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The overall efficacy of neoadjuvant chemoradiotherapy (NACT) for locally advanced
gastric cancer (LAGC) has been recognized. However, the response rate of NACT is
limited due to tumor heterogeneity. For patients who are resistant to NACT, not only the
operation timing will be postponed, patients will also suffer from the side effects of it. Thus,
it is important to develop a comprehensive strategy and screen out patients who may be
sensitive to NACT. This article summarizes the related research progress on the sensitivity
prediction of NACT for GC in the following aspects: microRNAs, metabolic enzymes,
exosomes, other biomarkers; inflammatory indicators, and imageological assessments.
The results showed that there were many studies on biomarkers, but no unified
conclusion has been drawn. The inflammatory indicators are related to the survival and
prognosis of patients under NACT. For imageological assessments such as CT, MRI, and
PET, with careful integration and optimization, they will have unique advantages in early
screening for patients who are sensitive to NACT.
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INTRODUCTION

Gastric cancer (GC) is one of the most common digestive system tumors. According to
GLOBOCAN estimates in 2018, the prevalence of GC ranks the fifth among all cancers, with
approximately 1.034 million new cases worldwide. Meanwhile, GC-related deaths rank the third,
with more than 783,000 patients annually (1). In China, there were 679,000 new cases and 498,000
deaths in 2015, which accounted for 42.6 and 45% of the global total, respectively (2).

Since early-stage GCs are absent of specific symptoms, 80–90% of GC patients are in the
advanced stages at their first visits (3, 4), and the proportion of patients with stage II–III GCs in
China is as high as 58.0% (5). Surgery is the main treatment for GC, but the long-term survival rate
of LAGC patients after surgery is still less than 20–30% (4). Therefore, the NACT which aims at
improving the prognosis of LAGC patients came into being. The superiorities of NACT, such as
reducing the tumor size, achieving the complete pathological remission (PR), increasing the R0
resection rate, improving the overall survival (OS) and disease-free survival (DFS), have been
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verified by numerous large-scale RCTs (6–8). In 2007, NACT
was officially adopted by NCCN guidelines, and it has become
the standard treatment for LAGC patients since then (5).

However, due to the tumor heterogeneity, the clinical
response rate of NACT is barely satisfactory (9). For patients
who are resistant to NACT, the operation timing is postponed
while the primary tumor may progress during the treatment.
More than that, the NACT-induced adverse events which could
have been avoided, may deteriorate the general condition of
those patients (10, 11). Therefore, mining the reliable indicators
that can predict the sensitivity of chemotherapy is in great need,
so as to screen out GC patients who are suitable for NACT. In
addition, the optimal course of NACT is still uncertain, so
monitoring indicators can help to evaluate the efficacy of
NACT and select the appropriate surgical timing in real time.
All of the above are hot topics which can boost the effect of
NACT and help achieve the individualized treatments for
GC patients.

In this article, we reviewed six categories of indicators which
showed promising effects in predicting and monitoring the
sensitivity and efficacy of NACT in GC treatment. Although
most of them have not been studied thoroughly and few
conclusions have been drawn, it will inspire us to design a
well-organized and individual-oriented NACT strategy for
GC patients.
Frontiers in Oncology | www.frontiersin.org 2
miRNA

MicroRNA (miRNA) is a type of non-coding single-stranded
small RNA molecule with a length of about 18–25 nucleotides,
and more than 900 miRNAs have been identified (12). By
binding to the 3 ′UTRs of mRNAs, miRNAs regulate the
expression of more than one-third of genes and participate in
varies biological processes (13). Recently, studies have shown
that the abundance of some miRNAs may help to explain the
mechanisms of chemotherapy; thus, the variation of them can be
used for chemoresistance monitoring (Table 1).

Apoptosis
Drug induced endogenous and exogenous apoptosis in cancer
cells is one of the main mechanisms of chemotherapy (14).
However, this process can be impaired by miRNAs via regulating
the expression of certain genes, which participate in apoptosis-
related signaling pathways.

BCL-2 is one of the most important anti-apoptotic genes and
is also frequently regulated by miRNAs. In 2008, Xia et al. (15)
found that miR-15b and miR-16 were down-regulated in GC-
resistant cell lines SGC7901/VCR. Meanwhile, over-expression
of miR-15b and miR-16 can increase the apoptosis of normal GC
cells (SGC7901) by inhibiting the expression of the BCL-2,
thereby reducing the resistance to adriamycin (ADR),
TABLE 1 | The potential mechanism of miRNAs for causing chemotherapy resistance in GC.

Mechanism miRNAs Target(s) Expression Drug

Apoptosis BCL-2 miR-15b, miR-16, miR-200bc/429 BCL-2 ↓ DDP,ADR, VCR,VP-16
miR-497 DDP, ADR, VP-16

miR-1217, miR-143, miR-136 DDP
miR-429 5-FU
miR-181b 5-FU,DDP, ADR,VCR, VP-16
miR-204 5-FU,OXA

PI3K/Akt miR-193-3p, miR-147 PTEN ↑ 5-FU
miR-106a, miR-21-5p DDP

miR-4295 LRIGI
miR-375 ERBB2 ↓
miR-126 EGFA
miR-19a/b PTEN ↑ DDP, ADR,5-FU
miR-316-5p FOXMI ↓ Docetaxel

MAPK miR-206 MAPK ↓ DDP
miR-135b-5p MSTI, KLF4 ↑

NF-kB miR-145 APRIL ↓ DDP
miR-20a CYLD ↑

Cell cycle arrest miR-31 ZH2 ↓ 5-FU
miR-223 FBXW7 ↑ DDP

Elevated drug efflux miR-27a BCL-2, P-gp, LRP ↓ OXA
miR-508-5p ABCBI, ZNRDI 5-FU,DDP, VCR,ADR
miR-361-3p ABCBI OXA

miR-21 P-gp ↑ PTX
miR-19a/b ADR
miR-30a ↓ DDPAutophagy LC3-II
miR-181a ATG5

miR-23b-3p ATGI2 5-FU,DDP, VCR
miR-148a-3p AKAPI, RABI2 DDP

Drug targets miR-34c-5p MAPT ↓ PTX
April 2021
ADR, doxorubicin; VCR, vincristine; Vp-16, etoposide; DDP, cisplatin; PTX, paclitaxel; 5-FU, fluorouracil; OXA, oxaliplatin.
Expression level: Upregulation(↑) or down-regulation(↓) of miRNA in drug-resistant GC cell lines compared with that in parental cells.
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vincristine (VCR), etoposide (VP-16), and cisplatin (DDP).
Later, more mechanisms have been proposed to explain the
miRNA-mediated chemotherapy resistance of GC cells on BCL-
2, such as miR-200bc/429, miR-1217, miR-143, and so on (16–
18). These results partially elaborated the chemoresistance to
DDP, 5-FU, etc, as well as the multidrug resistance (MDR).

In addition to BCL-2 protein, miRNA can also regulate the
apoptosis of GC cells induced by chemotherapy drugs through
other pathways. For example, miR-193-3p (19), miR-147 (20),
miR-106a (21), miR-21-5p (22), and miR-19a /b (23) are all
highly expressed in drug-resistant GC cell lines, and reducing
their expression will inhibit the PI3K/Akt cellular signal
transduction pathway of by promoting the expression of
PTEN, thus promoting the apoptosis of GC cells. Additionally,
up-regulating miR-206 (24) expression can weaken the
proliferation of drug-resistant GC cells, facilitate cell apoptosis,
and decrease DDP resistance via targeted inhibition of MAPK3
(mitogen activating protein kinase 3) expression. The down-
regulation of miR-135b-5p (25) induced apoptosis, and it
inhibited proliferation and DDP resistance of GC cells by
inactivating the MAPK signaling pathway and increasing the
expression of MST1 (mammalian ste20-like kinase 1). The
canonical NF-kB pathway was involved in DDP resistance too.
For example, miR-145 (26) regulated the sensitivity of GC cells to
DDP by regulating the expression of APRIL (a proliferation-
inducing ligand) through NF-kB pathway. MiR-20a (27) directly
repressed the expression of CYLD (cylindromatosis), leading to
activation of the NF-kB pathway and the downstream targets,
livin and survivin (members of the inhibitor of apoptosis protein
family, function as anti-apoptotic factors), which potentially
induced GC chemoresistance. Moreover, miR-31 (28) and
miR-223 (29) lead to apoptosis by blocking the cell cycle in the
DNA replication process, thus enhancing the chemotherapy
sensitivity of 5-FU and DDP for GC.

Elevated Drug Efflux
Chemotherapy resistance in GC is also associated with drug
efflux caused by the overexpression of some membrane
transporters, the most important of which is the ATP-binding
cassette (ABC) transporter family (30, 31), which is represented
by P-glycoprotein (P-gp), which can pump anti-tumor drugs
from inside to outside so that tumor cells can escape from the
cytotoxic effect of and show resistance to chemotherapy
drugs (30).

Some studies have conducted in-depth studies on the
relationship between miRNA and GC chemotherapy resistance
from the perspective of P-gp pathway. A study published by
Zhao (32) in 2011 showed that down-regulation of miR-27a
could significantly reduce the expression of P-gp and decrease
the transport of ADR, leading to the accumulation of ADR in GC
cells, thus enhancing the sensitivity of chemotherapy. Further
studies by Zhao (33) in 2015 showed that hypoxia-inducible
factor (HIF)-1 radiation influenced the expression of P-gp, LRP,
and BCL-2 by regulating miR-27a, resulting in chemotherapy
resistance of GC cells. In addition, miR-19a/b (23), miR-508-5p
(34), miR-30a (35), miR-21 (36) and miR-361-3p (37) have also
been proved to increase the excretion of chemotherapy drugs by
Frontiers in Oncology | www.frontiersin.org 3
regulating the expression of P-gp on the membranes of GC cells,
resulting in decreased sensitivity to chemotherapy.

Other Pathways for GC Chemo-Resistance
The mechanism of GC chemotherapy resistance is very
complicated. In addition to the abovementioned apoptosis, cell
cycle changes, and efflux of chemotherapy drugs, there are other
mechanisms involved, such as autophagy and changes in
drug targets.

In normal cells, autophagy can play an anticancer role by
maintaining gene stability, while in cancer cells, autophagy can
provide energy to cancer cells and promote the survival of tumor
cells under stressful conditions, such as radiotherapy or
chemotherapy (38). MiRNAs can also regulate the autophagy of
tumor cells, causing drug resistance to NACT. For example, miR-
30a (39), miR-181a (40), and miR-148a-3p (41) were confirmed
to have low expression in drug-resistant GC cells, and in vivo and
in vitro experiments showed that they all caused DDP resistance
by regulating the autophagy of GC cells. Additionally, miR-23b-
3p (42) leads to enhanced autophagy of GC cells through targeted
regulation of ATGI2 (autophagy-related gene 12), thereby
causing drug resistance to DDP, 5-FU, and VCR.

The changes in the chemotherapy drug targets caused by
miRNA in GC have also been investigated. In 2013, Wu (43)
reported that mir-34c-5p can regulate the expression of
microtubule-associated protein tau (MAPT), which can
stabilize the microtubule structure by promoting the
accumulation of tubule proteins into microtubules. They found
that the decreased expression of miR-34c-5p in paclitaxel-
resistant GC tissues was accompanied by the increase of
MAPT levels. Upon regulation of miR-34c-5p, the expression
of MAPT was significantly reduced, leading to the increased
sensitivity of drug-resistant GC cells to paclitaxel (PTX).

MicroRNA plays important roles in cell development,
proliferation, differentiation, apoptosis, gene regulation, and
disease occurrence, especially in the development of tumors
and drug resistance. Changing the expression level of miRNA
in tumors is expected to become a new treatment strategy. With
the deepening of research, more and more miRNAs will become
molecular markers to judge the sensitivity and prognosis of
tumor treatment, guide individualized treatment, and improve
the tumor therapeutic effect.
METABOLIC ENZYMES RELATED TO
FLUOROURACIL RESISTANCE

Regarding NACT for GC, NCCN guidelines have been updated
continuously in recent years. Fluorouracil and cisplatin (FP)
were classified as a category 1 recommendation in 2013, and
fluorouracil and oxaliplatin were classified as a category 2A
recommendation in 2017. In 2018, docetaxel, oxaliplatin,
leucovorin, and fluorouracil (FLOT) were listed as a category 1
recommendation for NACT of GC (5). Therefore, fluorouracil
is always used in NACT for GC, but due to its drug resistance,
the single-drug effective rate of 5-FU is only 20%, and the overall
April 2021 | Volume 11 | Article 641304
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effective rate of the first-line chemotherapy based on 5-FU is less
than 40%; thus some patients cannot benefit from NACT (44).
Therefore, it has become an urgent problem to explore the
indicators related to the sensitivity of 5-FU drugs to
chemotherapy. Among them, thymidylate synthase (TS),
thymidine phosphorylase (TP) and dihydropyrimidine
dehydrogenase (DPD) are the research hotspots.

5-FU is a thynoside synthase inhibitor. When 5-FU
penetrates tumor cells, it is converted into fluorouracil
deoxynucleotide (Fd UMP), which is covalently combined with
reduced tetrahydrofolic acid (CH2FH4) and TS, forming a
ternary complex to inhibit the activity of TS and interfere with
DNA synthesis of tumor cells (45). TP is the last rate-limiting
enzyme for the conversion of 5-FU prodrugs to fluorouracil.
After oral administration of the drug into the body, 5-FU is
converted into 5-fluoro-2-deoxyuracil nucleotide (Fd Urd) in the
liver. On the one hand, the drug is converted into Fd UMP to
inhibit TS. On the other hand, the drug is catalyzed into 5-FU by
TP (46). DPD is the starting and rate-limiting enzyme of 5-FU
catabolism. More than 85% of 5-FU is reduced into inactive
metabolites by DPD in liver and other tissues, which are excreted
by the kidney; thus, the activity of DPD is closely related to the
efficiency of 5-FU (47). Therefore, the relationship between
the expression levels of the enzymes TS, TP, and DPD and the
chemotherapy sensitivity and prognosis of patients with GC to 5-
FU is still a hot topic in the field of NACT.

Initially, in 2000, Salonga (48) found that colon cancer
patients with low expression levels of DPD, TS, and TP before
chemotherapy were sensitive to 5-FU. Subsequently, in 2002,
Tershima (49) reported that the activity of DPD in GC tissues
could predict the chemotherapy sensitivity and drug resistance of
tumors to 5-FU. In 2004, Wang (50) detected overexpressed TS
in the analysis of 5-FU-resistant cancer cell lines by DNA
microarray, and Etienne (51) also confirmed that TS was
closely related to the chemotherapy sensitivity of 5-FU. In the
same year, Ma (52) evaluated four kinds of GC cells and three
kinds of colon cancer cells and found that cell lines with low
DPD expression level were more sensitive to 5-FU, and DPD
mRNA could not even be detected in the most sensitive cell line
HCT-8. At the same time, it was found that TS may contribute
greatly to the sensitivity of FdUrd, and the higher the TS mRNA
levels, the higher the IC50 (50% growth inhibitory
concentration) of FdUrd. Then Napieralski (53) found that
patients with high DPD expression were insensitive to 5-FU
and had poor prognosis, while patients with low DPD expression
were just the opposite. Sasako M (54) showed that high TS and
DPD gene expression in tumors was associated with enhanced
benefit from postoperative adjuvant S-1 treatment in gastric
cancer. Later in 2016, a meta-analysis covered 555 patients
with GC treated with S-1 showed that there was a significant
difference in ORR (objective response rate) between patients with
high/+ and low/− expression of DPD (55).

It can be seen from the above studies that the enzymes related
to fluorouracil metabolism have always been the focus of NACT,
but they are mainly limited to in vitro experiments; thus, the
systematic in vivo experiments on NACT of GC still require
further exploration.
Frontiers in Oncology | www.frontiersin.org 4
EXOSOMES

Exosomes are also one of the star molecules in new biomarkers.
They are small lipid bilayer extracellular vesicles loading a variety
of cargo, including DNA, mRNA, miRNA, circular RNA,
protein, etc (56), typically 30–100 nm in size, and can be
detected in various biological fluids, such as serum, urine and
saliva (57). More and more reports have shown that exosomes
play an important role in tumor growth, metastasis, angiogenesis
and immune regulation by acting as information communicators
(58–60). Moreover, exosomes have recently been found to be
involved in the regulation of cancer chemoresistance (61–63),
GC is surely included.

In 2020 Sun MY (64) demonstrated that RPS3 (Ribosomal
Protein S3) expression levels were significantly elevated in
cisplatin-resistant gastric cancer cell line SGC7901 and the
exosomal delivery of RPS3 might induce chemoresistance
phenotypes from cisplatin-resistant gastric cancer cells to
sensitive cancer cells by regulating the PI3K-Akt-cofilin-1
signaling pathway. And Zhang QM (65) indicated that
exosomes with si-c-Met can inhibit the invasion and migration
of GC cells and promote apoptosis in vitro and inhibit tumor
growth in vivo, reversing the resistance to cisplatin in GC.

In addition to proteins, RNAs in exosomes were also found to
be associated with chemosensitivity in GC. Zhang HY (66)
showed that cisplatin and paclitaxel promoted exosomal miR-
522 secretion from CAFs (cancer-associated fibroblasts), leading
to ALOX15 (arachidonate lipoxygenase 15) suppression and
decreased lipid-ROS (toxic lipid peroxides) accumulation in
GC cells, and ultimately result in decreased chemo-sensitivity.
Furthermore, it was reported that exosome miR-155-5p directly
inhibits GATA3 (GATA binding protein 3) and TP53INP1
(tumor protein p53-induced nuclear protein 1) to induce
paclitaxel resistant GC cells to sensitive ones (67). And Wang
SM (68) found that exosomal circPRRX1 (circular paired-related
homeobox 1) strengthened doxorubicin resistance of GC cells by
modulating miR-3064-5p/PTPN14 (non-receptor tyrosine
phosphatase 14) signaling pathway.

Exosomes contain not only proteins but also a significant
amount of nucleic acids, including DNA, mRNAs, miRNAs,
circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs)
(69), as well as cholesterols, diglycerides, phospholipids,
glycerophospholipids, sphingomyelins, and ceramides (70). In
order to identify more sensitive and specific exosomes to guide
individual chemotherapy choices, future studies should further
clarify the roles and potential mechanisms of exosomes in cancer
with more chemotherapeutic drugs.
OTHER CHEMOTHERAPY-RELATED
BIOMARKERS

Biomarkers are the most cutting-edge research direction for the
prediction of the chemotherapy sensitivity of GC. In addition to
miRNAs and fluorouracil metabolic enzymes, glutathione S-
transferase (GST) is also involved. In 2006, Goekkurt (71)
analyzed the polymorphism of GST genes in 52 patients
April 2021 | Volume 11 | Article 641304
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withLAGC who received 5-Fu or DDP in NACT and found that
the efficacy in patients with the GSTP-105Val/Val gene subtype
(67%) was better than those with at least one 105Ile allele (21%).

In 2017, Li (72) detected the expression of P-glycoprotein
(P-gp), glutathione S-transferase-p (GST-p), topoisomerase II
(topo II), multidrug resistance gene-associated protein (MRP),
lung resistance-related protein (LRP), Ki-67, and p53 in cancer
tissues of 93 elderly patients with AGEJ (adenocarcinoma of
gastroesophageal junction) before NACT and then analyzed the
relationship between the expression of these proteins and
the curative effect of NACT. The results showed that only the
expressions levels of ki-67 (p = 0.003) and p53 (p = 0.009) were
significantly correlated with the sensitivity to NACT, and the
increased expression of ki-67 and the decreased expression
of p53 predicted the SOX insensitivity of elderly patients
with AGEJ.

In 2019, Hashimoto (73) compared the mismatch repair
genes MLH-1 and PD-L1 of 110 GC patients who received
different NACTs with 175 patients who did not receive any
NACT and found that the NACT response of MLH1-negative
patients was significantly lower than that of MLH1-positive
patients (16.7 vs. 61.2%, P = 0.005), while there was no
significant difference between patients with high and low PD-
L1 expression (55.9 vs. 56.6%, P = 0.95). Therefore, it is
recommended that MLH1-negative patients with GC should be
treated with surgery alone, while patients with other types of GC
should be treated with a combination of surgery and preoperative
or postoperative chemotherapy. The study also showed that poor
prognosis of MLH1-positive patients with GC can be improved
by NACT. At the same time, PD-L1 expression did not have any
predictive characteristics for prognosis or NACT response.

With the characterization of more biomarkers and the
improvement of various detection levels, a growing number of
markers such as tumor markers (for example, CEA, CA19-9,
CA153, CA72-4, AFP) (74), circulating free DNA (cfDNA) (75),
and circulating tumor cells (CTC) (76), were used to predict the
sensitivity of NACT for GC to provide clinical evidence of
individualized diagnoses and treatment plans. However, due to
the small sample size, different chemotherapy options, and the
presence of so many biomarkers, but very few with specificities,
the use of biomarkers to specifically predict the sensitivity of
NACT for GC still requires our further efforts and exploration.
INFLAMMATORY MARKERS

Some studies have found that the occurrence and development of
tumors are closely related to systemic inflammatory responses
(77), and some of the inflammatory markers may be associated
with the effectiveness of NACT (78). A 2014 study by Borsig (79)
noted that peripheral blood tests can reflect the level of
inflammation at the time of tumorigenesis and that
inflammatory markers such as C-reactive protein (CRP), white
blood cells (WBC), and neutrophil–lymphocyte ratio (NLR) and
platelet–lymphocyte ratio (PLR) can all be used as prognostic
factors for patients with various malignancies. In LAGC, high NLR
is considered to be an effective predictor of survival, and in 2014,
Frontiers in Oncology | www.frontiersin.org 5
Mohamed (80) found that a high level of NLR indicates a worse
PFS (progression free survival) and OS (overall survival) in
patients with LAGC undergoing NACT. The Glasgow
prognostic score (GPS), which is calculated from CRP and
serum albumin (ALB), is considered as a comprehensive
indicator reflecting the systemic inflammatory response and
nutritional status. Studies have shown that in some tumors, GPS
is related to the effectiveness of NACT and prognosis. In patients
with AGEJ, an increase in GPS score may indicate a decrease in the
tolerance and efficacy of NACT and a reduction in survival time.

In the tumor microenvironment, macrophages are known as
tumor-associated macrophages (TAMs), which are one of the
most abundant immune cells. The degree of TAMs’ infiltration in
tumor tissues was positively correlated with the adverse prognosis
of various tumors, including GC. TAMs promote tumor
progression by secreting a variety of inflammatory factors,
including growth factors, chemokines, and cytokines (81).
Macrophages are divided into M1 and M2 types. M1
macrophages have pro-inflammatory effects, producing various
cytokines and chemokines, such as IL-12 (interleukin 12), CXCL9
(C-X-C motif ligand 9), and TNF-a (tumor necrosis factor-a)
(82). M2 macrophages produce anti-inflammatory cytokines, such
as TGF-b (transforming growth factor-b) and IL-10 (83). In the
GC mouse models, macrophages were recruited by chemokines
and cytokines derived by epithelia (84–89), and they produced
pro-inflammatory cytokines such as TNF-a and stimulated tumor
growth (88, 90). Moreover, the depletion of macrophages in these
mouse models inhibited the proliferation and tumorigenesis of
epithelia (87, 89, 90). Besides, gene expression and a novel
associated cytokine panel were also linked to GC metastasis. For
example, in 2020 Qeadan (91) found that MK2 (Map kinase-
activated protein kinase 2) expression and a panel of associated
cytokines secreted by GC cells, including G-CSF (granulocyte
colony-stimulating factor), GM-CSF (granulocyte-macrophage
colony-stimulating factor), Mip-1b (macrophage inflammatory
protein-1b), IFN-a (interferon-a), MCP-1 (monocyte
chemotactic protein 1), IL-1b, IL-6, and TNF-a to be linked to
GC metastasis. But more future studies are needed to clarify the
precise role of macrophages, cytokines, and other inflammatory
markers in the NACT of GC.
CT, MRI, PET AND OTHER IMAGING
EVALUATION INDICATORS

At present, the evaluation of the efficacy of chemotherapy for GC
is still mainly based on the response evaluation criteria in solid
tumors (RECIST) and WHO (World Health Organization)
standards, which are evaluated by measuring the changes of
maximum diameter and area of tumors before and after
chemotherapy (92, 93). However, the stomach is a cavity organ,
thus changes in its wall thickness, peristalsis, tumor morphology,
and measurement angle will make the measurements of lesion
size inaccurate (94). Theoretically, the morphological changes are
the result of changes in the biological behavior of the lesion. After
NACT, the lesions should have already changed functionally
before morphological changes occurred, mainly manifesting as
April 2021 | Volume 11 | Article 641304
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the reduction of tumor local blood perfusion (95). Therefore, if
imageological assessments can be used to observe tumor-
associated vessels in GC patients, it would be of great
clinical significance.

In 2014, Hansen found that after chemotherapy for GC, the
tumor volume and surface permeability value (an indicator of
tumor local vascular permeability) in CT (computed
tomography) perfusion parameters both decreased significantly
(96). Moreover, energy spectral CT can accurately reflect the true
iodine concentration (97), and iodine concentration can
accurately reflect the blood supply and vascular conditions of
lesions (98), so the energy spectrum CT is also used to evaluate
the vascularization after NACT for GC. In 2005, Tang’s study
showed that there was a significant difference in iodine
concentration in the arteriovenous phase before and after
NACT, and the change of iodine concentration was
significantly correlated with tumor regression grade (99). Some
studies also used iodine uptake (IU) as a functional parameter to
assess the sensitivity of chemotherapy in other tumors, but
further research is still needed on NACT for GC. There are
also other imageological assessments. For instance, in 2016, Lee
analyzed 11 LAGC patients after NACT by PET and MRI
(magnetic resonance imaging), showing that K (trans) and
iAUC (initial area under the curves) values can be used as
early predictive markers for chemotherapy response (100).
Latter in 2018, the study of Schneider showed that in GC or
AGEJ patients, after the first cycle of NACT PET-CT (positron
emission tomography–computed tomography)cannot accurately
predict the overall pathological response, but it can accurately
detect patients who are insensitive to NACT and should be
operated upon immediately or treated in combination with other
methods (101).
Frontiers in Oncology | www.frontiersin.org 6
CONCLUSION

NACT is currently an effective treatment for GC, but not all
patients are sensitive to it. Therefore, searching for specific
indicators to predict the sensitivity of NACT in GC,
individualized diagnosis and treatment are still important parts
of clinical research content. At present, whether biomarkers,
inflammatory markers, or imageological assessments are used, it
is still difficult to select patients who are sensitive to NACT. Most
of the current research involves single-center macroscopic
studies. Therefore, multicenter studies with larger samples in
terms of proteomics, transcriptomics, and genomics, are needed
to select the indicators for predicting the efficacy and prognosis
of NACT to help screen out patients for tailored treatments.
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