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Purpose: Positron emission tomography (PET) is an important tool for nuclear medical imaging. It
has been widely used in clinical diagnosis, scientific research, and drug testing. PET is a kind of
emission computed tomography. Its basic imaging principle is to use the positron annihilation radia-
tion generated by radionuclide decay to generate gamma photon images. However, in practical appli-
cations, due to the low gamma photon counting rate, limited acquisition time, inconsistent detector
characteristics, and electronic noise, measured PET projection data often contain considerable noise,
which results in ill-conditioned PET images. Therefore, determining how to obtain high-quality
reconstructed PET images suitable for clinical applications is a valuable research topic. In this con-
text, this paper presents an image reconstruction algorithm based on patch-based regularization and
dictionary learning (DL) called the patch-DL algorithm. Compared to other algorithms, the proposed
algorithm can retain more image details while suppressing noise.
Methods: Expectation-maximization (EM)-like image updating, image smoothing, pixel-by-pixel
image fusion, and DL are the four steps of the proposed reconstruction algorithm. We used a two-
dimensional (2D) brain phantom to evaluate the proposed algorithm by simulating sinograms that
contained random Poisson noise. We also quantitatively compared the patch-DL algorithm with a
pixel-based algorithm, a patch-based algorithm, and an adaptive dictionary learning (AD) algorithm.
Results: Through computer simulations, we demonstrated the advantages of the patch-DL method
over the pixel-, patch-, and AD-based methods in terms of the tradeoff between noise suppression
and detail retention in reconstructed images. Quantitative analysis shows that the proposed method
results in a better performance statistically [according to the mean absolute error (MAE), correlation
coefficient (CORR), and root mean square error (RMSE)] in considered region of interests (ROI)
with two simulated count levels. Additionally, to analyze whether the results among these methods
have significant differences, we used one-way analysis of variance (ANOVA) to calculate the corre-
sponding P values. The results show that most of the P < 0.01; some P> 0.01 < 0.05. Therefore, our
method can achieve a better quantitative performance than those of traditional methods.
Conclusions: The results show that the proposed algorithm has the potential to improve the quality
of PET image reconstruction. Since the proposed algorithm was validated only with simulated 2D
data, it still needs to be further validated with real three-dimensional data. In the future, we intend to
explore GPU parallelization technology to further improve the computational efficiency and shorten
the computation time. © 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on
behalf of American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13804]
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1. INTRODUCTION

Positron emission tomography (PET) imaging is performed
by injecting radioactive tracers into a patient’s body and then
measuring the distribution of radioisotopes. PET reconstruc-
tion algorithms can be divided into two main categories: ana-
lytical reconstruction algorithms and iterative reconstruction
algorithms. The filtered back-projection (FBP) method is
based on the Radon transform, but it does not consider the

spatial and temporal heterogeneity of the system response
and does not take into account the measurement noise of the
instrument; therefore, the reconstructed images contain con-
siderable noise.1 Maximum-likelihood expectation-maxi-
mization (ML-EM) is widely used for statistical
reconstruction in clinical practice; however, as the number of
iterations increases, the image quality deteriorates, and
“checkerboard artifacts” are produced.1,2 Early iteration ter-
mination and the incorporation of penalty terms or some
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prior knowledge of the likelihood function can help overcome
the problems with the ML-EM method to a certain extent.1

Here, we focus on the latter approach.
Most regularization methods discussed in the PET image

reconstruction literature focus on the design of appropriate a
priori functions for use in the maximum a posteriori (MAP)
framework.2,3 Many MAP-based methods benefit from
boundary information obtained from magnetic resonance
imaging (MRI) and computed tomography (CT). Compared
with PET images, CT and MRI images have higher resolu-
tions and signal-to-noise ratios (SNRs) and can provide more
abundant boundary information.

Patch-based methods can obtain more image features than
pixel-based methods; consequently, they have been widely
used in image denoising, restoration and reconstruction in the
last decade.4–6 Kervrann et al. proposed a novel adaptive
patch-based approach for image denoising and representa-
tion.7 Cheng-Liao and Qi developed a patch-based regular-
ization method for iterative image reconstruction by using
neighborhood patches instead of individual pixels to compute
a nonquadratic penalty. This reconstruction approach is also
more robust to hyperparameter selection than conventional
pixel-based nonquadratic regularization is Ref. [2].

According to the standard image reconstruction theory
applied in medical imaging, to avoid view aliasing artifacts,
the sampling rate of the view angles must satisfy the Shan-
non/Nyquist sampling theorem. However, the Shannon/
Nyquist sampling theorem does not assume any a priori
image information, whereas in practice, some prior informa-
tion about the image is typically available.8,9 Cand�es et al.
introduced a novel sampling theory called compressed sens-
ing, also known as compressive sampling (CS). This theory
asserts that one can recover signals and images from far fewer
samples or measurements as long as one adheres to two basic
principles: sparsity and incoherence or sparsity and restricted
isometry.10–13 The theory of CS asserts that one can combine
“low-rate sampling” with computational power for efficient
and accurate signal acquisition. CS data acquisition systems
directly translate analog data into a compressed digital form
so that one can, at least in principle, obtain superresolved sig-
nals from just a few measurements. After the acquisition step,
we need only to “decompress’’ the measured data through
optimization.14 Recently, CS has become popular in image
reconstruction and recovery applications.13,15 CS is used to
reconstruct images using only a small number of observations
obtained via projection using prior knowledge of a sparse
image representation. For the sparse transformation of
images, the discrete cosine transform (DCT), the wavelet
transform and the finite difference method are commonly
used. When sparse transformation is performed with the
finite difference method, the total variation (TV) is used as a
metric. Sidky et al. proposed the adaptive-steepest-descent-
projection onto convex sets (ASD-POCS) algorithm, which
aims to achieve the constrained minimization of the estimated
image TV. The constraints are enforced by means of projec-
tion onto convex sets (POCS), and the TV objective is mini-
mized via steepest descent with an adaptive step size.16 Block

et al. developed an iterative reconstruction method for under-
sampled radial MRI. The procedure relies on a two-step
mechanism in which the coil profiles are first estimated and a
final image that complies with the actual observations is then
rendered. Prior knowledge is introduced by penalizing edges
in the coil profiles and by means of a TV constraint for the
final image.17 Cone-beam CT (CBCT) reconstruction is
achieved by minimizing the energy function consisting of a
data fidelity term and a TV regularization term.18

However, for undersampled and noisy images, the images
reconstructed using TV constraints may not include some
fine features and may have a blocky appearance. Compared
to the discrete gradient transform used in the TV method, dic-
tionary learning (DL) has been proven to be an effective
approach for sparse representation.18,19 In DL, the optimal
representation is learned from the data such that the atomic
scale and characteristics of the dictionary are as close as pos-
sible to those of the image signal that needs to be represented.
At present, there are many DL algorithms, most of which are
based on the ML and the MAP probability of a Bayesian
framework. By acquiring prior information on the image sig-
nal, one can select more suitable atoms with which to form
an adaptive dictionary. Among methods of this type, the
method of optimal directions (MOD),20,21 the family of itera-
tive least-squares-based dictionary learning algorithms (ILS-
DLA),22 the recursive least squares dictionary learning algo-
rithm (RLS-DLA)23 and the singular value decomposition
(K-SVD) algorithm24 are widely used, and a multiscale ver-
sion of the K-SVD algorithm has also been developed.1

Numerous applied experiments have shown that compared to
other algorithms, the K-SVD algorithm yields superior results
for various image processing tasks.1,3,23,25 Aharon et al. pro-
posed a novel algorithm for adapting dictionaries to achieve
sparse signal representations.26 These authors showed that
images can be sparsely represented by learned elements.
Therefore, the method of sparse representation can be used to
reduce the noise in reconstructed images.

Recently, sparse representation and DL have been applied
to medical images, mainly for classification, denoising, and
image reconstruction/restoration.15,27–31 Valiollahzadeh et al.
proposed a method that uses DL in a sparse domain to recon-
struct PET images from partially sampled data.15 Tang et al.
proposed the use of a DL-based sparse signal representation
in the formulation of the prior information for MAP PET
image reconstruction.32 Xu et al. developed a low-dose x-ray
CT image reconstruction method based on DL, and the
results showed that this method can be used to generate
images with less noise and more structural detail.20 C. Shu-
hang et al. developed a reconstruction framework that inte-
grates a sparsity penalty on a dictionary into a ML estimator.1

However, these methods are most effective when the tissue
function is uniform and the noise is low.

In this paper, we propose an image reconstruction algo-
rithm based on patch-based regularization and DL known as
patch-DL method. For the reconstruction of undersampled
and noisy images, compared to other methods, the proposed
method can preserve more details while removing noise and
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artifacts. The proposed algorithm has two obvious advan-
tages. First, the degree of coincidence between anatomical
structures and functional information has little effect on the
reconstructed images. Second, regardless of whether there is
noise interference along the edges of an image, this method
can accurately distinguish the edges. We used a two-dimen-
sional (2D) brain phantom to evaluate the proposed algorithm
by simulating sinograms that contained random Poisson
noise.

This paper is organized as follows. We introduce the back-
ground on DL and describe the proposed algorithm in detail
in Section 2. The design of the simulation experiments and
the evaluation indexes used are presented in Section 3. The
performance of the proposed algorithm is demonstrated in
Section 4. Discussions on convergence and parameter opti-
mization are presented in Section 5. Conclusions and future
work are discussed in Section 6.

2. MATERIALS AND METHODS

2.A. Problem formulation

2.A.1. Maximum-likelihood estimation

The measured PET data, also called the sonogram y, can
be assumed to be a collection of independent Poisson random
variables. The measurement y is related to the unknown
image x by a projective transform1:

y�Possion �yf g s:t: �y ¼ Pxþ r (1)

P ¼ pij
� � 2 IRni�nj (2)

where P is the system matrix, with pij denoting the probabil-
ity of the detection of an event originating at pixel j by detec-
tor pair i; r accounts for background events, such as random
noise and scattering; ni is the total number of detector pairs;
and nj is the total number of pixels in the image. Based on
the independent Poisson assumption, we can write the likeli-
hood function as2:

L y=xð Þ ¼
Xni
i¼1

yi log�yi � �yi (3)

In penalized likelihood (PL) reconstruction (or, equiva-
lently, MAP reconstruction), an unknown image is estimated
by maximizing a PL function:

x̂ ¼ argmaxU xð Þ
x� 0

; U xð Þ ¼ L y=xð Þ � bUðxÞ (4)

where L(y/x) is the likelihood function, b is a regularization
parameter, and U(x) is an image roughness penalty. When b
goes to zero, the reconstructed image approaches the ML
estimate.

2.A.2. Dictionary learning

Given an image x with dimensions of
ffiffiffiffiffi
M

p � ffiffiffiffiffi
M

p
, sup-

pose that the image is decomposed into many overlapping

blocks with dimensions of
ffiffiffiffi
m

p � ffiffiffiffi
m

p
. Each image patch

Rv,w is uniquely indexed by the location of its top-left cor-
ner pixel (v, w) in x. The dictionary is a matrix D 2 Rm�s,
and each column is called an atom. Thus, the dictionary
contains m rows and s atoms. The number of rows in the
dictionary corresponds to the patch size, and the number
of atoms is an integer multiple of the number of rows. It
is assumed that each patch Rv,w can be approximated by a
linear combination Dav;w of dictionary atoms. Accordingly,
av;w is the sparse representation of Rv,w with respect to the
dictionary D.

DL is mainly applied to solve the following problem in
image reconstruction:

min
D;a

X
v;w

Rv;wx�Dav;w
�� ��2

2
s:t: av;w

�� ��
0
�T0; 8v;w (5)

min
D;a

av;w
�� ��

0
s:t: min

D;a
Rv;wx�Dav;w
�� ��2

2
� e; 8v;w (6)

where x is the given image, Rv,w is a patch obtained from x, D
is a patch-based dictionary, av;w is the sparse representation
of Rv,w with respect to the dictionary D, T0 is the level of spar-
sity and e is the reconstruction error threshold. The above
equation can be rewritten in the following unconstrained form
by the Lagrange method:

min
D;a

X
v;w

Rv;wx� Dav;w
�� ��2

2þl av;w
�� ��

1 (7)

where l denotes the Lagrange multiplier. The value of l can
be obtained by calculating the partial derivative of the objec-
tive function for each unknown number.

Next, we will solve the above optimization problems in
two steps:

min
D

av;w
�� ��

0 s:t: min
D

Rv;wx�Dav;w
�� ��2

2� e; 8v;w (8)

min
a

X
v;w

Rv;wx�Dav;w
�� ��2

2
s:t: av;w
�� ��

0
�T0; 8v;w (9)

In other words, the algorithm alternates between find-
ing the best dictionary using the K-SVD algorithm when
the coefficients (a) are fixed [Eq. (8)] and finding the
sparse coefficients using the orthogonal matching pursuit
(OMP) algorithm when the dictionary (D) is fixed [Eq.
(9)].26,33

Next, we discuss the convergence of the K-SVD algo-
rithm. Let us first assume that the result of the sparse coding
is completely correct. In this case, the sparse coding will
reduce the residual norm of the signal reconstruction. Fur-
thermore, since the K-SVD algorithm does not compute a list
of elements in the dictionary, the residual will be further
reduced, and the sparse constraints will continue to be main-
tained. Therefore, the calculation of K-SVD must reduce the
objective function. However, in practice, the current sparse
coding methods are all approximate algorithms, which cannot
guarantee the results, so K-SVD cannot always guarantee
convergence.26
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2.B. Proposed algorithm

In PL reconstruction (or, equivalently, MAP reconstruc-
tion), an unknown image is estimated by maximizing a penal-
ized likelihood function:

x̂ ¼ argmax
x� 0

L y=xð Þ � bU xð Þð Þ (10)

here, U(x) is a patch-based roughness function:

U xð Þ ¼ 1
4

Xnj
j¼1

X
k2Nj

w fj xð Þ � fk xð Þ�� ��
h

� �
(11)

w tð Þ ¼ d
tj j
d
� log 1þ tj j

d

� 	� 	
(12)

where fj(x) and fk(x) are the values of each pixel in the patches
centered at pixels j and k, respectively, and Nj is a neighbor-
hood patch centered at pixel j. The Lagrange function is used
here as a penalty function and d is called the hyperparameter.2

When the penalty function satisfies the following three
conditions, a convex PL function can be obtained. In this
paper, w tð Þ given in Eq. (11) satisfies the following condi-
tions. Therefore, the patch-based algorithm is convergent.2

1. The function w tð Þ is symmetric and differentiable
everywhere.

2. The first-order derivative.

wðtÞ, dwðtÞ
dt

(13)

is nondecreasing (hence, w tð Þ is convex).
3. The curvature.

xw tð Þ¼D w tð Þ
:

t
(14)

is nonincreasing for t ≥ 0, and 0\xw 0ð Þ\þ1.

We use a surrogate function Q x; xnð Þ to solve the above
objective function.2,34 This optimization algorithm can guar-
antee global convergence. The function Q x; xnð Þ needs to sat-
isfy the following two conditions2:

Q x; xnð Þ � Q xn; xnð Þ�U xð Þ � U xnð Þ (15)

rQ xn; xnð Þ ¼ rU xnð Þ (16)

where r denotes the gradient with respect to x.
The optimization of the original objective function is now

transformed into the optimization of the combined surrogate
function. Therefore, the new objective function is

xnþ1 ¼ argmax
x� 0

QL x; xnð Þ � bQb
u x; xnð Þ (17)

where QL x; xnð Þ is a surrogate likelihood function2,34,35:

QL x; xnð Þ ¼
Xnj
j¼1

pj x̂nþ1
j;EMlogxj � xj

� �
(18)

where

pj ¼
Xni
i¼1

pij (19)

x̂nþ1
j;EM ¼ xnj

pj

Xni
i¼1

pij
yi
�yni

(20)

where the expected projection in iteration n is:

�yn ¼ Pxn þ r (21)

The surrogate likelihood function must satisfy the follow-
ing two conditions:

QL x; xnð Þ � QL xn; xnð Þ� L y=xð Þ � L y=xnð Þ (22)

rQL xn; xnð Þ ¼ rL y=xnð Þ (23)

here, Qb
u x; xnð Þ is a surrogate penalty function2,36:

Qb
u x; xnð Þ ¼ 1

2

Xnj
j¼1

wn
j xj � x̂nþ1

j;Reg

� �2
(24)

where the pixelwise weights wn
j are

wn
j ¼

X
k2Nj

wjk xnð Þ (25)

and the intermediate image x̂nþ1
j;Reg is calculated as

x̂nþ1
j;Reg ¼

1
2wn

j

X
k2Nj

wjk xnð Þ xnk þ xnj
� �

(26)

where

wjk xnð Þ ¼
Xnl
l¼1

hlw
u
jl;kl x

nð Þ (27)

Xnl
l¼1

hl ¼ 1 (28)

Here, jl denotes the lth pixel in the patch fj(x), kl denotes
the lth pixel in the patch fk(x), nl is the total number of pix-
els in a patch, and hl is a positive weighting factor equal to
the normalized inverse spatial distance between pixel jl and
pixel j.

By solving the quadratic equation derived from the
Karush–Kuhn–Tucker (KKT) conditions, we obtain the PL
image estimate in iteration (n + 1):

xnþ1
j ¼ 2x̂nþ1

j;EMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bnj x̂

nþ1
j;Reg

� �2
þ4bnj x̂

nþ1
j;EM þ 1� bnj x̂

nþ1
j;Reg

� �r
(29)

when b ¼ 0, the above update equation is equivalent to the
ML-EM formula.

In this paper, we use an adaptive dictionary that is learned
from the current estimate xn in each iteration using the K-
SVD algorithm to find the sparse coefficients using the OMP
algorithm. The overall iteration scheme stops when the
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maximum number of iterations is reached. The algorithm is
summarized in Algorithm 1.

3. EXPERIMENTS AND EVALUATION

To study the proposed patch-DL algorithm and evaluate
its performance, we simulated a PET emission image. We
compared the images reconstructed with various reconstruc-
tion algorithms through visual judgment and quantitative
comparisons.

Figure 1(a) shows the 2D brain phantom that was used to
simulate the PET emission image, and Fig. 1(b) shows the
real CT image that was used to generate the attenuation fac-
tors. The activity phantom was forward-projected to generate
a noise-free sinogram. In the simulations, independent Pois-
son noise was introduced to generate 20 realizations for a
total number of events of 20 M (2e7) and 10 M (1e7), con-
forming to clinical use. A uniform background of 20% was
added to simulate random noise and the scatter fraction in
2D.

The proposed patch-DL algorithm has several parameters
that need to be set: the regularization parameter b was set
to b ¼ 2�7, and the hyperparameter value was set to
d ¼ 1e�9. Both the patch size and the neighborhood size
were set to 3 9 3 pixels. For DL, the patch size was set to
6 9 6 pixels, and the overlap stride was one pixel. The

sparsity level T0 was set to 5. The local reconstruction
error threshold e was set to 0.00025. In general, the algo-
rithm parameters followed the settings of Refs. [1,2,9,15]
with the best performance.

Several metrics were utilized in this paper for quantitative
analysis of the reconstructed images.

The MAE and RMSE can be calculated as follows:

MAE ¼ 1
q

Xq
t¼1

1
Z

XZ
z¼1

xz � xoriginalz

 ��� �� !

(30)

RMSE ¼ 1
q

Xq
t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Z

XZ
z¼1

xz � xoriginalz

 �2vuut

0
@

1
A (31)

where xz and xoriginalz are the pixel values in the reconstructed
image and the original image, respectively; Z is the total num-
ber of pixels in the reconstructed image; and q is the number
of noise realizations.

The quality of the image reconstruction can also be mea-
sured in terms of the normalized mean square error (NMSE)
and CORR, which can be calculated as

NMSE

¼ 1
q

Xq
t¼1

XZ
z¼1

xz� xoriginalz

 �2,XZ

z¼1

xoriginalz ��xoriginalz

 �2 !

(32)

CORR

¼ 1
q

Xq
t¼1

PZ
z¼1

xz��xzð Þ xoriginalz ��xorigianlz

 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPZ
z¼1

xz��xzð Þ2
� 	 PZ

z¼1
xoriginalz ��xoriginalz

 �2� 	s

0
BBBB@

1
CCCCA

(33)

where xz, xoriginalz , t, q and Z have the same definitions as in
(30) and (31); �xz and �xoroginalz are the mean values for the
reconstructed image and the original image, respectively; and
e is the number of regions of interest (ROIs).

FIG. 1. (a) Simulated positron emission tomography emission image and (b) attenuation map from a real computed tomography image. [Color figure can be
viewed at wileyonlinelibrary.com]

Require: Sinogram y and system matrix P

1: Initialize: 

parameter (

maximum number of iterations (maxiter); regularization 

β ); 1 1jx = ;

2: for n=1 to maxiter do

3: EM image update using (20)

4: image smoothing using (26)

5: image update via pixel-by-pixel image fusion using (29)

6: determination of the best dictionary using the K-SVD algorithm using (8)

7: determination of the sparse coefficients using the OMP algorithm using (9)

8: end for

9: return nx

Algorithm 1. Image reconstruction algorithm for PET based on patch-based

regularization and DL (patch-DL algorithm)
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To make the calculation more accurate, we calculated the
standard deviation. The standard deviation (SD) can be calcu-
lated as follows:

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
q

Xq
t¼1

valuet � value

 �2s

(34)

where t and q have the same definitions as in (30) and (31);
valuet represents the value of the tth noise realization of
MAE, RMSE, NMSE, and CORR; and value represents the
average value of the q noise realization of MAE, RMSE,
NMSE, and CORR.

In addition, the absolute difference between the recon-
structed image and the ground truth image [Fig. 1(a)] is pre-
sented for visual judgment. The proposed patch-DL methods

were compared with the pixel-based algorithm, patch-based
algorithm and adaptive dictionary learning (AD) algorithm.
The AD algorithm was developed by Shuhang et al.1

4. RESULTS

To evaluate the performance of the proposed patch-DL
method, several algorithms, including a pixel-based algo-
rithm, a patch-based algorithm and an AD algorithm, were
chosen for comparative experiments on a simulated PET
emission image. To further optimize the pixel-based algo-
rithm and patch-based algorithm, we added a post-recon-
struction smoothing operation (Gaussian filtering). We also
optimized the AD algorithm to the optimal result. The opti-
mal reconstruction results are obtained by adjusting the

FIG. 2. Reconstructed images of the two-dimensional brain phantom using different algorithms. The two columns on the left correspond to the reconstructed
images and subtraction images under one noise realization and the 2e7 count level, and the two columns on the right correspond to the reconstructed images and
subtraction images under one noise realization and the 1e7 count level. [Color figure can be viewed at wileyonlinelibrary.com]
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parameters, as shown in Fig. 2. The 2D brain phantom, as
indicated in Fig. 1(a), has three ROIs.

Figure 2 demonstrates the reconstruction results for the
2D brain phantom data under one noise realization. In
Fig. 2, the first and third rows show the images recon-
structed using the pixel-based Lagrange regularization
algorithm37,38 and the patch-based Lagrange regularization
algorithm, respectively. The second and fourth rows show
the images reconstructed using the pixel-based algorithm
plus a post-reconstruction smoothing operation and the
patch-based algorithm plus a post-reconstruction smooth-
ing operation, respectively. Comparing the optimized
reconstructed image with the unoptimized reconstructed
image shows that the quality of the optimized recon-
structed image is improved overall. The edges of the
images and the tumor are preserved in the reconstructions.
However, the reconstructed image still contains a large
amount of noise, and the tumor region contains some
residual artifacts. The fifth row shows the image recon-
structed using the AD algorithm1; some artifacts and noise
are still present. The sixth row shows the image recon-
structed using the proposed method. By encouraging spar-
sity, the patch-DL method can considerably suppress noise
while preserving image detail, and the edges of the tumor
are also well recovered. Figure 2 (the second and fourth

columns) presents the corresponding subtraction images.
The first row to the fifth row show that there are some
differences between the images reconstructed by the pixel-,
patch-, and AD-based methods and the original phantom
image. By contrast, the sixth row shows that there is little
difference between the patch-DL-reconstructed image and
the original phantom image. To further compare the per-
formance of the pixel-, pixel + filter-, patch-, patch + fil-
ter-, AD-based, and proposed methods, zoomed-in views
of the local ROIs marked with yellow squares in Fig. 1(a)
are shown in Fig. 3. The results show that the patch-DL
method can suppress image noise more effectively while
preserving subtle structures. At the same time, the results
show that the image reconstructed with the patch-DL
method is closer to the reference image.

Tables I and II show the MAE, CORR, and RMSE values
of the whole image and the three ROIs (marked with yellow
squares in Fig. 1 (a)) for the images processed with the pixel-,
pixel + filter-, patch-, patch + filter-, AD-based, and patch-
DL methods. Among these methods, the patch-DL method
has the highest CORR and the lowest MAE and RMSE. It is
well known that a higher CORR value and lower MAE and
RMSE values indicate a higher quality reconstructed image.
Therefore, Tables I and II confirm that the proposed method
results in a better MAE, CORR, and RMSE performance in

FIG. 3. Zoomed-in views of the ROIs marked with yellow squares in Fig. 1. (a). The zoomed-in images in the first column were cropped from Fig. 1(a). The
zoomed-in images (b)–(g) in the first three rows were cropped from those in the first column (2e7 count level) in Fig. 2, and the zoomed-in images (b)–(g) in the
last three rows were cropped from those in the third column (1e7 count level) in Fig. 2. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 46 (11), November 2019

5020 Zhang et al.: Image reconstruction for PET 5020

www.wileyonlinelibrary.com


TABLE I. Statistical analysis of the reconstructed two-dimensional brain phantom with the 2e7 count level and 20 noise realizations.

Whole ROI 1 ROI 2 ROI 3

MAE

Pixel 5.7059 � 0.0449 8.3931 � 0.6415 6.9348 � 0.1660 7.3641 � 0.1989

Pixel + filter 4.8590 � 0.0349 4.7517 � 0.2398 5.3207 � 0.0877 6.2350 � 0.0940

Patch 4.7213 � 0.0365 5.7831 � 0.2989 5.5695 � 0.1070 6.0904 � 0.1195

Patch + filter 4.5758 � 0.0230 4.5750 � 0.1807 5.0902 � 0.0639 5.9397 � 0.0787

AD 4.4745 � 0.0495 5.1743 � 0.8326 5.0584 � 0.1535 5.7824 � 0.1685

Patch-DL 4.3283 � 0.0333 3.8760 � 0.1928 4.8036 � 0.0504 5.5881 � 0.1121

P value (patch-DL vs AD) <0.01 <0.01 <0.01 <0.01

CORR

Pixel 0.8771 � 0.0024 0.3587 � 0.0288 0.8905 � 0.0096 0.8624 � 0.0101

Pixel + filter 0.9137 � 8.5902e-04 0.5499 � 0.0343 0.8818 � 0.0035 0.9051 � 0.0026

Patch 0.9180 � 0.0011 0.5430 � 0.0278 0.8760 � 0.0040 0.9108 � 0.0031

Patch + filter 0.9234 � 5.6424e-04 0.5957 � 0.0254 0.8933 � 0.0028 0.9163 � 0.0017

AD 0.9211 � 0.0019 0.5399 � 0.0625 0.8869 � 0.0075 0.9099 � 0.0062

Patch-DL 0.9262 � 8.1519e-04 0.6647 � 0.0269 0.8989 � 0.0020 0.9184 � 0.0024

P value (patch-DL vs AD) <0.01 <0.01 <0.01 <0.01

RMSE

Pixel 8.4625 � 0.0883 10.9409 � 0.7150 9.3839 � 0.2651 10.4620 � 0.4015

Pixel + filter 7.1074 � 0.0332 6.5841 � 0.2558 7.2368 � 0.0978 8.7842 � 0.1059

Patch 6.8801 � 0.0432 7.3881 � 0.3222 7.3992 � 0.1168 8.4226 � 0.1366

Patch + filter 6.7115 � 0.0231 6.2350 � 0.1842 6.9040 � 0.0813 8.2760 � 0.0758

AD 6.7541 � 0.0772 7.3017 � 1.0949 7.0761 � 0.2260 8.4625 � 0.2855

Patch-DL 6.5836 � 0.0345 5.5962 � 0.1987 6.7406 � 0.0565 8.1558 � 0.1020

P value (patch-DL vs AD) <0.01 <0.01 <0.01 <0.01

TABLE II. Statistical analysis of the reconstructed two-dimensional brain phantom with the 1e7 count level and 20 noise realizations.

Whole ROI 1 ROI 2 ROI 3

MAE

Pixel 6.5879 � 0.0666 10.0655 � 0.4699 8.0939 � 0.1515 8.3682 � 0.2000

Pixel + filter 5.3071 � 0.0416 5.8211 � 0.3516 6.0035 � 0.1226 6.7635 � 0.1538

Patch 5.6771 � 0.0479 7.9392 � 0.3491 6.8066 � 0.1202 7.1509 � 0.1446

Patch + filter 5.1812 � 0.0254 5.9834 � 0.4583 5.9141 � 0.1140 6.6174 � 0.1339

AD 5.1189 � 0.0401 5.3851 � 0.8024 5.6096 � 0.2895 6.6777 � 0.2898

Patch-DL 4.8585 � 0.0322 5.0618 � 0.3798 5.5494 � 0.1014 6.3046 � 0.163

P value (patch-DL vs AD) <0.01 0.012 0.039 <0.01

CORR

Pixel 0.8417 � 0.0030 0.3132 � 0.0280 0.7583 � 0.0072 0.8295 � 0.0102

Pixel + filter 0.8987 � 0.0015 0.4616 � 0.0473 0.8544 � 0.0052 0.8907 � 0.0050

Patch 0.8832 � 0.0019 0.4009 � 0.0303 0.8212 � 0.0057 0.8780 � 0.0052

Patch + filter 0.9034 � 9.3789e-04 0.4832 � 0.0493 0.8601 � 0.0044 0.8948 � 0.0046

AD 0.8986 � 0.0028 0.4956 � 0.0764 0.8628 � 0.0107 0.8795 � 0.0145

Patch-DL 0.9110 � 0.0011 0.5599 � 0.0429 0.8725 � 0.0047 0.8997 � 0.0045

P value (patch-DL vs AD) <0.01 <0.01 <0.01 <0.01

RMSE

Pixel 9.7647 � 0.1091 13.0997 � 0.5814 10.9506 � 0.1934 11.8082 � 0.4140

Pixel + filter 7.6190 � 0.0511 7.7020 � 0.3856 7.9594 � 0.1331 9.3125 � 0.1839

Patch 8.2298 � 0.071 9.9147 � 0.3798 9.0197 � 0.1636 9.8332 � 0.2088

Patch + filter 7.4423 � 0.0343 7.7446 � 0.4965 7.8198 � 0.1153 9.1242 � 0.1853

AD 7.6125 � 0.0986 7.8617 � 1.2873 7.7440 � 0.2843 9.7183 � 0.5794

Patch-DL 7.1589 � 0.0425 6.7084 � 0.3901 7.4811 � 0.1279 8.9203 � 0.1823

P value (patch-DL vs AD) < 0.01 <0.01 <0.01 <0.01
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each ROI under both count levels. At the same time, to ana-
lyze whether the results in Tables I and II have significant dif-
ferences among the different methods, we used one-way
analysis of variance (ANOVA) to calculate P values. Five
comparison algorithms are given in our paper. We calculated
the P values by ANOVA between the five comparison algo-
rithms and the proposed patch-DL algorithm. The results
show that all P < 0.05. Therefore, to simplify, only the P val-
ues between the AD and patch-DL algorithms are given in
the table because the performance of the AD algorithm is the
best among the five comparison algorithms. From the results,
we know that most of the P < 0.01; some P > 0.01 < 0.05.
When a P < 0.01, there is a very significant difference; when
a P value is between 0.01 and 0.05, there is a significant dif-
ference. Therefore, our method can achieve a better quantita-
tive performance than those of the traditional methods.

For this simulation study, the CORR values are plotted vs
the NMSE values in Fig. 4 for various numbers of iterations
of the pixel-, pixel + filter-, patch-, patch + filter-, AD-

based, and patch-DL algorithms. Figure 4 provides further
evidence that the proposed method offers a better perfor-
mance than those of the other methods. Moreover, the corre-
sponding intensity profiles along the horizontal line (blue)
through the tumor that is indicated in Fig. 1(a) are shown in
Fig. 5. The profile obtained with the proposed patch-DL
algorithm best matches that of the original phantom.

5. DISCUSSION

5.A. The convergence of the algorithm

We analyze the convergence of the proposed patch-DL
algorithm in this section. We analyze whether the patch-based
regularization and DL methods converge in theory. Because
our proposed algorithm uses a combination of patch-based
regularization and DL, we analyze the convergence of the
patch-based regularization and DL algorithms. First, the
patch-based regularization algorithm has proven to be

FIG. 4. Correlation coefficient (CORR) and normalized mean square error (NMSE) plots comparing the proposed patch-DL method with the pixel-, pixel + fil-
ter-, patch-, patch + filter, and adaptive dictionary learning (AD)-based methods based on the CORR and NMSE values for the whole image and three region of
interests (ROIs) [marked with yellow squares in Fig. 1(a)] with the 2e7 count level and 20 noise realizations. Values calculated for (a) the whole image, (b) ROI 1,
(c) ROI 2, and (d) ROI 3. [Color figure can be viewed at wileyonlinelibrary.com]
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convergent in the other literature.2 As discussed in part 2.B,
the penalty functions used to achieve convergence need to
satisfy three conditions: (a) The function w tð Þ is symmetric
and differentiable everywhere. (b) The function w tð Þ has a
first-order derivative that is nondecreasing (hence, w tð Þ is
convex). 3) The function w tð Þ curvature is nonincreasing for
t ≥ 0, and 0\xw 0ð Þ\þ1. The patch-based penalty given
in Eq. (11) is convex for any w tð Þ that satisfies the above three
conditions. Therefore, the patch-based algorithm is conver-
gent.2

Second, the DL algorithm has also been proven to be con-
vergent in the literature.1,15 With respect to the convergence
of the DL algorithm, optimization techniques and Bayesian
techniques are two general classes of DL from an algorithmic
point of view. With respect to the optimization techniques, a
dictionary is found by optimizing an objective function that
includes parameters such as the patch size, dictionary size,
sliding distance and sparsity level. The Bayesian techniques
use a simulative statistical model to represent the data, and all
the parameters of this model can be directly inferred from the
data. In general, optimization techniques have several param-
eters that need to be justified, but such techniques can con-
verge more quickly. In contrast, Bayesian techniques do not
have any predetermined parameters but converge more
slowly.15 In this paper, the proposed DL algorithm is an opti-
mization technique, and we chose the adaptive DL method.
Once the dictionary is learned, it is applied to reconstruct the
noisy sinogram data; the dictionary is adaptively updated
based on patches that are derived from the updated recon-
structed image, and the process continues until convergence.

Through the above analysis, we know that the patch-based
regularization algorithm and DL algorithm are convergent in
theory, but this does not guarantee that the patch-DL algo-
rithm is also convergent. It is difficult to prove the conver-
gence of patch-DL in mathematics, so we did not provide
proof of the convergence of patch-DL. However, to monitor
the convergence of the proposed patch-DL method, we per-
formed many experiments. All the experimental results show

that the patch-DL algorithm is convergent. A representative
result is given in this paper, as shown in Fig. 6. Figure 6
shows the RMSE value vs iteration number. This curve is
obtained by the patch-DL algorithm (2e7 count level) in
Fig. 2. From Fig. 6, we can see that after ~100 iterations, the
RMSE changed little with further iterations, and at ~200 iter-
ations, the algorithm reached convergence. Therefore, the
patch-DL algorithm proposed in this paper is convergent.

5.B. Parameter optimization

In this section, we mainly studied the parameter optimiza-
tion of the proposed patch-DL algorithm. We discussed
parameter selection and optimization based on patch-based
regularization and DL, respectively. For patch-based regular-
ization, there are four parameters in the presented algorithm
that need to be manually tuned. The first parameter is b, a
regularization parameter in Eq. (4). b is used to balance the
prior information terms and data fidelity. It depends on the
noise level, and it should be increased when the noise level
increases, and vice versa. Therefore, choosing an optimal
value is an interesting problem. Generally, it is difficult to
find simple methods to determine an appropriate value for b,
and it is usually empirically selected in practice.39 In all of
our experiments, we empirically found that it provided the
best reconstructed images near 2�7. The second parameter is
d, the hyperparameter in Eq. (12). The experimental results
show that the optimal range of d is 1e�12 � 1e�3. When d is
1e�12 � 1e�3, it has little effect on the quality of the recon-
structed images, so in all our experiments, we chose a value
of d of 1e�9. The third one is the patch size in Eq. (28), and
the fourth one is the neighborhood size in Eq. (11). A smaller
patch and neighborhood can lead to a slower computation,
and vice versa. In addition, large patches may not be able to
identify small image features and thus cannot preserve the
corresponding edges. For our experiments, we selected differ-
ent patch sizes of 1 9 1, 3 9 3, 5 9 5, and 7 9 7, and

FIG. 5. Intensity profiles along the horizontal line (blue) through the tumor
indicated in Fig. 1(a) with the 2e7 count level. [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 6. Root mean square error value vs iteration number for the patch-DL
algorithm (2e7 count level) in Fig. 2. [Color figure can be viewed at wileyon
linelibrary.com]
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found that there was little difference in the computation and
image quality performance among the patch sizes except for
those of 1 9 1. We also selected different neighborhood sizes
of 3 9 3, 5 9 5, 7 9 7, 9 9 9, 11 9 11, and 13 9 13, and
found that a neighborhood size of 3 9 3 provided the best
performance. Therefore, in our experiments, we set both the
patch size and the neighborhood size to 3 9 3 pixels.

For DL, there are also four parameters in the presented
algorithm that need to be manually tuned. To examine the
robustness of the four tuning parameters within the range, we
calculate the relative RMSE based on different choices of m,
T0, and r, and the results are shown in Fig. 7. Our results
show that the proposed method is robust to the investigated
parameters. The first parameter is m, the patch size in DL.
Both adaptive and global dictionaries are trained from the
extracted image patches by the K-SVD algorithm. A large
element size may not be able to identify small image features,
while more computational time would be needed if we
choose a small size. In the literature, the size of the dictionary
element ranges from 2 9 2 to 10 9 10, which has the best
performance.9,15 Considering the options comprehensively, in
our experiments, we set the patch size to 6 9 6, and the size
of the dictionary was 36 9 1152. Thus, the number of rows
in the dictionary corresponded to the patch size, and the num-
ber of columns was 32 times larger than the number of rows.
The second parameter is T0, the sparsity level in Eq. (5). The
sparsity level is the number of atoms involved in representing
a patch, which is empirically determined according to the
complexity of the image to be reconstructed and the proper-
ties of the dictionary. In the literature, the sparsity level is

selected as 5–10 atoms20 to achieve the best performance.
Considering the options comprehensively, in our experi-
ments, we set the sparsity level to 5. The third parameter is e,
the reconstruction error threshold in Eq. (6). The reconstruc-
tion error threshold e represents the tolerance of the differ-
ence between the original and reconstructed images. This
value is related to the property of the dictionary and noise
level. In the literature, the value of the reconstruction error
threshold e is generally less than 1, and in all our experi-
ments, we found that when the reconstruction error threshold
e is 0.00025, the best performance is achieved. The fourth
parameter is r, the patch overlap stride. The larger the overlap
stride is, the faster the speed, but some details may be missed.
In all our experiments, we analyzed the results of varying the
overlap stride in the range of 1 to 5. Considering the options
comprehensively, in our experiments, we set the patch overlap
stride to one pixel. Based on the above discussion, we sum-
marized the selection of the parameters in Table III.

6. CONCLUSIONS

We have proposed a framework for PET image reconstruc-
tion based on patch-based regularization and DL. This frame-
work has been validated by computer simulations. The
simulation results show that the proposed patch-DL method
outperforms the pixel-, pixel + filter-, patch-, AD-, and
patch + filter-based methods.

Traditional CS reconstruction techniques usually rely on
TV regularization. Because of the piecewise constant image
model, massive blocky regions are produced in the results

FIG. 7. Parameter evaluations with 2e7 count level. (a) root mean square error (RMSE) vs patch size. (b) RMSE vs sliding distance. (c) RMSE vs sparsity level.
[Color figure can be viewed at wileyonlinelibrary.com]
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obtained in practical applications. In contrast, the purpose of
DL is to learn local patches and structural image patches
while suppressing noise, leading to a reduction in artifacts. In
addition, DL adapts to the acquired data, thus providing a
sparse representation and better restoration quality. As to
whether the algorithm converges, usually, the number of iter-
ations required for the algorithm to converge depends on the
complexity of the image and noise. In this paper, our experi-
ments show that our proposed algorithm is convergent. To
make the comparison more meaningful, we optimize the
parameters of our algorithm separately. We refer to the litera-
ture and to our own experimental data to conduct a consider-
able experimental analysis and comparison and finally
summarize the optimal parameters suitable for our data and
algorithm. The experimental results show that the proposed
method is robust to some investigated parameters.

Regarding the computation, because of the time consumed
for sparse coding, patch extraction, and DL, the patch-DL
method takes longer to run than the pixel- and patch-based
methods. We can further improve the computing speed and
reduce the reconstruction time by optimizing the DL algorithm
and by implementing the algorithm in C++ and with GPUs.

However, due to the low SNR nature of PET measure-
ments, controlling this tradeoff between noise and image
details has proven to be technically difficult. Therefore, it has
been verified that the proposed method has outperformed
other algorithms, but it cannot be guaranteed that every detail
in the reconstructed image outperforms that provided by other
algorithms. Because the proposed algorithm was validated
with only simulated 2D data, it still needs to be validated with
real three-dimensional data. In the future, we intend to
explore GPU parallelization technology to further improve
the computational efficiency and shorten the computing time.
We conclude that the patch-DL algorithm has the potential to
improve quantitative PET imaging.
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