width in the ‍xy‍ plane and ‍z‍ axis respectively, with NA as the numer-
ical aperture (‍NA = 1.3‍ for our 40 x objective), ‍λ‍ the wavelength of exciting laser and ‍n‍ the refractive 
index of the immersion oil (‍n = 1.515‍ in all experiments). The appropriate spectra were collected for 
each different fluorophore. Laser power was reduced to minimise photo-bleaching whilst maintaining 
counts per molecule greater than 0.3 ‍kHz‍.

Fitting
Auto-correlation curves extracted from the ​Zeiss.​fcs files were fit over two rounds using a program 
written in Python 3; first a global parameter fit executed using a genetic algorithm differential evolu-
tion (SciPy [Virtanen et al., 2020]) generating initial guesses within reasonable parameter bounds 
was performed, followed by a final stage of non-linear least-squares regression implemented via the 
curve fit (SciPy) package with an arctan loss function. The non-linear regression was regularised using 
the standard deviation following the calculations by Saffarian and Elson, 2003 which incorporates 
systematic sources of error at short and long lag times due to the multi-tau correlation algorithm used 
to compute the correlation curve; at short lag times the averaging introduces uncertainty whilst at the 
long lag times less data points exist to correlate due to the finite time over which the experiment was 
run. Poor fits arising from samples expressing only auto-fluorescence or no fluroescence from focus 
shifts can result in highly non-plausible parameter measurements (diffusion >100 um/s) and concentra-
tions ( > 1000 nM) which were removed by robust regression and outlier removal (ROUT) (Motulsky 
and Brown, 2006).

Model selection
The Akaike Information Criterion (AIC) (Akaike, 1974) was used to score and select the best fit model 
with the lowest score, defined as

https://doi.org/10.7554/eLife.73976
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	﻿‍ AIC = 2k − 2 ln(L̂),‍� (3)

where ‍k‍ is the number of fitted parameters and ‍̂L‍ the maximum likelihood, equal to the sum of 
squared errors when using non-linear least squares regression to fit the curves. Results of the model 
selection for all FCS data sets performed in this study can be found in Figure 2—figure supplement 
1.

Interactions: fluorescence cross-correlation spectroscopy
Care was taken for fluorescence cross-correlation spectroscopy (FCCS) measurements to avoid the 
green channel signal spilling up into the red channel causing false cross-correlation by reducing 
the laser power and observing the far-red part of the second channel. Control measurements were 
performed by selectively turning off either 488 or 561 ‍nm‍ lasers and tuning the red channel spectra 
until there was no cross-correlation due to spill-over. We analysed both sets of auto-correlation and 
cross-correlation curves from the same measurement and used the same procedure as Sadaie et al., 
2014 to calculate the disassociation constant ‍KD‍. We again used non-linear least squares regression 
upon this data, fitting the function

	﻿‍
[Complex]

[A::GFP]TOTAL
= [B::RFP]TOTAL−[Complex]

KD+[B::RFP]TOTAL−[Complex] ,‍� (4)

where ‍[A::GFP]TOTAL‍ is the total concentration of the protein ‍A‍ fused to a green or yellow fluores-
cent protein, ‍[B::RFP]TOTAL‍ is the total of protein ‍B‍ fused to a red fluorophore and ‍[Complex]‍ is the 
concentration of the dimer of ‍A‍ and ‍B‍ proteins. The standard deviation upon ‍KD‍ was also provided 
by this algorithm.

Maturation correction
Fluorescent proteins may take minutes or hours to fold correctly before becoming visible, with the 
invisible fraction becoming substantial if the degradation rate of the protein is comparable to the 
maturation rate, hence leading to misreports in protein number as measured by FCS. The red fluores-
cent protein, mRuby3 is known to have a long maturation time of 2.28 (Balleza et al., 2018) and CRY1 
to have a half-life of approximately 2.1 (Yoo et al., 2013), therefore we applied a scaling correction to 
CRY1::mRuby3 FCS concentration data. To account for the unseen portion, we model the protein in 
two states; an invisible state, ‍P‍, and a mature visible fraction, ‍M ‍. Assuming a constant rate of produc-
tion, kp, for the immature protein, a maturation rate for the fluorophore of km, and a degradation rate 
for both protein states of kd we get the set of ordinary differential equations

	﻿‍

dP
dt

= kp − kdP − kmP,
dM
dt

= kmP − kdM.
‍�

(5)

These equations may be solved analytically using an integrating factor assuming zero of both 
protein states at ‍t = 0‍ and so long as the rate constants km and kd are greater than zero. The unknown 
production rate, kp, is divided out when computing the ratio of both states by ‍M ‍ and taking the limit 
of the solution as ‍t −→ ∞‍ to yield the correction factor

	﻿‍
c = limt→∞

(
P(t)+M(t)

M(t)

)
= kd+km

km
= τm

τd
+ 1,

‍� (6)

where ‍τm‍ and ‍τd‍ are the doubling-time and half-life of the maturation and degradation respectively. 
Using Equation (6), the half-life for CRY1 and the maturation time of mRuby3 we find a multiplica-
tive factor of ‍c = 2.083‍, which may multiply the observed protein to yield the total concentration of 
CRY1::mRuby3.

Diffusion rate as a function of mass
When considering normal diffusion due to Brownian motion the diffusion rate, ‍D‍, may be modelled 
using the Stokes–Einstein equation (Einstein, 1905)

	﻿‍ D = kBT
8πηr ,‍� (7)

https://doi.org/10.7554/eLife.73976
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where ‍kB‍ is the Boltzmann constant, ‍T ‍ the temperature in kelvin, ‍η‍ the dynamic viscosity, and ‍r‍ 
as the radius of the diffusing molecule. Assuming a constant density of spatially equally distributed 
constituent amino acids, the mass of the molecule grows like ‍r3‍ and hence the diffusion rate will be 
related to the mass of the molecule by

	﻿‍ D ∝ m−1/3,‍� (8)

hence a halving in mass will equate to an approximate increase of 1.26 times the diffusion rate.

In vitro binding assays
Expression and purification of recombinant proteins
Biotin Acceptor Peptide (BAP)-tagged CLOCK PAS-AB (mouse CLOCK residues 93–395) was 
expressed as a His6-NusA-XL-tagged protein in Escherichia coli (E. coli) Rosetta2 (DE3) cells. The E. 
coli biotin ligase BirA was expressed as a GST-tagged protein in BL21 (DE3) cells. Protein expression 
was induced with 0.5 mM isopropyl-‍β‍-D-thiogalactopyranoside (IPTG) at an OD600 of approximately 
0.8 and grown for an additional 16 hr at 18 °C. Cells were centrifuged at 4 °C at 3200 x g, resuspended 
in 50 mM Tris pH 7.5, 300 mM NaCl, 5% (vol/vol) glycerol, and 5 mM-mercaptoethanol (BME) and 
lysed using a microfluidizer followed by brief sonication on ice. After clarifying lysate by centrifugation 
at 4 °C at 140,500 x g for 1 hr, proteins were captured using Ni-NTA resin (Qiagen) or Glutathione 
Sepharose 4B resin (GE Life Sciences). After extensive washing in in 50 mM Tris pH 7.5, 300 mM NaCl, 
5% (vol/vol) glycerol, and 5 mmM BME, the affinity and solubility tags (e.g. His6-NusA-XL or GST) 
were cleaved on resin using GST-TEV or His6-TEV protease at 4 °C overnight. Cleaved proteins were 
collected from the flow-through; GST-BirA was further purified using size exclusion chromatography 
(SEC) on a Superdex75 column (GE Healthcare) in 50 mM Tris, pH 8.0, 300 mM NaCl, 1 mM dithioth-
reitol (DTT), and 5% (vol/vol) glycerol, while CLOCK PAS-AB was further purified using SEC in 20 mM 
HEPES pH 7.5, 125 mM NaCl, 5% (vol/vol) glycerol, and 2 mM Tris(2-carboxyethyl)phosphine (TCEP).

BMAL1 PAS-AB (mouse BMAL1 residues 136–441) was expressed in Sf9 suspension insect cells 
(Expression systems) as a GST-tagged protein using the baculovirus expression system. Sf9 cells were 
infected with P3 virus at ‍1.2 × 106‍ cells per milliliter and grown for 72 hr at 27 °C before harvesting. 
Cells were resuspended in resuspension buffer (50 mM HEPES pH 7.5, 300 mM NaCl, 5% (vol/vol) 
glycerol, and 5 mM-mercaptoethanol (BME)). Cells were lysed using a microfluidizer followed by brief 
sonication on ice. After clarifying lysate by centrifugation at 140,500 x g for 1 hr at 4 °C, the lysate 
was bound in batch-mode to Glutathione Sepharose 4B resin (GE Healthcare), washed in resuspen-
sion buffer and eluted with 50 mM HEPES pH 7.5, 150 mM NaCl, 5% (vol/vol) glycerol, 5 mM BME, 
and 25 mM reduced glutathione. The protein was desalted into 50 mM HEPES pH 7, 150 ‍mm‍ NaCl, 
5% (vol/vol) glycerol, and 5 mM BME using a HiTrap Desalting column (GE Healthcare) and incubated 
with GST-TEV protease overnight at 4 °C. The cleaved GST-tag and GST-tagged TEV protease were 
removed by Glutathione Sepharose 4B chromatography (GE Healthcare) and the BMAL1 PAS-AB was 
further purified by SEC on a Superdex75 column (GE Healthcare) in 20 ‍mm‍ HEPES pH 7.5, 125 mM 
NaCl, 5% (vol/vol) glycerol, and 2 mM TCEP. For long-term storage, small aliquots of proteins were 
frozen in liquid nitrogen and stored at –70 °C.

Biotinylation of CLOCK PAS-AB. For the biotinylation reaction, 100 m BAP-CLOCK PAS-AB was 
incubated in 20 mM HEPES pH 7.5, 125 mM NaCl, 5% (vol/vol) glycerol, and 2 mM TCEP with 2 mM 
ATP, 1 m GST-BirA, and 150 m biotin at 4 °C overnight. GST-BirA was removed after the reaction using 
Glutathione Sepharose 4B resin (GE Healthcare) and excess biotin was separated from the labeled 
protein by SEC on a Superdex75 column in 20 ‍mm‍ HEPES pH 7.5, 125 mM NaCl, 5% (vol/vol) glyc-
erol, and 2 mM Tris(2-carboxyethyl)phosphine (TCEP). Biotinylation of CLOCK PAS-AB was essentially 
complete, as determined by incubating the protein with excess streptavidin and resolving complexes 
on SDS-PAGE. For long-term storage, small aliquots of the biotinylated protein were frozen in liquid 
nitrogen and stored at –70 °C.

Surface plasmon resonance binding assays
Kinetic binding experiments were conducted on a Biacore X100  +instrument (GE Healthcare) 
capturing biotinylated CLOCK PAS-AB on a streptavidin-coated SA sensor chip at 100–150 Response 
Units (RUs). Serial dilutions of BMAL1 PAS-AB from 0.25 to 10 ‍nm‍ were injected in phosphate buff-
ered saline (PBS) over 250 s and dissociated into buffer over 250 s to determine binding kinetics. 

https://doi.org/10.7554/eLife.73976
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Sensorgram data were globally fit to a 1:1 biomolecular binding model with Biacore Evaluation 
software X100  +version 2.0.1 (GE Healthcare) to determine ‍kON‍, ‍kOFF‍ and ‍KD‍. ‍χ

2
‍ values lt1 and 

‍Rmax ≤ 100‍ were established as quality cutoffs for acceptable data. See Figure 2—figure supple-
ment 2F for surface plasmon resonance results between BMAL1 PAS-AB and CLOCK PAS-AB 
domains.

Animal lines
A previously established Venus::BMAL1 mouse line was used (Yang et al., 2020). Additionally, two 
more mouse lines were generated which included CRY1::mRuby3 (Figure 3—figure supplement 1) 
and a subsequent cross with mice expressing Venus::BMAL1 and PER2::LUC (Bagnall et al., 2015). 
The CRY1::mRuby3 mice were made using a CRISPR-mediated genomic editing approach to intro-
duce a fluorescent sequence via homology-directed repair. Details of methodology and validation of 
animals can be found in the supplementary materials. Eight- to 10-week-old mice were housed in indi-
vidual cages in light-tight cabinets (Tecniplast), equipped with activity mouse wheel cages (Actimet-
rics). Activity was recorded by ClockLab data collection software in 6-min bins (Actimetrics). The mice 
were maintained at LD cycles (light on at 7 am; light off at 7 pm) for 2 weeks. Activity profiles were 
generated using ClockLab (Actimetrics) and used to apply Non-Parametric Circadian Rhythm Analysis 
(NPCRA) to 10 circadian days of wheel-running data, as described previously (Reppert and Weaver, 
2002), to calculate: Intra-daily Variability (IV): Non-parametric frequency of activity-rest transitions 
within a day, with a range of between 0 and 2 (e.g. a Sine wave would have a value of 0 and Gaussian 
noise would have a value of 2). Inter-daily Stability (IS): Matching of activity patterns on day-to-day 
basis, ranging from 0 (Gaussian noise) to 1 (high-stability). Robust behavioural activity is characterised 
by low IV and high IS. ClockLab (Actimetrics) was used to generate double-plotted actograms with 
onsets of activity and phase angle of entrainment was calculated from 10 days of wheel-running data 
measuring the difference in time of the point in the entraining cycle (lights on) against the onset of 
activity.

Generation of CRY1::mRuby3 mouse line
We used CRISPR-Cas9 to generate C terminally tagged alleles for Cry1, see Figure 3—figure supple-
ment 2. Two sgRNA targeting the STOP codon of the gene were selected using the Sanger WTSI 
website (Hodgkins et al., 2015) that adhered to our criteria for off target predictions (guides with 
mismatch (MM) of 0, 1 or 2 for elsewhere in the genome were discounted, and MM3 were tolerated if 
predicted off targets were not exonic). sgRNA sequences, wih PAM site indicated in italics, (aact​gata​
cggt​aaat​actt​-AG​G and cggc​agag​cagt​aact​gata​-CG​G) were purchased as crRNA oligos, which were 
annealed with tracrRNA (both oligos supplied by IDT) in sterile, RNase free injection buffer (TrisHCl 
1 mM, pH 7.5, EDTA 0.1 mM) by combining 2.5 mg crRNA with 5 mg tracrRNA and heating to 95ºC, 
which was allowed to slowly cool to room temperature.

For our donor repair template, we used the EASI-CRISPR long-ssDNA strategy (Quadros et al., 
2017), which comprised of the mRuby3 gene with linker flanked by 132 and 143 nt homology arms 
synthesised by a Biotinylation PCR and on-column denaturation method (Bennett et  al., 2021; 
Figure 3—figure supplement 3A). For embryo microinjection, the annealed sgRNA was complexed 
with Cas9 protein (New England Biolabs) at room temperature for 10 min, before addition of long 
ssDNA donor (final concentrations; sgRNA 20  ng/ml, Cas9 protein 20  ng/ml, lssDNA 10  ng/ml). 
CRISPR reagents were directly microinjected into C57BL6/J (Envigo) zygote pronuclei using standard 
protocols. Zygotes were cultured overnight and the resulting two-cell embryos surgically implanted 
into the oviduct of day 0.5 post-coitum pseudopregnant mice. Potential founder mice were screened 
by PCR (Figure 3—figure supplement 2A), using primers that flank the sgRNA sites (Cut test F taca​
ctat​gctc​acgg​ggac​ and Cut test R acca​cgtc​ctct​tcag​aacc​), which both identifies editing activity in the 
form of InDels from NHEJ repair, and can also detect larger products indicating HDR (Figure 3—
figure supplement 2A). Pups 18, 19, and 22, which gave positive products in PCR reactions, were 
sequenced by amplifying again with the cut test F/R primers using high fidelity Phusion polymerase 
(NEB), gel extracted and subcloned into pCRblunt (Invitrogen) and Sanger sequenced with M13 
Forward and Reverse primers. All pups showed perfect sequence integration and were bred with a 
WT C57BL6/J to confirm germline transmission.

https://doi.org/10.7554/eLife.73976
http://www.sanger.ac.uk/htgt/wge/
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Mathematical modelling
Modelling aims and assumptions
We sought to model how the core circadian transcription factor, CLOCK:BMAL1, binds to specific 
E-BOX DNA sites over daily cycles in concentration and interactions with the key repressors CRYP-
TOCHROME1 (CRY1) and PERIOD2 (PER2). We have opted to neglect explicitly modelling the non-
specific DNA interactions, such as sliding, hopping and intersegmental transfer, as we have no direct 
measurements of these properties. Instead we chose to allow the specific site on rate (‍kON‍) to repre-
sent all protein-DNA processes required to achieve binding to an specific site by fitting ‍kON‍ alongside 
other ON rates. CRY1 and PER2 repress the activity of BMAL1 through direct binding of the trans-
activation domain (TAD) to block transcriptional potential and the promotion of weaker binding to 
DNA, respectively. We have assumed that PER2 may interact with BMAL1 and CLOCK:BMAL1 only via 
CRY1 with the same affinity that CRY1 alone has for BMAL1. To constrain the on rates during fitting, 
we have used the measured disassociation constants, ‍KD‍, between CLOCK-BMAL1 (Figure  2G), 
CLOCK:BMAL1-EBOX (Huang et al., 2012), CRY1-PER2 (Figure 4C), and the rhythmic CRY1-BMAL1 

‍KD‍ (Figure 3F). All protein-protein and protein-DNA interactions are modelled as explicit dimerisation 
events leading to a new species dependent on an ON and OFF rate. A summary of the parameters, 

‍KD‍ values and which parameters were proposed during fitting is given in Table  1. Following the 
convention when defining chemical reactions, square brackets are used to signify concentrations of 
the species within. To aid understanding of the reactions being modelled we describe the species 
participating in reactions as familiar initialisations, for example [CB] represents the concentration of 
the CLOCK:BMAL1 heterodimer and [C1] for CRY1. Consequently, further dimerisations or bound 
states are denoted by concatenations of these initialisations, for example [CBC1P2] for the CLOCK:B-
MAL1:CRY1:PER2 tetramer or [CBS] for CLOCK:BMAL1 bound to a specific DNA (‍S‍) site.

Dimerisation
Hetero-dimerisation of two species ‍[A]‍ and ‍[B]‍ proceeds to the dimer ‍[AB]‍ via the reaction

	﻿‍ [A] + [B] ⇌kON
kOFF

[AB],‍� (9)

where where ‍kON‍ (‍nm−1 s−1‍) and ‍kOFF‍ (‍s−1‍) are the forward and backwards rates respectively 
(Sadaie et al., 2014), often referred to as the association and dissociation rate constants. In equi-
librium, the forward rate of reaction is equal to the backward rate resulting in the definition of the 
disassociation constant

	﻿‍ KD = [A][B]
[AB] ,‍� (10)

defined in terms of the ON and OFF rates as

	﻿‍ KD = kOFF
kON

.‍� (11)

A stronger interaction is represented as a smaller ‍KD‍ value as the rate to the disassociated is 
smaller than the association rate. In the limit of long times, ‍t → ∞‍, the concentration of the dimer ‍[AB]‍ 
in equilibrium becomes

	﻿‍
[AB]eq = [A]0 + [B]0 + KD −

√
([A]0 + [B]0 + Kd)2 − 4[A]0[B]0

2
,
‍�

(12)

where a subscript 0 denotes the initial concentration. Alternatively, assuming no production or 
degradation terms exist we may simulate analytically intractable multiple interactions by simulating a 
coupled ODE model until equilibrium concentrations are reached. For all ODE modelling, we defined 
equilibrium as less than a 1% deviation in molecular concentrations over the last 20% of simulated 
time points. In all cases equilibrium was established in less than 30 min of simulated time, smaller than 
the window over which experimental FCS time point measurements were performed.

Ordinary differential equation model of DNA binding
Systems of ordinary differential equations (ODE), modelling the concentrations of molecular species, 
were solved in the Python three programming language to reflect measured interactions between 

https://doi.org/10.7554/eLife.73976
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different molecules and DNA. All interactions are modelled as explicit dimerisation events yielding a 
new molecular species. ODEs were solved in time as an initial value problem using the LSODA solver 
as implemented in the SciPy odeint function (Virtanen et al., 2020) and ran until equilibrium concen-
trations were reached, typically reached in less than 30 min of simulated time. The system of ODEs are

	﻿‍

d[CB]
dt

= −dON[CB][C1P2]+dOFF[CBC1P2]−dON[CB][C1]+dOFF[CBC1]−kON[CB][S] +kOFF[CBS]+

bON[C][B] − bOFF[CB],
d[S]
dt

= −kON[CB][S] + kOFF[CBS] − kON[CBC1P2][S] + ROFF[CBC1P2S] − kON[CBC1][S] +

kOFF[CBC1S],
d[CBS]

dt
= kON[CB][S] − kOFF[CBS] − dON[CBS][C1] + dOFF[CBC1S] − dON[CBS][C1P2] +

dOFF[CBC1P2S],
d[C1]

dt
= −dON[CB][C1]+dOFF[CBC1]−dON[CBS][C1]+dOFF[CBC1S]−aON[C1][P2] +aOFF[C1P2]−

dON[B][C1] + dOFF[BC1],
d[CBC1]

dt
= −aON[CBC1][P2] + aOFF[CBC1P2] + dON[CB][C1] − dOFF[CBC1] − kON[CBC1][S] +

kOFF[CBC1S] + bON[C][BC1] − bOFF[CBC1],
d[CBC1S]

dt
= dON[CBS][C1]−dOFF[CBC1S]−aON[CBC1S][P2] + aOFF[CBC1P2S] + kON[CBC1][S]−

kOFF[CBC1S],
d[P2]

dt
= −aON[CBC1][P2] + aOFF[CBC1P2] − aON[C1][P2] + aOFF[C1P2] − aON[CBC1S][P2] +

aOFF[CBC1P2S] − aON[BC1][P2] + aOFF[BC1P2],
d[C1P2]

dt
= −dON[CB][C1P2] + dOFF[CBC1P2] + aON[C1][P2] − aOFF[C1P2] − dON[CBS][C1P2] +

dOFF[CBC1P2S] − dON[B][C1P2] + dOFF[BC1P2],
d[CBC1P2S]

dt
= kON[CBC1P2][S] − ROFF[CBC1P2S] + aON[CBC1S][P2] − aOFF[CBC1P2S] +

dON[CBS][C1P2] − dOFF[CBC1P2S],
d[CBC1P2]

dt
= aON[CBC1][P2] − aOFF[CBC1P2] + dON[CB][C1P2] − dOFF[CBC1P2] −

kON[CBC1P2][S] + ROFF[CBC1P2S] + bON[C][BC1P2] − bOFF[CBC1P2],
d[C]

dt
= −bON[C][B] + bOFF[CB] − bON[C][BC1] + bOFF[CBC1] − bON[C][BC1P2] + bOFF[CBC1P2],

d[B]
dt

= −bON[C][B] + bOFF[CB] − dON[B][C1] + dOFF[BC1] − dON[B][C1P2] + dOFF[BC1P2],
d[BC1]

dt
= dON[B][C1] − dOFF[BC1] − bON[C][BC1] + bOFF[CBC1] − aONBC1[P2] + aOFF[BC1P2],

d[BC1P2]
dt

= dON[B][C1P2] − dOFF[BC1P2] − bON[C][BC1P2] + bOFF[CBC1P2] + aON[BC1][P2] −

aOFF[BC1P2]. ‍�

A genetic algorithm, implemented in differential evolution (SciPy [Virtanen et  al., 2020]), was 
utilised to fit the unknown parameters in the ODE model via Chi-squared minimisation to experi-
mental ‍kOFF‍ mean and standard error on the mean using an in silico value, ‍̄kOFF‍, generated by the 
model. All non-dimerised species concentrations, as measured experimentally, were introduced for 
each of the seven time-points – a 24 hr time span sampled every 4 hr – into the model as inputs 
alongside measured disassociation constants to constrain fitted OFF rates as a function of proposed 
ON rates, reducing the number of fitted parameters. A summary of the parameters in the model is 
given in Table 1. During fitting the in silico ‍kOFF‍ value was calculated by allowing all species to reach 
equilibrium after setting all DNA bound species to zero following an initial run of the model, the 
resultant equilibrium concentrations of bound and free molecules were used to calculate the off rate 
(Figure 5—figure supplement 1A). The average apparent DNA unbinding rate ‍̄kOFF‍, which is anal-
ogous to the same rate as experimentally measured in FRAP, is simulated following the method by 
Röding et al., 2019 through rearranging Equation (11) for the off rate

	﻿‍
k̄OFF = kONKD = kON

[Unbound CB][Unbound Sites]
[Bound Sites]

,
‍�

(13)

with

https://doi.org/10.7554/eLife.73976
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	﻿‍ [Unbound CB] = [CB]eq + [CBC1]eq + [CBC1P2]eq,‍� (14)

	﻿‍ [Unbound Sites] = [S]eq,‍� (15)

	﻿‍ [Bound sites] = [CBS]eq + [CBC1S]eq + [CBC1P2S]eq‍� (16)

where eq denotes concentrations at equilibrium as ‍t → ∞‍. The apparent ‍̄kOFF‍ is an average of 
the CLOCK:BMAL1-DNA binding OFF rate ‍kOFF‍ and CLOCK:BMAL1:CRY1:PER2-DNA OFF rate ‍ROFF‍ 
weighted by their respective relative concentrations, with increasing levels of CRY1:PER2 increasing 

‍̄kOFF‍ as ‍kOFF < ROFF‍. The fitted parameters are given in Table 1 and predicted in silico ‍̄kOFF‍ values for 
WT and PER2 KO can be seen in (Figure 5—figure supplement 1C). Knocking out PER2 (keeping 
all other species and parameters the same as wild type values) removes all rhythmic regulation of 

‍̄kOFF‍ and ensures that CLOCK:BMAL1 is bound for longer at all time points such that the number of 
bound specific sites (S) also increases for all time points (Figure 5—figure supplement 1E). Locking 
BMAL1, CRY1, PER2 and the interaction between BMAL1 and CRY1 to their mean value between 24 
and 48 hr post-dexamethosone (DEX) treatment, reveals that setting BMAL1 to its mean value signifi-
cantly alters both bound and free from DNA CLOCK:BMAL1:CRY1 whilst locking the other rhythmic 
components has little impact (Figure 5—figure supplement 1F).

Upper and lower bounds on one-at-a-time (OAT) sensitivity analysis (Figure 6A–B) were generated 
by running the fitted model for both an estimate of the smallest and largest number of target sites, 
1000 and 10,000 respectively, with the mean representing the mean number of target sites from ChIP 
data, namely 3,436. We may estimate the number of target sites for CLOCK:BMAL1 from previous 
studies investigating high confidence sites that BMAL1 binds to in ChIP-seq, with Table 2 outlining the 
reports and peaks measured via ChIP-seq that were used in estimating the number of target sites used 
in our mathematical modelling. In addition to the OAT analyses in Figure 6A–B we also examined how 
changing amounts of CRY1:PER2 alters the residence time of CLOCK:BMAL1 on DNA, demonstrating 
how CRY1:PER2 readily promotes removal from DNA in a non-linear fashion over a physiologically 
plausible range of concentrations (Figure 5—figure supplement 1B).

Stochastic DNA binding model
Stochastic binding simulations in Python three utilised the Gillespie algorithm (Gillespie, 2002) 
through the StochPy library (Maarleveld et al., 2013) to simulate a reduced topology, considering 

Table 3. Stochastic model reactions and propensities.
Counter for arrivals by CLOCK:BMAL1 (‍CB‍) without CRY1 (‍C1‍) to previously unbound sites ‍S‍ 
converting them to S0 given by ‍ACB‍ as well as counters for marked site ‍M ‍ binding represented by 

‍BX‍, and unbinding, ‍UX‍, by species ‍X ‍. The size of the system is given by ‍Ω = 1 × 10−9NAV ‍, where ‍V ‍ is 
the volume in liters and is used to convert ON rate quantities with dimensions nm–1s–1 into particle–1 

s–1. ‍kON ‍ is the same value as previously fitted for the ODE model given in Table 1.

No. Reaction Propensity

1 ‍CB + S −→ CBS + ACB‍ ‍(kON/Ω) · CB · S‍

2 ‍CB + S0 −→ CBS‍ ‍(kON/Ω) · CB · S0‍

3 ‍CBS −→ CB + S0‍ ‍kOFF · CBS‍

4 ‍CBC1 + S −→ CBC1S‍ ‍(kON/Ω) · CBC1 · S‍

5 ‍CBC1S −→ CBC1 + S‍ ‍kOFF · CBC1S‍

6 ‍CBC1 + S0 −→ CBC1S0‍ ‍(kON/Ω) · CBC1 · S0‍

7 ‍CBC1S0 −→ CBC1 + S0‍ ‍kOFF · CBC1S0‍

8 ‍CB + M −→ CBM + BCB‍ ‍(kON/Ω) · CB · M ‍

9 ‍CBM −→ CB + M + UCB‍ ‍kOFF · CBM ‍

10 ‍CBC1 + M −→ CBC1M + BCBC1‍ ‍(kON/Ω) · CBC1 · M ‍

11 ‍CBC1M −→ CBC1 + M + UCBC1‍ ‍kOFF · CBC1M ‍

https://doi.org/10.7554/eLife.73976
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only CLOCK:BMAL1 and CLOCK:BMAL1:CRY1 binding to sites with the addition of 1 extra marked 
site, ‍M ‍, and using the fitted ON/OFF rates from the ODE model. The Table 3 gives the reactions and 
propensities that are modelled.

Thirty runs over 60 min were used to generate mean and standard deviations with times to reach 
95% of all sites at least once determined via fitting of an inverse exponential to the number of unique 
site visits counted via the variable ‍ACB‍. The time for available CLOCK:BMAL1 complexes to bind 
95% of all binding sites at least once is calculated by fitting the recovery curve ‍f(t) = 1 − exp(−λt)‍ to 
normalised stochastic trajectories of ‍Stot − S‍ (‍Stot = 3436‍), see Figure 7—figure supplement 1B, and 
then converting the recovery rate ‍λ‍ using the equation

	﻿‍ τ95% = ln(20)
λ .‍� (17)

Visits per minute to a single site were calculated by counting binding and unbinding to ‍M ‍, which 
possesses the same ON and OFF rates as other target-sites. Assessment of the contribution of PER2 
mediated displacement was performed by setting PER2 concentration to zero (KO) in the ODE model 
and using the simulated OFF rate in a parallel run to wild-type (WT) runs (Figure 5—figure supplement 
1B), with the reduced number of visits attributed to the slower OFF rate. Furthermore, we observed 
the same behaviour in this reduced stochastic model, when compared to the full ODE model, for PER2 
KO as the mean and standard deviation of the number of sites bound by CLOCK:BMAL1 in both WT 
and KO conditions, Figure 7—figure supplement 1A, being comparable to the ODE model results 
in (Figure 5—figure supplement 1E). Finally, to assess the differences that would be induced by 
different nuclear volumes, as seen between different cell types, we ran the stochastic model at the 
same molecular concentrations over two volumes; a small volume of 240 ‍fl‍ representative of a typical 
mouse embryonic fibroblast (MEF) or various immune cell types (see Figure 3—figure supplement 
1E) and 926 ‍fl‍ as measured for our lung fibroblasts used throughout this study, Figure 7—figure 
supplement 1C. We note little difference in the rate at which CLOCK:BMAL1 visits the single marked 
site ‍M ‍, indicating that the increase in DNA sites comparatively to the number of molecules at a smaller 
nuclear volume was balanced by the increase in ON rate due to the now higher concentration of DNA.
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Koch AA, Bagnall JS 2021 FCS Analysis Pipeline https://​github.​
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FcsAnalysisPipeline

GitHub, FcsAnalysisPipeline

Koch AA 2021 Modelling for 
Quantification of protein 
abundance and interaction 
defines a mechanism for 
operation of the circadian 
clock

https://​github.​com/​
LoudonLab/​CLOCK-​
BMAL1-​DNA-​Binding

GitHub, CLOCK-BMAL1-
DNA-Binding
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