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Abstract: In this article, we provide closed-form approximations of log-likelihood ratio (LLR) values
for direct sequence spread spectrum (DS-SS) systems over three particular scenarios, which are
commonly found in the Global Navigation Satellite System (GNSS) environment. Those scenarios
are the open sky with smooth variation of the signal-to-noise ratio (SNR), the additive Gaussian
interference, and pulsed jamming. In most of the current communications systems, block-wise
estimators are considered. However, for some applications such as GNSSs, symbol-wise estimators
are available due to the low data rate. Usually, the noise variance is considered either perfectly
known or available through symbol-wise estimators, leading to possible mismatched demodulation,
which could induce errors in the decoding process. In this contribution, we first derive two closed-
form expressions for LLRs in additive white Gaussian and Laplacian noise channels, under noise
uncertainty, based on conjugate priors. Then, assuming those cases where the statistical knowledge
about the estimation error is characterized by a noise variance following an inverse log-normal
distribution, we derive the corresponding closed-form LLR approximations. The relevance of the
proposed expressions is investigated in the context of the GPS L1C signal where the clock and
ephemeris data (CED) are encoded with low-density parity-check (LDPC) codes. Then, the CED
is iteratively decoded based on the belief propagation (BP) algorithm. Simulation results show
significant frame error rate (FER) improvement compared to classical approaches not accounting for
such uncertainty.

Keywords: GNSS; robust LLR; low complexity; SNR mismatch; noise estimation; bayesian inference;
interference countermeasure

1. Introduction

Reliable position, navigation, and timing information is a demanded feature in new
applications such as intelligent transportation systems (ITSs), automated aircraft landing,
or autonomous unmanned ground/air vehicles. In such applications, the main source of
positioning information is provided by Global Navigation Satellite Systems (GNSSs) [1–3],
a technology that has attracted much interest in recent years and that is required to provide
not only reliability and integrity, but also authentication of legitimate transmission [4].
The effects of interference, whether intentional or unintentional, can degrade GNSS receiver
performance, sometimes to the point of causing denial of service or even counterfeit
transmissions to control the receiver positioning solution. Several of these effects have
been reported in the state-of-the-art [5–12]. Moreover, several interference countermeasures
have been already proposed at different stages of the receiver including the antenna
design [13–18], radio-frequency front-end [19,20], and signal processing [21–31]. However,
a key part of GNSS receivers is the data demodulation stage, which allows recovering
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essential information. The latter has been long disregarded, with only a few articles [32–35]
in the state-of-the-art, but may be a critical point under interference scenarios, being the
principal object of this article.

In recent years, the organizations in charge of the design of the new generation of
GNSS signals have decided to include modern error correcting codes (i.e., such as low-
density parity-check (LDPC) or convolutional codes [36]) in order to enhance the data
demodulation performance. In this context, the inputs to the corresponding soft decoding
algorithms are the so-called log-likelihood ratio (LLR) values [37], which are classical
sufficient statistics that are computed to feed the input of soft input channel decoders.
Under the binary additive white Gaussian noise channel (BI-AWGN) assumption [36],
the LLR associated with a transmitted coded bit can be shown to be a scaled version of
the noisy observation of this coded bit, the scaling factor being proportional to the signal-
to-noise ratio (SNR), or equivalently, inversely proportional to the channel noise variance.
Usually, under the perfect channel state information (CSI) assumption [33], the noise
variance is considered perfectly known, although in most real applications, noise variance
has to be estimated. An estimation error induces an SNR mismatch, which in turn can lead
to possible decoding performance loss. For instance, [38] investigated the performance of
the belief propagation (BP) algorithm for decoding low-density parity-check (LDPC) codes
over a BI-AWGN channel and with SNR mismatches. Based on this study, the design of
irregular LDPC codes for BI-AWGN channels and SNR mismatches was later proposed
in [39]. In both cases, the SNR mismatch was defined as an “SNR offset” η, referred to
as the ratio of the real value of the variance σ2 and the estimated value of variance σ̂2,
which in turn was assumed to affect the entire codeword (i.e., block-wise estimation is
considered).

However, there are systems such as GNSS for which, due to their low data rate,
the variance σ2

n should be estimated symbol-per-symbol, and a precise model of the prob-
ability density function (pdf) of the received symbol can be derived. On the other hand,
due to their low data rate, new simple methods to induce intentional interference and
to nullify the decoding algorithm have been identified. As an example, we can mention
pulsed jamming, which randomly affects some percentage of the codeword symbols [32].
The latter causes the symbol instantaneous variance σ2

n to be altered.
In [32], to compute the LLR under scenarios with interference, the variance was pro-

posed to be symbol-wise estimated by the maximum likelihood (ML) principle. However,
in general, this criterion is known to be computationally demanding and not accurate
when a low number of samples per symbol are available. In this paper, focusing on GNSS
systems, which are based on direct sequence spread spectrum (DS-SS) signals, we present
the following contributions:

1. We derive a closed-form LLR expression under AWGN channels, which could be
directly applied in the following cases: (i) The codeword data are demodulated
over an open sky scenario with variations of the signal-to-noise ratio (SNR). (ii) The
codeword data are demodulated over an interference scenario where an additive
Gaussian noise is added to the entire codeword. To this end, we reformulate the
problem of obtaining the LLR values by first computing the joint pdf of symbols and
estimated variance, which is then marginalized in order to compute the desired LLRs
used at the decoder. To implement such marginalization in practice, we propose
to impose a conjugate prior distribution that allows for an analytic closed-form
approximation that enables a reduced complexity implementation when compared
to the ML solution. Then, assuming statistical knowledge of the estimation error
of the noise power per symbol, a closed-from LLR approximation is derived. In
our approach, we consider that the noise variance σ2 is not perfectly known, but
instead, symbol-wise independent estimations of this noise variance per symbol are
available. We further assume a statistical distribution of such estimated variance.
In this work, we model the variance of the n-th symbol σ2

n as a random variable,
which is characterized by an inverse log-normal distribution (with the aim of taking
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advantage of the conjugate prior distribution) whose mean and variance are estimated
at the decoder.

2. We derive a closed-form LLR expression that can be directly applied over a pulsed
jamming scenario characterized by a small percentage of codeword symbols disrupted
with extra Gaussian noise. Since the Gaussian distribution is known to not fit well the
heavy tails caused by pulsed jamming [33], we propose to represent the received sym-
bol distribution with a Laplacian distribution. Then, we compute the marginalized
joint pdf of symbols and estimated variance in order to compute the desired LLRs
used at the decoder. Again, we propose to compute the marginalization by imposing
a conjugate prior distribution that allows for an analytic closed-form expression.

The paper is organized as follows: Section 2 presents the communication system
models and the ML solution. Section 3 derives the closed-form expression based on
conjugate priors when considering a system model with uncertain noise variance. In
Section 4, we propose a closed-form LLR expression for pulsed jamming scenarios. A
summary of the proposed methods and a comparison to state-of-the-art approaches are
provided in Section 5. Then, in Section 6, results are presented and analyzed in the context
of BP decoding of LDPC codes. Conclusions and perspectives are finally drawn in Section 7.

2. System Models and Assumptions

In this section, we present the system model for the three communication scenarios
evaluated in this work. These are respectively the open sky scenario, Gaussian jamming,
which disrupts the entire message, and pulsed jamming, which disrupts some symbols
of the transmitted message. Moreover, in this section, we introduce the metric used for
modern soft error correcting schemes such as turbo codes or LDPC codes. The soft inputs
are the so-called log-likelihood ratio (LLR) values [37]. They are classical sufficient statistics
used to feed the input of soft input channel decoders. Therefore, the LLR metric is not
specific to the use of the LDPC codes or any other error correcting codes, but it is used as
the mandatory input of any soft input decoding algorithm (e.g., LDCP codes, turbo codes,
convolutional codes, etc.). Since in this work, we focus on the GNSS context, we considered
LDPC codes as a benchmark due to their adoption by the GPS L1C signal. On the other
hand, the obtained results are expected to be qualitatively the same for other kinds of error
correcting codes using soft input decoding.

2.1. Open Sky Communications

Let us consider a DS-SS system. We represent the transmitted message as a binary vec-
tor u = [u1, . . . , uK]

> of K bits. This message is encoded into a codeword c = [c1, . . . , cN ]
>

of length N > K and mapped to binary-phase shift-keying (BPSK) symbols, referred to
as xn = µ(cn) ∈ {−1, 1}, ∀n = 1 · · ·N. n represents the symbol time index, and the
mapping rule µ(.) is defined as µ(cn) = 1− 2 cn. Each symbol xn is then spread using a
pseudo-random noise (PRN) sequence that can be expressed in vector form as pn ∈ RL,
where L corresponds to the number of chips of the PRN sequence. Then, the transmitted
symbol per coded bit is given by:

xn = xn · pn ∈ RL, n = {1, . . . , N} , (1)

where, by convention, vectors are defined as column vectors. Then, chip-level rectangular
pulse shaping is used before transmission. The transmission channel is modeled as a
time-varying binary-input AWGN noise channel. This class of channels is AWGN channels
for which the noise process is a sequence of independent zero-mean Gaussian random
variables with time-varying variance σ2

n = 10−(Es/N0)n/10, such that (Es/N0)n denotes the
instantaneous SNR associated with the n-th transmitted symbol, and the signal amplitude
is assumed to be normalized. Assuming perfect time and frequency synchronization,
the received baseband symbol sequence at the chip-level can be written as:

yn = xn + wn ∈ RL, n = {1, . . . , N} , (2)
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where wn∼N (0, L2 · σ2
nIL), with IL being the identity matrix of size L. Thus, the noise

power remains constant within the transmission of xn, but it can change from one time
instant n to another time instant n′ 6= n. Note that in most of the communications systems,
the SNR is assumed to be constant along the entire codeword. However, since the GNSS
system has a low date rate, small SNR variations can be appreciated between symbols.

LLR Expression

The LLR associated with the n-th symbol is defined as [36]:

Ln = ln
(

P(cn = 0|yn)

P(cn = 1|yn)

)
= ln

(
P(xn = 1|yn)

P(xn = −1|yn)

)
. (3)

The obtained LLRs are then used to feed the input of the soft input channel decoder.
When perfect CSI is assumed, the LLR can be trivially computed as:

Ln = ln


1√

2πσ2
n

e
− (

y>n pn−1)
2

2σ2
n

1√
2πσ2

n
e
− (

y>n pn+1)
2

2σ2
n

 =
2
σ2

n
y>n pn , (4)

which explicitly assumes that the noise variance is perfectly known at the receiver. In prac-
tice, this assumption does not hold, and σ2

n has to be estimated, typically relying on a
point estimate σ̂2

n per symbol. Thus, without statistical knowledge on the estimation error,
the mismatched LLR is:

L̂n =
2
σ̂2

n
y>n pn , (5)

where σ̂2
n is the noise variance estimate during the n-th symbol period. We underline that

the simplest method to infer σ̂2
n is to rely on the symbol point estimate of the SNR or Es/N0,

since σ2
n = 10−(Es/N0)n/10. This symbol point estimator is usually computed from the

narrowband-wideband power ratio (NWPR) algorithm [40]. Another possible method that
has been shown to improve the data demodulation performance [32] when considering
sufficiently large L could be obtained symbol-wise by applying the ML criterion. In that
case, deriving the log-likelihood function and finding its roots [32] result in:

L(xn, σ2
n) , − ln

(
p
(

yn|xn, σ2
n

))
=

L
2

ln(2πσ2
n) +

‖yn − xnpn‖2

2σ2
n

(6)

σ̂2
n =

1
L
‖yn − x̂npn‖2 with x̂n =

y>n pn

L
. (7)

However, ML estimates are known to provide efficient estimates asymptotically as
L → ∞. Consequently, when a small number of samples per symbol is available, these
estimates and the resulting LLRs might not be accurate.

2.2. Communications under Gaussian Jamming

Under this particular scenario, a real-valued AWGN jamming that disrupts the entire
codeword with a noise variance σ2

I is added to the previous scenario. Then, the received
symbol sequence is:

yn = xn + wn + wI,n ∈ RL, n = {1, . . . , N} , (8)

where wI,n ∼ N (0, L2σ2
I IL) is the statistical model of the jamming effect. Let us

denote wN0+I,n = wn + wI,n as the interference plus noise term, then wN0+I,n ∼
N (0, L2

(
σ2

n + σ2
I,n

)
IL). Again, we assume that the interference plus noise power remains

constant within the transmission symbol.
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LLR Expression

The LLR associated with the n-th symbol when assuming perfect CSI is defined as:

Ln =
2

σ2
n + σ2

I
y>n pn =

2
σ2
(N0+I)n

y>n pn , (9)

where the term σ2
(N0+I)n

= σ2
n + σ2

I is assumed to be perfectly known. Note that this value

is directly related to the instantaneous signal-to-noise plus interference ratio σ2
(N0+I)n

=

10−(Es/(N0+I))n/10, where the signal amplitudes are normalized. Considering a real sce-
nario, the assumption of a perfectly known σ2

(N0+I)n
does not hold, and we typically rely

on a point estimator σ̂2
(N0+I)n

per symbol. Then, the mismatched LLR under Gaussian
interference yields:

Ln =
2

σ̂2
(N0+I)n

y>n pn , (10)

where the NWPR method or the ML method in (7) can be used as a point estimator
of σ̂2

(N0+I)n
. Note that if even (10) and (5) are conceptually different, the scenarios are

practically the same since the main difference is the increased variance from σ̂2
n to σ̂2

(N0+I)n
.

Then, the point estimator used to compute the LLRs has the same structure, i.e., the point
estimator performs with similar precision independently of the scenario.

2.3. Communications under Pulsed Jamming

Under this scenario, some percentage P of transmitted symbol are disrupted by an
extra AWGN with instantaneous noise variance σ2

I (i.e., P is the ratio between the number
of symbols affected by the interference and the total number of symbols). Then, the received
symbol sequence is modeled as:

yn =

{
xn + wn ∈ RL, n ∈ Q ,
xn + wn + wI,n ∈ RL ∈ R, n ∈ S ,

(11)

where wI,n∼N (0, L2σ2
I IL) is the statistical model of the jamming effect. Q is the set of

bits not affected by the jamming noise, and S is the set of bits harmed with the jamming.
Note that |S|

|Q|+|S| = P is the duty cycle [41], where | · | denotes the cardinality number.
Furthermore, we underline that the set of bits S is unknown, and it cannot be inferred
frame-to-frame, i.e., we assume that the jamming pulsing patterns are pseudorandom.

LLR Expression

The LLR associated with the n-th symbol when assuming perfect CSI is defined as:

Ln =


2

σ2
n

y>n pn , n ∈ Q ,
2

σ2
(N0+I)n

y>n pn , n ∈ S , (12)

which explicitly involves the variance of the noise plus interference σ2
(N0+I)n

being known.
Moreover, this model assumes that the sets Q and S are also known at the receiver. In order
to compute the LLR under more realistic scenarios, i.e., without perfect CSI, we can always
use the NWPR method or the ML method as a point estimator of the variance. However,
if we search for a low complexity method to estimate the variance, note that the lack of
knowledge of the sets Q and S makes it difficult to find a simple model. One possible choice
could be to approximate the system model in (11) by a simple equivalent Gaussian model:

yn = xn + wG,n ∈ RL, n = {1, . . . , N}, (13)
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where wG,n ∼ N (0, L2σ2
G,nIL). Note that this model seeks to better characterize the heavy

tails within the observation model distribution due to the symbols disrupted by an extra
Gaussian noise. Moreover, we underline that under this particular system model, we have
an equivalent variance σ2

G,n = (1− P)σ2
n + Pσ2

I,n yielding the LLR expression:

Ln =
2

σ2
G,n
· y>n pn . (14)

On the other hand, we explicitly assume that σ2
G,n is known, which it is unlikely in

real scenarios. One possible method to infer σ̂2
G,n is to estimate the equivalent channel

variance through the NWPR method. Furthermore, this model has been shown to not rep-
resent properly the heavy tails appearing in the distribution due to the codeword symbols
disrupted by the the extra Gaussian interference. The latter can be solved by modeling
the transmission channel with a distribution that better fits the heavy tails caused by the
interference effects. A simple, yet practical, choice is to model this transmission channel as
an additive real-valued Laplacian noise on the symbols. The intuition is that the Laplacian
distribution models more accurately heavy-tailed effects than a Gaussian distribution does.
Several works showed that jamming interferences generate data outliers, which can be
statistically described by heavy-tailed distributions. Then, the symbol sequence can be
modeled as:

yn = xn + wL,n ∈ RL, n = {1, . . . , N}, (15)

where wL,n∼L(0, cL,n) and cL,n = 1√
2
·
√
(1− P)σ2

n + Pσ2
I,n. For this particular scenario,

the LLR simplifies to:

Ln = −|y
>
n pn − 1|

cL,n
+
|y>n pn + 1|

cL,n
. (16)

where the signal amplitude is assumed to be normalized. Note that we have assumed
again that cL,n is known, which is unfortunately unrealistic.

From the above methods to estimate the LLR values, we can conclude that low
complexity methods to infer the LLRs without assuming perfect CSI are missing in the
GNSS literature. Therefore, the goal of the following sections is to propose new closed-form
LLR expressions that can be used under theses particular scenarios and limited statistical
CSI knowledge.

3. Closed-Form LLR Expression with Uncertain Noise Variance

In this section, we focus on the derivation of a closed-from LLR expression considering
that the noise variance is not constant along the entire codeword; however, it can change from
symbol-to-symbol, and it can be modeled as a random variable that follows a given statistical
distribution. Note that, in order to derive an LLR expression that can perform properly under
this transmission channel, the ML method was proposed in the previous section. Thus, in this
section, we aim to propose an LLR expression that can reduce the complexity induced by the
ML method. In Section 3.1, we derive a closed-form LLR expression considering statistical
CSI, i.e., considering the knowledge of the noise variance distribution. Then, in Section 3.2, we
show that this closed-form LLR expression can be used when no CSI is available at the receiver
once the first and the second order moments of the SNR are estimated. Finally, we underline
that this LLR expression can be directly applied when considering the communication system
models described in Sections 2.1 and 2.2, i.e., under the open sky scenario and the Gaussian
jamming scenario.

3.1. Closed-Form LLR Expression with Statistical CSI on the Noise Variance

From a Bayesian perspective [42], since σ2
n and σ2

(N0+I)n
are unknown quantities,

they should be considered as random variables. Let us consider the case of σ2
n . All the
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statistically relevant information about xn and σ2
n is contained in their joint posterior

distribution p(xn, σ2
n |yn). Assuming that xn and σ2

n are independent, we have:

p(xn, σ2
n |yn) ∝ p(yn|xn, σ2

n)p(xn)p(σ2
n) , (17)

where the first term corresponds to the likelihood of the observations given unknowns and
the second and third terms represent the a priori knowledge about xn and σ2

n , respectively.
Given (2), the likelihood probability distribution function (pdf) turns out to be a Gaussian
distribution as follows:

p(yn|xn, σ2
n) ∼ N (xn · pn, L2σ2

nIL) . (18)

Let us further denote the normalized output of the matched filter as yn = y>n pn
L ∈ R.

We can then equivalently define the joint posterior pdf p(xn, σ2
n |yn) as:

p(xn, σ2
n |yn) ∝ p(yn|xn, σ2

n)p(xn)p(σ2
n) , (19)

with:
p(yn|xn, σ2

n) ∼ N (xn, σ2
n) , (20)

where the variance is unknown. According to the definition of the LLR in (3), we are
interested in obtaining the marginal distribution of xn:

p(xn|yn) =
∫ ∞

0
p(xn, σ2

n |yn) dσ2
n , (21)

which substituted into (3) yields:

Ln = ln

( ∫ ∞
0 p(xn = 1, σ2

n |yn) dσ2
n∫ ∞

0 p(xn = −1, σ2
n |yn) dσ2

n

)
. (22)

Assuming that the symbols are equiprobable, (22) can be further expanded, by apply-
ing (19), as:

Ln = ln

( ∫ ∞
0 p(yn|xn = 1, σ2

n)p(σ2
n) dσ2

n∫ ∞
0 p(yn|xn = −1, σ2

n)p(σ2
n) dσ2

n

)
. (23)

A common approach in Bayesian analysis, when possible, is to select a prior distri-
bution to be the conjugate of the likelihood distribution, which results in a closed-form
expression for the a posteriori distribution that is of the same type as the a priori one [42].
To ease the closed-form derivation, we can apply a change of variable that would rather
consider the precision λn , 1/σ2

n and its associated conjugate prior distribution than
working directly with p(σ2

n).
Leveraging known results in Bayesian analysis involving Gaussian distributions [42–44],

the conjugate prior for λn under a Gaussian likelihood model is given by the Gamma distribu-
tion:

p(λn) = Γ(an, bn) ,
1

ban
n Γ(an)

λan−1
n e−λn/bn , (24)

where Γ(·) is the standard Gamma function with parameters an and bn. Note that an
and bn denote the shape parameter and the scale parameter of the Gamma distribution.
Moreover, the products an · bn and an · b2

n represent the mean and the variance of the
Gamma distribution, respectively. As a consequence of this choice for the prior distribution,
the posterior distribution defined as in (19) becomes also a Gamma distribution whose
parameters are updated from the prior to incorporate the knowledge from the observations,
that is,

p(xn, λn|yn) =
1√

2πban
n Γ(an)

λ
an− 1

2
n e−λn(

1
bn

+
(yn−xn)2

2 ). (25)
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The marginal distribution of interest can be therefore obtained by solving the integral:

p(xn|yn) =
1√

2πban
n Γ(an)

∫ ∞

0
λan−1/2

n e−λn(
1

bn
+

(yn−xn)2
2 ) dλn , (26)

which, as shown in Appendix A, yields the following parametric LLR expression:

Ln = −(an +
1
2
)

[
ln

(
1
bn

+
(yn − 1)2

2

)
− ln

(
1
bn

+
(yn + 1)2

2

)]
. (27)

This expression is therefore a function of the matched filter’s output and the param-
eters (an, bn) characterizing p(λn) (or equivalently p(σ2

n)), which are assumed perfectly
known if perfect statistical CSI regarding σ2

n is available (i.e., the knowledge of the complete
pdf and its associated parameters). In most situations, such knowledge is not directly avail-
able at the receiver, but instead, a statistical characterization of the SNR can be assumed.
Moreover, p(λn) is not usually characterized by a Gamma distribution, as discussed in
the next section. Instead, the Gamma distribution is used here as a surrogate distribution
for which associated hyperparameters are derived using moment matching to best fit the
actual distribution. The following section discusses an approach to compute the LLR values
in (27) under such statistical assumptions, showing how using a surrogate distribution
can ease the derivation of a closed-form expression that is inexpensive to compute at the
receiver.

3.2. Closed-Form LLR Approximation with First and Second Order Moments of the SNR

We assume here that the parameters defining p(λn) (or equivalently p(σ2
n)) in (24) are

not available or perfectly known at the receiver, i.e., complete statistical CSI is not available.
Instead, the distribution of an SNR estimate is available at the receiver. Note that the SNR
is directly related to the energy per symbol-to-noise power spectral density ratio (Es/N0),
which in this contribution is assumed to be modeled as a Gaussian random variable (see
Appendix B) with the mean and standard deviation of the distribution defined as µ(Es/N0)n
and σ(Es/N0)n . Note that the choice of the Gaussian distribution to model the random
variable (Es/N0)n is imposed for the sake of tractability. In practice, that might not be the
exact distribution, but in our experiments (reported in Section 6), we observed that the
mean and the variance of the (Es/N0)n estimator appear to adequately characterize the
distribution. As a consequence, we have that λn = 10(Es/N0)n/10) such that p(λn) follows
a log-normal distribution, which can be approximated by a Gamma distribution in order
to obtain a closed-form LLR expression through conjugate analysis, as explained earlier
in this section. We propose here an entropy-minimization approach to approximate such
a distribution with the Gamma distribution—thus benefiting from the conjugate prior
analysis—of interest in (27). In this context, it will be shown that the assumption of perfect
statistical CSI can be limited to some partial statistical CSI, i.e., the knowledge of first and
second order moments of the random variable λn.

We minimize the Kullback–Leibler (KL) divergence [45] between the two distributions,
to find the parameters a and b that better fit the original log-normal distribution (for the
precision λn):

(ân, b̂n) = arg min
a,b
DKL(logN (µλn , σλn) || Γ(a, b)) , (28)

where µλn and σλn represent the mean and the standard deviation of the log-normal

distribution, respectively, with µλn =
µ(Es/N0)n

loge(10)
10 and σλn =

σ(Es/N0)n
10 loge(10) (see

Appendix B). Moreover, an and bn represent the shape parameter and the scale parameter
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of the Gamma distribution, and DKL(·||·) denotes the KL divergence. Following [46],
the KL divergence in (28) can be computed as:

DKL(logN (µλn , σλn) || Γ(a, b)) = log(Γ(a))

+ a(log(b)− µλn)−
1
b

log(2πeσ2
λn
) +

1
b
(µλn +

σ2
λn

2
) , (29)

which, substituted in (28), can be used to show [46] that the values a and b minimizing the
KL divergence can be approximated as:

ân ≈ 1/σλn b̂n ≈ σ2
λn

eµλn+
σ2

λn
2 . (30)

where we can note that the shape parameter ân is related to the variance parameter of the
log-normal distribution. Then, for a given ân, the scale parameter would adjust the mean
parameter of the log-normal distribution. Recall that an · bn and an · b2

n give the mean and
variance of the resulting Gamma distribution.

As a result, the closed-form LLR value under SNR estimation is given by:

L̂n = −(ân +
1
2
)

[
ln

(
1
b̂n

+
(yn − 1)2

2

)
− ln

(
1
b̂n

+
(yn + 1)2

2

)]
. (31)

Two considerations are worth mentioning: (1) In contrast to (5), where a point esti-
mate of the variance is used, (31) uses point estimates of the parameters of its distribution.
Therefore, (31) accounts for the uncertainty in the estimated variance. (2) Different model-
ing choices for the distribution of the SNR estimates are possible (e.g., Gamma), in which
case one could proceed similarly to find the parameters of the closest Gamma distribution
by minimizing their KL divergence.

4. Closed-Form LLR Expression for Pulsed Jamming Scenarios

In this section, we focus on the derivation of a closed-form LLR expression that can
be applied to the pulsed jamming scenarios. Under this particular transmission channel,
some percentage of codeword symbols are corrupted by an extra Gaussian noise. In several
scenarios, this extra noise can generate heavy tails in the observation sample distribution.
Moreover, the corrupted symbols imply that the variance of the channel is not constant
along the entire codeword. Then, an LLR expression that takes into account this uncertainty
is required. Note that the ML method can be derived in order to compute an LLR expression
that can perform properly under this transmission channel. However, in this section,
we aim to provide an LLR expression that can reduce the complexity provided by the
ML method. To this end, we consider the assumption made in (15) where a Laplacian
distribution has been considered to describe the observation sample distribution. Then, in
Section 4.1, we derive a closed-form LLR expression considering statistical CSI. Then, we
show that this closed-form LLR expression can be used when no CSI is available at the
receiver once the first and the second order moments of the SNR are estimated.

4.1. Closed-Form LLR Expression under the Likelihood Laplacian Assumption with Statistical CSI
on the Noise Variance

Under this particular scenario, we propose to use a Laplacian distribution in order to

model the normalized output of the matched filter yn = y>n pn
L . Thus, the likelihood pdf is

given as follows:
p(yn|xn, cn) ∼ L(xn, cn) . (32)

We can equivalently define the joint posterior pdf p(xn, cn|yn) as:

p(xn, cn|yn) ∝ p(yn|xn, cn)p(xn)p(cn) . (33)
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with p(yn|xn, c) ∼ L(xn, cn) and cn is the shape parameter, which is assumed to be un-
known. Following the same methodology as in Section 3 and considering that xn is
equiprobable, the LLR can be computed as:

Ln = ln

( ∫ ∞
0 p(yn|xn = 1, cn)p(cn) dcn∫ ∞

0 p(yn|xn = −1, cn)p(cn) dcn

)
. (34)

Now, we would like to identify a suitable conjugate prior distribution for p(c) in order
to ease a closed-form derivation. First, we apply the following variable change ρn , 1/cn.
Thus, the likelihood distribution defined in Equation (32) can be re-parameterized as:

L(µ, cn) =
1

2cn
e−
(
|yn−µ|

cn

)
=

ρn

2
e−ρn |yn−µ| . (35)

Leveraging known results in the Bayesian analysis [42–44], the conjugate prior for ρn
under a Laplacian likelihood model is given by the Gamma distribution:

p(ρn) ,
1

ban
n Γ(an)

ρn
an−1e−ρn/bn , (36)

As a consequence of this choice of the prior, the posterior distribution becomes also
a Gamma distribution whose parameters are updated from the prior to incorporate the
knowledge from the observations:

p(dn, ρ|yn) ,
1

2ban
n Γ(an)

ρan e−ρ( 1
bn

+|yn−µ|) . (37)

The marginal distribution of interest can be therefore obtained by solving the integral:

p(dn|yn) =
1

2ban
n Γ(an)

∫ ∞

0
ρan e−ρ( 1

bn
+|yn−µ|)dρ, (38)

which, as shown in Appendix C, yields the following LLR closed-form expression:

Ln = −(an + 1)
[

ln
(

1
bn

+ |yn − 1|
)
− ln

(
1
bn

+ |yn + 1|
)]

. (39)

where the parameters (an, bn) characterizing p(ρn) (or equivalently, p(c2
n)) are assumed

perfectly known. Note that the choice of p(ρn) as a Gamma distribution aims to ease the
derivation of a closed-form LLR expression. However, we underline that p(ρn) does not
necessarily follow a Gamma distribution in reality. In the following section, we propose an
approach to compute the LLR values considering the previous assumptions.

4.2. Closed-Form LLR Approximation with First and Second Order Moments of the SNR

In this section, we assume that the parameters defining p(ρn) are not available at
the receiver. Instead, we consider that the distribution of the SNR is available at the
receiver. As in Section 3.2, we assume that the (Es/N0)n is a Gaussian random variable
(see Appendix D) with the mean and standard deviation being µ(Es/N0)n and σ(Es/N0)n ,
respectively. Then, ρ =

√
2 · 10(Es/N0)n)/20 follows a log-normal distribution. In order

to benefit from the conjugate prior analysis, while leveraging a realistic model for the
variance, a fitting from the log-normal distribution to a Gamma distribution is proposed in
Section 3.2 through the KL divergence minimization (see Equation (29)). Similarly, in this
case, we can approximate the values ân and b̂n with closed-form values given by:

ân ≈ 1/σρn , b̂n ≈ σ2
ρn eµρn+

σ2
ρn
2 . (40)



Sensors 2021, 21, 1341 11 of 21

where the details to compute µρn =
(

µ(Es/N0)n loge(10)
)

/20 and σρn =
(

σ(Es/N0)n /20
)

loge(10) are found in Appendix D. As a result, the closed-form LLR value is given by:

Ln = −(ân + 1)
[

ln
(

1
b̂n

+ |yn − 1|
)
− ln

(
1
b̂n

+ |yn + 1|
)]

. (41)

Note that thanks to the previous approximations, we can obtain a closed-form LLR
expression that depends on the first and second order moments of the SNR, which appear
in the closed forms in (40).

5. Summary of the State-of-the-Art and Proposed LLR Estimates

In this section, we aim to provide a summary of the state-of-the-art and proposed
expressions for LLRs for each of the discussed scenarios. In Table 1, we report the LLR
expressions analyzed in Sections 2–4. The LLR expressions are classified according to
both the transmission scenario and the available channel state information knowledge.
Moreover, all the proposed methods in this contribution are highlighted with blue color.
Note that perfect CSI does not hold when real receivers are used. However, having LLR
expressions in this context gives some theoretical insights when evaluating the performance.
LLR expressions that can be implemented in real receivers are denoted with the label
mismatched CSI and statistical CSI. Note that under those particular cases, the receiver
requires to infer some parameters in order to compute the LLR values.

Table 1. Summary of the evaluated LLR methods (the contributions in this paper appear in blue). NWPR, narrowband-
wideband power ratio.

Scenarios

Type of CSI Used Open Sky Scenario Gaussian Jamming Scenario Pulsed Jamming Scenario

Perfect CSI Equation (4) Equation (9)
Equation (9)
Approx (14)
Approx. (16)

Mismatched CSI using
NWPR estimates

Equation (5) with σ̂2
n

estimated with NWPR
Equation (10) with σ̂2

(N0+I)n
estimated with NWPR

Equation (10) with σ̂2
G,n

estimated with NWPR

Mismatched CSI using ML estimates Equation (5) with σ̂2
n

estimated with ML
Equation (10) with σ̂2

(N0+I)n
estimated with ML

Not evaluated

Statistical CSI using proposed approx.
and related parameter estimates Closed-Form (41) Closed-Form (31) Closed-Form (31)

Closed-Form (31)

Note from Table 1 that under the open sky scenario, to compute the state-of-the-art
LLR values, we need to have access to the symbol variance σ̂2

n . A first method to infer this
variance is by using the narrowband-wideband power ratio (NWPR) method, which is
used to infer the signal-to-noise ratio (SNR). Note that the SNR is usually inferred with a
lower rate than the data symbols. Therefore, this method cannot infer properly σ̂2

n under
fast SNR variations. On the other hand, we underline that this method is required in the
GNSS architecture, and therefore, no extra computation complexity is required. A second
method to infer σ̂2

n is the ML method. Note that this method can improve the accuracy of
the LLR expression, but it also increases the complexity of the receiver since (7) needs to
be solved for each symbol. Note that the previous methods are also the current solutions
to infer the variance under the Gaussian jamming and the pulsed jamming scenarios, i.e.,
σ̂2
(N0+I)n

and σ̂2
G,n.

In this contribution, we aim to provide new LLR expressions that allow improving
the performance without adding much computational complexity. Under the Gaussian
channels, i.e., the open sky and Gaussian jamming scenarios, we propose a closed-form LLR
expression (31), which allows improving the accuracy of the LLR expression since it takes
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into account the variations of the signal-to-noise ratio. Moreover, the extra computation
complexity of this method only implies computing for each codeword (e.g., GPS L1C
Subframe 2 is 12 s) the first and second order moments of the SNR. Note that the first
moment is essentially the SNR estimation, which is required to compute the position
velocity and time (PVT) solution, then the extra computational complexity is due to the
computation of the second order moment.

Furthermore, we underline that (31) can perform properly under some Pulsed Jam-
ming scenarios, as is shown in the following section. In particular, when P tends to one,
the observation sample distribution converges to a Gaussian distribution, and (31) can
accurately compute the LLR values.

Finally, the proposed closed-form LLR expression (41) allows improving the accuracy
of the LLR expression under some specific pulsed jamming scenarios since it takes into
account the fact that some symbols of the codeword are corrupted by an extra Gaussian
noise. Note that this LLR expression involves an additional computational complexity,
which is the computation of the second order moment of the SNR.

6. Results

In this section, we evaluate by simulation the achievable performance when using
derived LLR expressions as given in the preceding section. In particular, as an example, we
provide the frame error rate (FER) performance for GPS L1C Subframe 2 [47] (N = 1200),
which is based on an irregular LDPC code of rate 1/2 and decoded by the sum-product
algorithm [48].

Several scenarios were considered. First, we considered an open sky scenario where
the model of the variance σ2

n is constant for the entire transmission codeword. More-
over, a symbol-wise estimator based on the narrowband-wideband power ratio (NWPR)
method [40] was used to estimate the (Es/N0)n. Figure 1 shows the FER corresponding to
the use of: (black) the perfect CSI-based LLR expression given by (4); (red) the LLR expres-
sion from (5) where σ̂2

n is computed with the ML method and considering several L samples;
(blue) the closed-form LLR approximation given in (31), considering that µ(Es/N0)n and
σ(Es/N0)n are estimates from the symbol-wise Es/N0 estimated values; (magenta) the LLR
expression from (5) considering that σ̂2

n is instantaneously computed from the (Es/N0)n
estimates (provided by NWPR method) by applying (A4). Note that this last method is
used by most of current commercial receivers, and it can be referred to as the state-of-the-art
LLR expression.

We can see from Figure 1 that the performance when using the proposed LLR ex-
pression converges to that of the CSI based LLR solution. On the other hand, the LLR
expression (5) where σ̂2

n is directly estimated from the NWPR method finds an SNR mis-
match, which leads to decoding performance losses. Considering the LLR expression
based on the ML method for a large L (i.e., L = 10,230), σ̂2

n is accurately estimated at the
expense of an increase of the overall complexity. The proposed LLR expression converges
to the perfect CSI-based LLR solution case. When a low number of samples per symbol are
available, e.g., L = 15 or L = 7, then σ̂2

n is poorly estimated, and the SNR mismatch can
lead to large decoding performance loss. Moreover, in order to facilitate the comparison of
the different LLR expressions, in Table 2, we provide the required Es/N0 to obtain a frame
error rate (FER) of 10−2.

Table 2. GPS L1C Subframe 2. Es/N0 to obtain a frame error rate (FER) of 10−2 considering a constant σ2
n for the entire

codeword.

CSI (4) Closed-Form
LLR (31)

LLR (5) with NWPR
Estimation

LLR (5) ML
and L = 10,230

LLR (5) ML
and L = 15

LLR (5) ML
and L = 7

Es/N0 −1.45 dB −1.44 dB −1.30 dB −1.44 dB −0.96 dB 0 dB
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A second experiment was done where smooth variations of the variance σ2
n were

considered. The σ2
n variation can be characterized by a normal distribution whose mean

and standard deviation are denoted as µσ2
n

and σσ2
n
, respectively. Again, the NWPR method

was used to estimate (Es/N0)n symbol-wise. Notice from Figure 2 that the proposed LLR
approximation converges to the perfect CSI-based LLR solution, whereas the ML method
converges only when large L are considered, resulting in an increased complexity. Again,
in order to facilitate the comparison between the different LLR expressions, we provide in
Table 3 the required Es/N0 to obtain a frame error rate (FER) of 10−2.

-2.5 -2 -1.5 -1

Es/N
0
[dB]

10
-3

10
-2

10
-1

10
0

F
E

R

CSI (4)

Closed form LLR (31)

LLR (5), NWPR Estimation

LLR (5), ML with L =10230

LLR (5), ML with L =15

LLR (5), ML with L =7

Figure 1. GPS L1C Subframe 2, FER considering a constant σ2
n for the entire codeword.

-3 -2.5 -2 -1.5 -1

2

n

[dB]

10
-3

10
-2

10
-1

10
0

F
E

R

2

n

 = 0.5dB

CSI (4)

Closed form LLR (31)

LLR (5), NWPR Estimation

LLR (5), ML with L =10230

LLR (5), ML with L =15

LLR (5), ML with L =7

Figure 2. GPS L1C Subframe 2, FER considering a smooth variation of the variance σ2
n within the

codeword.

Table 3. GPS L1C Subframe 2. Es/N0 to obtain an FER of 10−2 considering a smooth variation of the variance σ2
n within

the codeword.

CSI (4) Closed-Form
LLR (31)

LLR (5) with
NWPR Estimation

LLR (5) ML
and L = 10,230

LLR (5) ML
and L = 15

LLR (5) ML
and L = 7

Es/N0 −1.45 dB −1.44 dB −1.26 dB −1.44 dB −0.94 dB 0.2 dB

In a third experiment, we assessed the performance considering a Gaussian jamming
environment. The scenario sets a constant signal-to-noise plus interference ratio over
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the entire transmission codeword. We used the NWPR method to infer (Es/(N0 + I))n
symbol-wise. Figure 3 shows the FER considering different interference powers (I = 1 dB,
I = 2 dB, I = 3 dB, and I = 5 dB) corresponding to: the perfect CSI-based LLR values
given by (9); the closed-form LLR approximation in (31), considering that µ(Es/(N0+I))n
and σ(Es/(N0+I))n are estimates from the symbol-wise (Es/(N0 + I))n estimates values;
the LLR solution from (10) considering that σ̂2

(T+I)n
is instantaneously computed from

the (Es/(N0 + I))n estimates provided by NWPR method. We can see that the proposed
closed-form LLR expression performance converges to the CSI LLR solution independently
of the interference power. This solution improves the FER provided by just considering the
NWPR method. On the other hand, even if the ML curves are not included in this figure
(for the sake of the clarity of the plots), the same results as the previous experiments were
found. The required Es/N0 to obtain an FER of 10−2 is included in Table 4.

-2 -1 0 1 2 3 4

E
s
/N

0
 [dB]

10
-2

10
-1

10
0

F
E

R

CSI (9)

Closed form LLR (31)

LLR (10), NWPR Estimation

I =1dB

I =2dB

I =3dB

I =5dB

Figure 3. GPS L1C frame error rate under a Gaussian jamming.

Table 4. GPS L1C Subframe 2. Es/N0 to obtain an FER of 10−2 considering a Gaussian jamming, which harms the entire
codeword.

CSI (4) Closed-Form LLR (31) LLR (5) with NWPR Estimation

Es/N0 with I = 1 dB −0.44 dB −0.43 dB −0.20 dB
Es/N0 with I = 2 dB 0.56 dB 0.57 dB 0.80 dB
Es/N0 with I = 3 dB 1.56 dB 1.57 dB 1.80 dB
Es/N0 with I = 5 dB 3.56 dB 3.57 dB 3.80 dB

Finally, we assess the performance considering a pulsed jamming environment. Sev-
eral scenarios were considered. First, we focus on scenarios with low values of P. Note
that with intermediate values of P, it is simpler to detect the jammer, and other counter-
measurements in the previous stage of the receiver chain can be applied. We consider a
scenario where a jammer device disrupts with an extra Gaussian noise of 5 dB to each
symbol ∈ S. Again, a symbol-wise estimator based on the (NWPR) method was used to es-
timate the (Es/(N0 + I))n. Moreover, we included the solutions of the LLR expressions (14)
and (16) considering perfect knowledge of σ2

G,n and CL,n. In Figure 4, the FER for the cases
with P = 0.02 and P = 0.1 is illustrated. Since the power of the jamming is not powerful
enough to generate large heavy tails in the observation sample distribution, the closed-
form LLR expression based on the Laplacian distribution (41) performs worse than the
closed-form LLR expression provided in (31). Moreover, we note that the closed-form
expression (31) converges to the LLR solution (14) with perfect CSI and that the closed-form
expression (41) converges to the LLR solution (16) with perfect CSI. The required Es/N0 to
obtain an FER of 10−2 is included in Table 5.
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CSI Laplacian (16)

Closed form LLR (31)

Closed form LLR (41)
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I = 5 dB

P=0.02

P=0.1

Figure 4. GPS L1C frame error rate under a pulsed jamming with I = 5 dB.

Table 5. GPS L1C Subframe 2. Es/N0 to obtain an FER of 10−2 considering a pulsed jamming with I = 5 dB.

CSI (4) CSI (14)
Gaussian Approx.

CSI (16)
Laplacian Approx.

Closed-Form
LLR (31)

Closed-Form
LLR (41)

LLR (5)
NWPR Estimation

P = 0.02 −1.36 dB −1.28 dB −1.17 dB −1.28 dB −1.15 dB 1.15 dB
P = 0.1 −1 dB −0.6 dB −0.65 dB −0.68 dB −0.62 dB −0.4 dB

In Figure 5, we illustrate the FER performance considering a scenario where the
jammer device disrupts with an extra Gaussian noise of 10 dB. Note that the selected values
are P = 0.02 and P = 0.1. In this particular case, the closed-form LLR expression based on
the Laplacian distribution (41) performs better than the Gaussian approach. This is due
to the fact that the jammer disrupts the codeword symbols with enough power to caused
heavy tails in the observation sample distribution. Thus, the Laplacian distribution fits
better to this particular problem. Moreover, we note that the closed-form expression (41)
converges to the LLR solution (16) with perfect CSI. On the other hand, the closed-form
expression (31) outperforms the LLR (14) with perfect CSI, showing the robustness of
the solution.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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 [dB]
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F
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CSI (12)

CSI Gaussian (14)

CSI Laplacian (16)

Closed form LLR (31)

Closed form LLR (41)

LLR (10) NWPR Estimation

I = 10 dB

P=0.02

P=0.1

Figure 5. GPS L1C frame error rate under a pulsed jamming with I = 10 dB with low values of P.

We note that with values P ∈ (0.7–1), the observable sample distribution starts to
converge to a Gaussian form. Then, the closed-form LLR expression based on the Gaussian
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approach (31) provides better FER performance than that obtained using a closed form
LLR expression based on the Laplacian approach (41). The latter is illustrated in Figure 6
for P = 0.9. In this figure, we also illustrate the case for P = 1. Note that under this
particular scenario, the observable sample distribution is Gaussian, and the closed-form
LLR expression based on the Gaussian approach converges to the CSI-based LLR value
solution. Furthermore, independently of the scenario, the proposed closed-form LLR
expression performs better than the LLR solution from (10) considering that σ̂2

(T+I)n
is

instantaneously computed from the NWPR method. The required Es/N0 to obtain an FER
of 10−2 is included in Table 6.
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Closed form LLR (31)

Closed form LLR (41)

LLR (10) NWPR Estimation

I = 10 dB

P=1
P=0.9

Figure 6. GPS L1C frame error rate under a pulsed jamming with I = 10 dB with high values of P.

Finally, We underline that the proposed LLR closed-form expressions do not perform
well with values P ∈ (0.2–0.7) since the Gaussian and the Laplacian model do not fit
properly the observation sample distribution. Under these scenarios, it is recommended
to use a more complex method, such as the ML, in order to infer the LLR values. On the
other hand, we would like also to underline that with such a percentage of the values of
the symbols disrupted by a jammer, it is simpler to detect the jammer and to include other
signal processing countermeasures in order to clean the intentional interference.

Table 6. GPS L1C Subframe 2. Es/N0 to obtain an FER of 10−2 considering a pulsed jamming with I = 10 dB.

CSI (4) CSI (14)
Gaussian Approx.

CSI (16)
Laplacian Approx.

Closed-Form
LLR (31)

Closed-Form
LLR (41)

LLR (5)
NWPR Estimation

P = 0.02 −1.32 dB −0.5 dB −1 dB −1 dB −1 dB −0.3 dB
P = 0.1 −0.8 dB 1.95 dB 0.23 dB 0.63 dB −0.21 dB 2.5 dB
P = 0.9 8 dB 8.17 dB 8.3 dB 8.17 dB 8.33 dB 8.45 dB
P = 1 8.56 dB 8.56 dB 8.72 dB 8.57 dB 8.73 dB 8.77 dB

7. Conclusions

In this paper, we address the issue of computing a closed-form LLR value under three
particular GNSS scenarios: (i) open sky scenarios with smooth variations of the SNR, (ii)
additive Gaussian noise interference, and (iii) pulsed jamming. Moreover, we assume a
more realistic signal model, which considers SNR uncertainty. Since the GNSS system is a
low data rate DS-SS system, it allows for symbol-wise estimation of the noise variance, thus
providing information of the statistical distribution of the noise power. We reformulate
the problem of computing the LLR values by modeling the variance as a random variable,
which can be characterized by an inverse log-normal pdf whose mean and variance are
considered known or well estimated. A Bayesian approach is taken in order to compute
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the joint posterior distribution of the variance and the transmitted symbol. This joint
posterior is then marginalized to compute the LLR expression of interest. To compute
the marginalized distributions, an analytic closed-form solution based on conjugate prior
analysis is presented. The FER for the particular case of the irregular LDPC code of GPS
L1C Subframe 2 is computed under the iterative BP decoding algorithm. The results show
that the proposed LLR expression (31) enables reaching the performance of the CSI solution
under the open sky scenario, improving the performance provided by the state-of-the-art
solution (≈0.15–0.2 dB). This result is also verified when a Gaussian jamming disrupts the
entire codeword transmission. Several examples of the FER considering a pulsed jamming
scenario are also presented in order to compare the performance between the proposed
LLR expressions and the current solution of the state-of-the-art. Results show that since
these solutions fit more properly the transmission channel, they improve the FER with
respect to the state-of-the-art solutions. Finally, this research shows that the proposed
LLR expression enables improving the FER performance while involving a reasonable
computational complexity increase.
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Appendix A. Derivation of the LLR Expression with Variance Uncertainty under
Conjugacy

This appendix derives a closed-form expression for the LLRs in (27), where a conjugate
prior is considered. We aim to give a closed-form expression for the integral in (26).

Introducing the following change of variable,

z = λn

[
1
bn

+
(yn − xn)

2

2

]
→ dz

dλn
=

1
bn

+
(yn − xn)

2

2
, (A1)

the integral in (26) is formulated as:

p(xn|yn) =

[
1
bn

+ (yn−xn)
2

2

]−(an+1/2)

√
2πban

n Γ(an)

∫ ∞

0
z(an−1/2)e−z dz . (A2)

Note that the integral term in (A2) is a constant term. Substituting (A2) in (3) yields:

Ln = ln


[

1
bn

+
(yn−1)2

2

]−(an+1/2)

√
2πban

n Γ(an)[
1

bn
+

(yn+1)2
2

]−(an+1/2)

√
2πban

n Γ(an)

 = −(an +
1
2
) ln


[

1
bn

+ (yn−1)2

2

]
[

1
bn

+ (yn+1)2

2

]


= −(an +
1
2
)

[
ln

(
1
bn

+
(yn − 1)2

2

)
− ln

(
1
bn

+
(yn + 1)2

2

)]
,

(A3)

which gives the expression for the LLR as given in (27).
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Appendix B. Log-Normal Modeling of the Detail Estimate Considering a Gaussian
Distribution

We assume that the (Es/N0)n estimate follows a Gaussian distribution. Let us denote
the mean and the standard deviation of the distribution as µ(Es/N0)n and σ(Es/N0)n . Then,
the variance σ2

n can be computed as a function of the energy per symbol Es and the noise
density N0, yielding:

σ2
n = 10−(Es/N0)n/10 ⇒ λn = 10(Es/N0)n/10 . (A4)

Let us denote the auxiliary variable as Y = ((Es/N0)n)/10), then:

λn = 10Y ∼ log10N (µ(Es/N0)n /10, σ2
Es/N0

/100) . (A5)

Since the log-normal distribution is defined with the logarithm base e, the following
logarithm base change rule is applied:

log10 λn =
loge(λn)

loge(10)
→ loge(λn) = loge(10) log10 λn (A6)

obtaining λn ∼ logeN (µλn , σλn), whose mean and standard deviation are,

µλn =
µ(Es/N0)n loge(10)

10
, σλn =

σ(Es/N0)n

10
loge(10) . (A7)

Appendix C. Calculation of the LLR Values under Gamma Conjugacy
and the Laplacian Likelihood

This Appendix derives the closed-form expression of the LLRs in (39), where a conju-
gate prior is considered. The operations are focused on solving the following integral

p(dn|yn) =
1

2baΓ(a)

∫ ∞

0
ρae−ρ( 1

b +|yn−µ|)dρ , (38)

Introducing the auxiliary change of variable Z = ρn

[
1
bn

+ |yn − µ|)
]

with:

dZ
dρn

=

[
1
bn

+ |yn − µ|)
]

, (A8)

the integral in (38) can be formulated as:

p(dn|yn) =

[
1
bn

+ |yn − µ|
]−(an+1)

2ban
n Γ(an)

∫ ∞

0
Zan eZ dZ , (A9)

where it is noted that the integral is a constant term that is denoted by the scalar A. Then,
Equation (A9) yields:

p(dn|yn) = A

[
1
bn

+ |yn − µ|
]−(an+1)

2ban
n Γ(an)

. (A10)

Substituting (A10) in Equation (3) yields:

Ln = ln

A
[ 1

bn
+|yn−1|]

−(an+1)

2ban
n Γ(an)

A
[ 1

bn
+|yn+1|]

−(an+1)

2ban
n Γ(an)

 = ln


[

1
bn

+ |yn − 1|
]−(an+1)

[
1
bn

+ |yn + 1|
]−(an+1)

 (A11)

= −(an + 1)
[

ln
(

1
bn

+ |yn − 1|
)
− ln

(
1
bn

+ |yn + 1|
)]

, (A12)
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which defines the expression of the LLR values in Equation (39).

Appendix D. Normal Modeling of the Detail Estimate Considering
a Laplacian Distribution

Under the assumption that (Es/N0)n follows a Gaussian distribution, let us denote
the mean and the standard deviation of the distribution as µ(Es/N0)n σ(Es/N0)n , respectively.
Considering the Laplacian distribution in Equation (35), we can compute c as a function of
the energy per symbol Es and the noise density (N0),

cn =
1√
2

10−(Es/N0)n/20 . (A13)

Then, the detail ρ in the equation is defined as:

ρn =
√

2 · 10(Es/N0)n/20 . (A14)

Let us denote the auxiliary variable as Y = (Es/N0)n/20, then:

Y ∼ N (µ(Es/N0)n /20, σ2
(Es/N0)n

/400) . (A15)

Considering Equation (A13),

ρn = 10Y ∼ LogN (µ(Es/N0)n /20, σ2
(Es/N0)n

/400) . (A16)

Since the log-normal distribution is defined with the logarithm base e, the following
logarithm base change rule is applied:

log10 ρn = Y =
loge(ρ)

loge(10)
→ loge(ρn) = loge(10) log10 ρn , (A17)

obtaining ρ ∼ LogeN (µρn , σρn) whose mean and standard deviation are:

µρn =
(

µ(Es/N0)n loge(10)
)

/20 , (A18)

σρn =
(

σ(Es/N0)n /20
)

loge(10) . (A19)
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