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ABSTRACT Aspergillus fumigatus is the main cause of invasive aspergillosis (IA) with
a high annual global incidence and mortality rate. Recent studies have indicated an
increasing prevalence of azole-resistant A. fumigatus (ARAF) strains, with agricultural
use of azole fungicides as a potential contributor. China has an extensive agricultural
production system and uses a wide array of fungicides for crop production, including
in modern growth facilities such as greenhouses. Soils in greenhouses are among
the most intensively cultivated. However, little is known about the occurrence and
distribution of ARAF in greenhouse soils. Here, we investigated genetic variation and
triazole drug susceptibility in A. fumigatus from greenhouses around metropolitan
Kunming in Yunnan, southwest China. Abundant allelic and genotypic variations
were found among 233 A. fumigatus strains isolated from nine greenhouses in this
region. Significantly, ~80% of the strains were resistant to at least one medical tria-
zole drug, with >30% showing cross-resistance to both itraconazole and voricona-
zole. Several previously reported mutations associated with triazole resistance in the
triazole target gene cyp51A were also found in our strains, with a strong positive cor-
relation between the frequency of mutations at the cyp571A promoter and that of
voriconazole resistance. Phylogenetic analyses of cyp51A gene sequences showed
evidence for multiple independent origins of azole-resistant genotypes of A. fumiga-
tus in these greenhouses. Evidence for multiple origins of azole resistance and the
widespread distributions of genetically very diverse triazole-resistant strains of A.
fumigatus in greenhouses calls for significant attention from public health agencies.

IMPORTANCE The origin and prevalence of azole-resistant Aspergillus fumigatus have
been attracting increasing attention from biologists, clinicians, and public health
agencies. Current evidence suggests agricultural fungicide use as a major cause. In
southwest China, greenhouses are used to produce large amounts of fruits, flowers,
and vegetables for consumers throughout China as well as those in other countries,
primarily in southeast Asia. Here, we found a very high frequency (~80%) of tria-
zole-resistant A. fumigatus in our sample, the highest reported so far, with a signifi-
cant proportion of these strains resistant to both tested agricultural fungicides and
medical triazole drugs. In addition, we found novel allelic and genotypic diversities
and evidence for multiple independent origins of azole-resistant genotypes of A.
fumigatus in greenhouse populations in this region. Our study calls for a systematic
evaluation of the effects of azole fungicide usage in greenhouses on human health.
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spergillus is a large fungal genus comprising more than 300 different species dis-

tributed in a broad range of ecological niches. Aspergillus species can release large
amounts of airborne asexual spores, the conidia, into the environment. Thus, inhalation
of Aspergillus conidia by humans is a common event. While such spores typically have
no or very limited effects on healthy people, for immunocompromised individuals,
such exposures can result in significant infections. The most severe form of Aspergillus
infection is invasive aspergillosis (IA). 1A is commonly caused by Aspergillus fumigatus
and has a global annual incidence of approximately 10% and a mortality rate as high
as 90% (1-3), even when properly diagnosed and treated (4, 5). Successful treatments
of IA have relied almost exclusively on triazole antifungals, such as itraconazole (ITR),
posaconazole (POS), and voriconazole (VOR) (6, 7). However, prolonged use of triazoles
increases the likelihood of the development of drug resistance (8). Unfortunately, since
the first report of ITR-resistant A. fumigatus in 1997 (9), azole-resistant A. fumigatus
(ARAF) has been widely identified both in IA patients and in environmental isolates
from many parts of the world (10-13). The recent COVID-19 pandemic has further exa-
cerbated the problem, with increasing reports of COVID-19-associated azole-resistant
pulmonary aspergillosis (CAPA) affecting patients with severe pulmonary abnormalities
and causing prolonged stays in intensive care units (14, 15).

Due to their clinical importance, significant efforts have been put into investigating
the reasons for the origin of ARAF strains. Consequently, our understanding of the ori-
gin and distributions of ARAF has improved markedly in the last 2 decades. At the mo-
lecular level, a number of point mutations in the cyp51A gene causing amino acid sub-
stitutions in lanosterol 14-a-demethylase, the target of triazole drugs, are known to be
associated with reduced triazole susceptibility. Specifically, the amino acids at positions
G54, Y121, G138, P216, F219, M220, A284, Y431, G432, G434, and G448 represent the
known major azole resistance mutations in Aspergillus (16-22). Second, transcriptional
upregulation of cyp51A by changes in tandem repeats TR,,, TR, and TRs; in the pro-
moter region is frequently observed among azole-resistant strains. Some of the tan-
dem repeats in the promoter region co-occur with specific single nucleotide polymor-
phisms (SNPs) in the coding sequence to confer azole resistance. Specifically, two such
promoter expansion and nonsynonymous substitution combinations have been widely
observed, TR;,/L98H and TR,/Y121F/T289A (20, 23-26). In addition, overexpression of
multidrug efflux pumps has been hypothesized as being responsible for the acquisition
of azole resistance in Aspergillus. Such efflux pumps can reduce the amount of triazole
drugs within cells and maintain regular cellular activities (27). However, despite the
reported associations of many mutations at the cyp571A locus in azole-resistant strains
of A. fumigatus, few have been validated, and the detailed molecular mechanisms for
azole resistance remain incompletely understood.

Understanding the genetic diversity and population history of pathogenic fungi can
help us determine the origins and spread of antifungal resistance. Such knowledge
could help us develop better prevention and control measures against the origins and
transmissions of drug-resistant infections (28). Indeed, over the last few decades, envi-
ronmental and clinical A. fumigatus strains from different geographic areas have been
genotyped with multiple molecular methods, including multilocus sequence typing
(MLST), short tandem repeats (STRs) or microsatellite markers, randomly amplified pol-
ymorphic DNA (RAPD) typing, restriction fragment length polymorphisms (RFLP)
detected through Southern hybridization, PCR-RFLP, amplified fragment length poly-
morphisms (AFLP), and whole-genome sequencing (29-34). These studies have
revealed variable results, from no genetic structure to significant genetic structuring
and multiple distinct clusters, depending on the markers used and the population sam-
ples analyzed (35). Recently, simple and low-cost genotyping methods such as ARMS-
PCR using tetra-primers and cell surface protein typing (CSP) were developed to detect
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and genotype ARAFs (36, 37). Among these markers, due to their high reproducibility
and high discriminating power, a panel of nine STRs has emerged as the markers of
choice for genotyping A. fumigatus. Indeed, these nine markers have been used to ana-
lyze local, regional, and global samples of A. fumigatus (1, 5, 38). In a recent study, two
well-supported phylogenetic clades were identified in the global A. fumigatus popula-
tions (25, 31, 39-41). Studies based on both high-resolution whole-genome sequenc-
ing of dozens of isolates and STR genotyping of a global collection of 4,049 isolates
found that isolates harboring the TR;,/L98H or the TR,s/Y121F/T289A mutations were
not evenly distributed between the two phylogenetic clades. These results suggest
that genetic backgrounds may be related to the propensity of certain strains to de-
velop resistance to multiple azole drugs, including the TR,,/L98H mutation.
Alternatively, such mutations could cause selective sweeps and change the genetic
structure of natural populations of A. fumigatus, leading to their biased distributions
between clades (5, 25, 42).

So far, both clinical and environmental samples of ARAF have been found from
Europe, America, Africa, New Zealand, the Middle East, and Asia (27, 43-52). Traditionally,
the emergence of azole resistance in A. fumigatus populations was believed due to long-
term clinical azole therapy. Since ARAF can also be isolated from patients who had never
received azole therapy (53), environmental origins of ARAF have been increasingly sus-
pected for these patients. Indeed, azole fungicides have molecular targets identical/simi-
lar to those of clinical azole drugs against A. fumigatus (27), and a large number of agricul-
tural azole fungicides have been used in many parts of the world. In China, azole
fungicides triadimefon (TRI), tebuconazole (TEB), difenoconazole (DIF), propiconazole
(PRO), hexaconazole (HEX), and flusilazole (FLU) are the top six most commonly used fun-
gicides (54). Based on samples isolated from 12 provinces in China, 2.5% and 1.4% of clini-
cal and environmental A. fumigatus strains, respectively, were identified as resistant to
azoles (55). Though the genetic features and drug-resistant mutations were unknown, a
study analyzing A. fumigatus in Zhejiang Province, China, found ARAF in soil samples
from greenhouses (27). Furthermore, TR,,/L98H and TR,,/L98H/S297T/F495| were found
to be the most common resistance mechanisms in China. However, strains with these
two mutations were phylogenetically distinct from those strains with the same mutations
in the Netherlands and Denmark as indicated by STR typing, consistent with their inde-
pendent origins (55). These results suggest that the use of azole fungicides has likely
selected for the development of azole resistance among fungal species in soils. The
increasing antifungal resistance in agricultural fields can cause significant problems not
only for agriculture but also for human health, especially in the case of opportunistic
human fungal pathogens with a primary ecological niche in soil, including agricultural
soil. Thus, it is very important to investigate the prevalence and molecular mechanisms of
azole resistance in order to better understand the origin and evolution of azole resistance
and to better respond to the continued emergence of azole-resistant aspergillosis.

The objective of this study was to analyze the fine-scale population structure of A.
fumigatus samples from greenhouses in southwestern China. At present, almost noth-
ing is known about the prevalence of azole resistance in A. fumigatus from southwest
China. Due to its relatively mild climate throughout the year, Yunnan Province in
southwestern China produces large amounts of fruits, flowers, and vegetables for con-
sumers throughout China. Some of those horticultural and agricultural products are
also exported to other countries. The sustained high agricultural productivity in this
region has benefited from the presence of a large number of greenhouses, especially
around Kunming, the capital city of Yunnan Province. In this study, we isolated and an-
alyzed A. fumigatus from nine greenhouses around Kunming and compared them with
each other and with those from other parts of the world in the global database. Our
study identified a high prevalence of azole-resistant strains, with a significant propor-
tion resistant to two medical triazole drugs. The DNA sequences at the azole target
gene cyp51A were analyzed to identify potential mutations associated with the
observed azole resistance.
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TABLE 1 Prevalence of azole resistance among A. fumigatus samples from the nine greenhouses

mSphere

Proportion of strains (no. of isolates within MIC

Proportion resistant (no. of resistant isolates/ value range/total no. of isolates) with an MIC to
total no. of isolates) to: tebuconazole of:
No. of

Population isolates ITR VOR Both ITR and VOR 232 pg/ml 4-16 pug/ml <4 pg/ml
Pop. 1 28 100 (28/28) 85.71 (24/28) 85.71 (24/28) 89.29 (25//28) 10.71 (3/28) 00.00 (0/28)
Pop. 2 25 76 (19/25) 0 (0/25) 0(0/25) 4.00 (1/25) 88.00 (22/25) 8.00 (2/25)
Pop. 3 28 32.14 (9/28) 3.57(1/28) 3.57(1/28) 7.14 (2/28) 50 (14/28) 42.86 (12/28)
Pop. 4 27 62.96 (17/27) 7.41(2/27) 7.41(2/27) 0.00 (0/27) 25.93 (7/27) 74.07 (20/27)
Pop. 5 24 45.83 (11/24) 25 (6/24) 20.83 (5/24) 8.33(2/24) 37.50 (9/24) 54,17 (13/24)
Pop. 6 28 100 (28/28) 32.14 (9/28) 32.141 (9/28) 17.86 (5/28 78.57 (22/23) 3.57(1/28)
Pop.7 20 95 (19/20) 15 (3/20) 15 (3/20) 10.00 (2/20 60.00 (12/20) 30.00 (6/20)
Pop. 8 25 96 (24/25) 32(8/25) 32(8/25) 32.00 36.00 (9/25) 32.00 (8/25)
Pop.9 28 100 (28/28) 92.86 (26/28) 92.86 (26/28) 78.57 17.86 (5/28) 3.57(1/28)
Total 233 78.54 (183/233) 33.91(79/233) 33.48 (78/233) 28.76 (67/233) 44,21 (103/233) 27.04 (63/233)

RESULTS

Isolation and susceptibility of A. fumigatus isolates. From the 900 soil samples
from the nine different greenhouses, we obtained a total of 233 A. fumigatus isolates,
each from a different soil sample. Analyses of the internal transcribed spacer (ITS)
sequences for 60 randomly selected isolates representing all nine greenhouses con-
firmed that all 60 belonged to A. fumigatus. Our successful STR genotyping using the
nine A. fumigatus-specific primers also confirmed the correct species identification.
Furthermore, the STR genotyping assays showed that each isolate contained one allele
at each of the nine STR loci, consistent with each of the 233 strains being a single pure
isolate. The numbers of A. fumigatus isolates from greenhouse populations 1 to 9 (pop.
1 to pop. 9) were 28, 25, 28, 27, 24, 28, 20, 25, and 28, respectively. Azole susceptibility
testing of these isolates showed that the MICs of ITR, VOR, TRI, and TEB ranged from 1
to =16 ug/ml (MICsy = 8 wg/ml), 0.125 to =16 ug/ml (MIC5, = 1 ug/ml), 32 to >32 ug/
ml, and 0.125 to =32 ug/ml (MICs, = 4 ug/ml), respectively (see Table S1 in the supple-
mental material). In total, for the two clinical triazoles ITR and VOR, 78.54% (183/233),
33.91% (79/233), and 33.48% (78/233) of the A. fumigatus isolates were able to grow at
drug concentrations higher than the resistance breakpoint values of ITR, VOR, and
both ITR and VOR, respectively. Interestingly, the prevalence of azole-resistant strains
varied widely among the greenhouses for different azoles. For example, all strains iso-
lated from pop. 1, pop. 6, and pop. 9 were ITR resistant, while the prevalence of ITR re-
sistance in pop. 3 was only 32.14% (9/28). The most abundant resistant A. fumigatus
strains to VOR were found in pop. 9 at 92.86% (26/28), while no strain in pop. 2 was re-
sistant to VOR. For triazole fungicides, 100% (233/233) and 28.76% (67/233) A. fumiga-
tus isolates were able to grow on media with =16 ug/ml (MIC = 32 wg/ml) TRI and
TEB, respectively. Interestingly, similar to those for ITR and VOR but different from that
for TRI, the prevalence for TEB resistance varied widely among the nine greenhouse
populations, with 89.29% (25/28) of strains isolated from pop. 1 showing an MIC of
=32 pg/ml, while no strain in pop. 4 showed such a high MIC. Our comparative analy-
ses of the susceptibility patterns to the four azole drugs showed that most green-
houses with a high proportion of ITR resistance also had a high MIC value to TEB
(MIC=4 pg/ml) (Table 1).

cyp51A gene sequencing and phylogenetic analysis. Our sequence analyses of
the azole target gene cyp571A showed that 14.16% (33/233) of A. fumigatus isolates
had insertional mutations in the promoter region of the cyp571A gene, including TR,,/
L98H (n=25; 10.73%), TR;,/L98H/S297T/F495| (n=3; 1.29%), TR,s/Y121F/T289A (n=3;
1.29%), and TRs; (n=2; 0.86%) (Table ST1).

Interestingly, similar to the variable frequencies of ARAF from different green-
houses, the occurrence of insertion mutations in the promoter region among different
greenhouses also varied widely. Isolates of A. fumigatus in pop. 1 and pop. 9 were
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found to have the highest insertional mutations in the promoter region, at 39.29%
each, while none was found in pop. 2.

Among the 233 A. fumigatus isolates, there were 17 single nucleotide polymor-
phisms (SNPs) in the sequences of the cyp57A gene, with two in the intron region and
15 in the exon region. Among the 15 SNPs in the exon regions, four were synonymous,
including 267G—A, 540G—A, 1074A—G, and 1362T—C, with the frequencies of
mutated bases at 0.0601 (14/233), 0.0472 (11/233), 0.9399 (219/233), and 0.0601 (14/
233), respectively. Interestingly, three of the four mutations (267G—A, 1074A—G, and
1362T—C) always occurred together. The remaining 11 SNPs were nonsynonymous,
which separated the 233 strains into nine haplotypes, among which the most frequent
haplotype was F, with a frequency of 0.6867 (160/233), followed by haplotype E, at a
frequency of 0.1202 (28/233) (Table 2). Both haplotypes F and E were shared among
the nine greenhouses. Four of the haplotypes (B, C, D, and |) were shared by at least
two greenhouses. Of the remaining three, two haplotypes, A and H, were only found in
pop. 8, while haplotype G was only found in pop. 9.

When translated into amino acids, the 11 nonsynonymous substitutions caused changes
at 10 amino acid sites, including F46Y, L98H, Y121F, M172V, N248T/K, D255E, T289A, S297T,
E427K, and F495I (Table 3). Further analysis revealed that 12 of the 233 strains had a combi-
nation of three nonsynonymous mutations, Y46F, E427K, and M172V, with two of the 12
having two additional mutations, N248T and D255E. Furthermore, three strains each had
two (Y121F and T289A) or three (L98H, S297T, and F495l) mutations together. We analyzed
the associations among the SNPs using Multilocus software. In this analysis, synonymous
and nonsynonymous SNPs were analyzed separately, and different bases at the same SNP
site were treated as different alleles. The results of our analyses were consistent with evi-
dence of recombination/convergent mutation within the synonymous sites in our popula-
tion of A. fumigatus. Specifically, although the analysis of the four synonymous SNPs
rejected the null hypothesis of random recombination (rBarD =0.537306, P < 0.001),
there was clear evidence of phylogenetic incompatibility between two pairs of SNP
sites (267G—A and 540G—A; 540G—A and 1074A—G@G) (PrC=0.5, P = 0.085). In con-
trast, there was a lack of phylogenetic incompatibility between pairs of SNP sites
among the 11 nonsynonymous SNPs (PrC=1, P < 0.001; rBarD=0.111135, P < 0.001),
indicating no evidence of recombination or convergent mutation at these nonsynony-
mous SNP sites. The lack of recombination allowed us to reconstruct the ancestral nonsy-
nonymous SNPs across the phylogeny constructed by the synonymous SNPs using RASP
(see Fig. S1). Our analyses showed that isolates harboring nonsynonymous mutations
were broadly distributed across the phylogeny, consistent with multiple origins of the
azole-resistant genotypes. The high ratio of nonsynonymous to synonymous evolution-
ary changes (dN/dS ratio) at the cyp51A gene (w = 2.0004 [0.9062/0.4530]) also sug-
gested that positive selection was likely a major force driving the origin and mainte-
nance of azole-resistant cyp51A mutations.

Genotyping of A. fumigatus isolates and population genetic analyses. Of all the
233 A. fumigatus isolates from 9 different greenhouses, a total of 208 alleles and 199
multilocus genotypes were found across the nine STR loci. The number of alleles
ranged from 13 to 44 per locus among the nine STR loci, with an average of 23.
Among the total 208 alleles, 168 were shared between at least two of the nine green-
houses. The remain 40 alleles were found only in one greenhouse each (Table 4). The
nine greenhouses also differed in their total numbers of alleles, with the largest num-
ber found in pop. 4 (115 alleles) and the smallest in pop. 3 (71 alleles). Of the total 199
multilocus genotypes, only 6 were shared by two or more greenhouses, and the other
193 were only found in one greenhouse each. Analysis of molecular variance (AMOVA)
results based on clone-corrected data showed that 98% of the total genetic variation
was found within individual greenhouse populations (P = 0.001), with a low (2%) but
statistically significant genetic differentiation among the nine greenhouse popula-
tions (PhiPT=0.019, P = 0.001) (see Table S2). We further investigated the extent of
genetic differentiation between pairs of greenhouse populations. Among the 36
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TABLE 3 Distribution of amino acid substitutions within the cyp51A gene among the 233 A. fumigatus isolates from nine greenhouses

No. of strains with the mutation in each greenhouse

Frequenc

Mutation site  Mutationtype Pop.1 Pop.2 Pop.3 Pop.4 Pop.5 Pop.6 Pop.7 Pop.8 Pop.9 Total (forq233 is{)Iates)
46 F—Y 1 1 0 0 0 0 0 10 0 12 0.0515
98 L—H 8 0 1 1 2 1 1 4 10 28 0.1202
121 Y—F 1 0 0 0 0 0 0 1 1 3 0.0129
172 M—V 1 1 0 0 0 0 0 10 0 12 0.0515
248 N—K 4 4 2 3 4 5 1 2 3 28 0.1202
248 N—T 1 1 0 0 0 0 0 0 0 2 0.0086
255 D—E 1 1 0 0 0 0 0 0 0 2 0.0086
289 T—A 1 0 0 0 0 0 0 1 2 4 0.0172
297 ST 1 0 0 1 0 0 0 0 1 3 0.0129
427 E—K 1 1 0 0 0 0 0 10 0 12 0.0515
495 F—l 1 0 0 1 0 0 0 0 1 3 0.0129
possible greenhouse population pairs, 15 pairs showed statistically significant differ-
entiation (P < 0.05). The biggest differentiation was found between pop. 5 and pop.
9 (PhiPT=0.059, P = 0.001), followed by that between pop. 6 and pop. 9
(PhiPT=0.058, P = 0.001) (see Table S3). However, despite the observed genetic dif-
ferentiation, a Mantel test showed no significant correlation between geographical
distances and population genetic distances, indicating that there was gene flow
between greenhouse populations of A. fumigatus but that the degree of gene flow
was not correlated with their physical distances with each other (Fig. 1A) (correlation
coefficient = 0.0248, P = 0.18).

Results from Multilocus analyses showed limited but unambiguous evidence for
recombination among the nine STR loci in the total sample, including all 233 A.
fumigatus isolates (PrC=0, P = 1; rBarD=0.097441, P < 0.001). To identify poten-
tially distinct genetic populations within our A. fumigatus sample, we investigated
the likely number of genetic clusters using STRUCTURE software. The number of
clusters (K=2) was inferred, because the standard deviation of posterior probability
was the lowest for that K (Fig. 2A and C). The conclusion was supported by cluster-
ing based on Nei’s genetic distance, with one cluster containing 13 isolates mainly
from pop. 8 and the other containing 220 isolates (see Fig. S2). Principal-coordinate
analysis (PCoA) using the mean pop. haploid genetic distance showed that the first
principal coordinate (PC1) accounted for 56.34% of the total variance, while the sec-
ond coordinate (PC2) accounted for 20.29%; these first two coordinates combined
to explain 76.63% of the total variation (Fig. 1B). As can be seen from Fig. 1B, green-
house populations 2, 5, and 9 were distinctly different from other greenhouse
populations.

We further assessed the relationships between our A. fumigatus samples and those
from other countries (regions). Specifically, we compared our A. fumigatus with those
TABLE 4 STR allele distributions within and among nine greenhouse populations of A. fumigatus for each of the nine STR loci

X No. of alleles (no. of private alleles) in:
No. of alleles in

Locus the total sample Pop. 1 Pop. 2 Pop. 3 Pop. 4 Pop. 5 Pop. 6 Pop.7 Pop. 8 Pop. 9
STRAF2A 18 12 9 8 (1) 11(2) 10 10 11 9 10
STRAF2B 20 11 10 8 12 8 10 (1) 12(2) 12 (3) 8 (1)
STRAF2C 23 16 11(2) 9 12 12(1) 13(1) 12(1) " 9
STRAF3A 44 21 16 (2) 11 21 (1) 18 (1) 21 (1) 15 (2) 13 15
STRAF3B 26 12(1) 11(1) 6 13 11(2) 17 (3) 10 9 7
STRAF3C 32 15 14 (2) 11(1) 18 13 16 14(1) 10(1) 10
STRAF4A 18 10 7 9 13 8 10 9 9 10 (2)
STRAF4B 14 8(2) 7 5 9(1) 7(1) 5 6(1) 5 4
STRAF4C 13 8 (1) 5 4(1) 6 (1) 6 5 7(2) 6 6
Total 208 113 (4) 90 (7) 71(3) 115 (5) 93 (5) 107 (6) 96 (9) 84 (4) 79 (3)
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FIG 1 Results of Mantel test and principal-coordinate analysis. (A) Mantel test of the relationship between Nei’s genetic distance for microsatellite markers
(NeiP) and geographical distance (GGD). (B) Principal-coordinate analysis of the mean population haploid genetic distance between nine geographical
populations (greenhouses). (C) Principal-coordinate analysis of the mean population haploid genetic distance between 12 geographical populations. AM,
America; SA, South Asia; EA, East Asia; MA, middle Asia; Af, Africa; SE, south Europe; ME, middle Europe; NE, north Europe; WE, west Europe; Oc, Oceanica;
UN, unclear regions; YC, Yunnan, China. (D) Principal-coordinate analysis between 13 geographical populations in the world. NZL, New Zealand; BEL,
Belgium; CAN, Canada; CMR, Cameroon; FRA, France; DEU, Germany; IND, India; NLD, Netherlands; NOR, Norway; ESP, Spain; CHE, Switzerland; USA, United

States; CHN, China (Yunnan).

deposited in AfumID (https://afumid.shinyapps.io/afumID/). After clone correction,
there were 876 isolates total included in our analysis. Based on their geographical ori-
gins, these isolates were divided into 12 populations (see Table S4). At the nine STR
loci, there were 317 total alleles in the total sample. Of the 317 alleles, 197 alleles were
shared between our greenhouse samples from Yunnan and other geographic popula-
tions. Eleven alleles were unique to our greenhouse sample (Table 5). However, there
was no shared multilocus genotype between Yunnan and other geographic regions.
AMOVA results of the global sample showed that 5% of total genetic variation was dis-
tributed among populations, and 95% of total genetic variation was found within pop-
ulations (P = 0.001) (Table S2). As shown in Table S5, the pairwise comparisons showed
that our greenhouse population around Kunming was significantly different from all
other geographic populations, including those from East Asia (P = 0.001). The biggest
difference between our samples and those from other areas was with those in Africa
(PhiPT=0.150, P = 0.001). Not surprisingly, the sample most similar to ours was from
East Asia (PhiPT=0.036, P = 0.001), geographically closest to our sampling sites.
However, the biggest difference between any pair of geographic populations was
between Africa and Northern Europe (PhiPT=0.222, P = 0.001). Of the total 66 pair-
wise geographic population comparisons, 53 showed statistically highly significant
differentiation.

STRUCTURE analyses of the global sample showed that the optimal number of
genetic clusters for 876 global A. fumigatus strains was also 2, with the log likelihood
of data (delta K) breakpoint appearing at a K of 2 (delta K = 143.4766) (Fig. 2B). As can
be seen from Fig. 2D, there is evidence of allele sharing between these two genetic
clusters (I and Il). Genetic clustering based on Nei’s genetic distance also identified two
broadly divergent clades, and most of our samples clustered together and formed
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FIG 2 Genetic structuring results obtained from the STRUCTURE analysis. Plot of K against delta K (A) and analyses (C) for 9 greenhouse populations. Plot
of K against delta K (B) and analysis (D) using 12 geographical populations from around the world, K=2.

subbranches within the two large clades (see Fig. S3). Taken together, both structure
and genetic distance clustering analyses indicate that there are two distinct genetic
clusters in the global sample of A. fumigatus and that both genetic clusters are broadly
distributed, with different geographic populations containing different frequencies of
strains in the two genetic clusters.

PCoA results also supported that our Yunnan population (YC) was different from
most other geographic populations (Fig. 1C). However, when populations from Canada,
Cameroon, and New Zealand were included in the analysis, our samples showed a
greater similarity with them than with the others (Fig. 1D). Furthermore, discriminate
analysis of principal components (DAPC) with the complete data set of the nine locus
STR genotypes of our isolates in this study and the global data from previous studies

TABLE 5 Comparison of STR alleles from Yunnan and those from 11 geographic populations
of A. fumigatus from other parts of the world

No. of alleles in all No. of alleles Specific private Frequency of private
Locus 12 populations in Yunnan alleles in Yunnan alleles in Yunnan
STRAF2A 20 18 8 0.0086
STRAF2B 24 20 7 0.0043
STRAF2C 28 23 7 and 36 0.0901 and 0.0043
STRAF3A 83 44 19 0.0304
STRAF3B 35 26 36 and 37 0.0086 and 0.0043
STRAF3C 48 32 38 0.0086
STRAF4A 25 18 None None
STRAF4B 24 14 18 0.0045
STRAF4C 30 13 4 and 25 0.4206 and 0.0043
Total 317 208 11
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FIG 3 DAPC analysis between 13 geographical populations, including New Zealand, Belgium, Canada,
Cameroon, France, Germany, India, Netherlands, Norway, Spain, Switzerland, United States, and China
(Yunnan).

(1, 47, 56) identified clear delineations among several regions, similar to the PCoA
results (Fig. 3). Together, these results suggest both shared and unique genetic ele-
ments in the greenhouse population of A. fumigatus from Yunnan.

To better visualize the relationships among geographic samples and the distributions
of azole resistance-associated mutations in the cyp571A gene, we first constructed the ge-
notype relationships among a global collection of 983 A. fumigatus strains based on their
STR genotypes, including the greenhouse strains from Yunnan (Fig. 4). Superimposed on
the STR genotype relationships are azole resistance-related mutations at cyp571A (Fig. 4A)
and the geographic locations of these strains (Fig. 4B). Our analyses show that strains
with the of azole-resistant mutation TR,,/L98H are widespread across many STR geno-
type groups that are separated by wild-type cyp571A sequences. The result is consistent
with the hypothesis of multiple origins of this mutation (Fig. 4A). A similar pattern was
observed for the mutant allele TR,,/Y121F/T289A (Fig. 4A). Figure 4B highlights the geo-
graphic locations of these genotypes. The results show that the Yunnan greenhouse
strains are distributed in many STR genotype groups, consistent with its diverse origins.
However, several subgroups consist of strains almost entirely of those from Yunnan.
Together, our results indicate both shared and independent evolution of the Yunnan
greenhouse A. fumigatus populations.

Triazole pesticide residues in soil samples and relations to azole susceptibilities.
Except for the absence of TRI fungicide in pop. 2, where resistant strains to VOR have
not been found, all three triazole fungicides (TRI, TEB, and DIF) commonly used in agri-
culture were detected in the soil of all nine surveyed greenhouses. The concentrations
of the three triazole pesticides in soil varied greatly among the nine greenhouses, ranging
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FIG 4 Minimum spanning tree (MST) showing the genotypic relationship between the azole-resistant isolates of various cyp57A genotypes and azole-
susceptible A. fumigatus isolates (A) and among different geographical populations (B). Each circle corresponds to a unique genotype, and the size of the
circle proportionally represents the number of isolates with that genotype. Connecting lines correspond to the number of differences between the
genotypes. Short bold line, 1 difference; black line, 2 differences; long gray line, 3 differences; dotted line, 4 or more differences.

from 0.00088 to 0.19043 mg/kg, 0.00251 to 0.34515 mg/kg, and 0.00328 to 0.14293 mg/kg,
respectively (Table 2). Statistical analysis showed that the concentrations of TRI, TEB, and
DIF residues in the soil samples from each greenhouse populations were not correlated
with (i) the frequencies of azole-resistant strains in each greenhouse population, (i) the fre-
quencies of cyp51A mutations in each greenhouse population, (iii) the genetic differentia-
tions between pairs of greenhouse populations based on the nine STR loci, or (iv) the
genetic differentiations between pairs of greenhouse populations based on sequences at
the cyp571A gene (Table 6). Similarly, the genetic differentiations between pairs of green-
house populations based on the nine STR loci and that of sequences at the cyp571A gene
also have no correlation. However, we found a strong positive correlation between the fre-
quency of mutations of the promoters of the cyp57A gene and that of VOR resistance
among the nine greenhouses (Table 6), and strains with mutations TR;,/L98H or TR,/
Y121F/T289A had a higher voriconazole resistance level than those without the mutations
in our study.
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TABLE 6 Summary of correlations between the concentrations of fungicide residues in soil and the frequencies of medical triazole resistance,
the frequency of mutations at the cyp57A gene, and the degrees of genetic differentiation based on STR and cyp57A genotypes among the

nine greenhouse populations of A. fumigatus

Mantel results

Pearson correlation results by SPSS

Analyzed pairs of quantitative traits Correlation coefficient P value Pearson correlation coefficient P value
Concn of TRl and frequency of ITR resistance 0.412 0.13 —0.508 0.163
Concn of TRI and frequency of VOR resistance —0.147 0.38 —0.299 0.435
Concn of TRI and frequency of cross-resistance —0.151 0.39 —0.291 0.447
Concn of TRI and frequency of cyp571A mutation —0.186 0.19 —0.322 0.398
Concn of TRl and genetic differentiation of STR —0.127 0.54 NA? NA
Concn of TRI and genetic differentiation of cyp51A —0.011 0.67 NA NA
Concn of TEB and frequency of ITR resistance —0.135 0.34 0.339 0.372
Concn of TEB and frequency of VOR resistance —0.184 0.3 —0.038 0.923
Concn of TEB and frequency of cross-resistance —0.171 0.3 —0.032 0.936
Concn of TEB and frequency of cyp571A mutation —0.175 0.18 —0.244 0.527
Concn of TEB and genetic differentiation of STR 0.102 0.17 NA NA
Concn of TEB and genetic differentiation of cyp51A -0.017 0.81 NA NA
Concn of DIF and frequency of ITR resistance —0.155 0.23 0.287 0.454
Concn of DIF and frequency of VOR resistance 0.000 0.63 0.201 0.604
Concn of DIF and frequency of cross-resistance 0.006 0.34 0.199 0.607
Concn of DIF and frequency of cyp51A mutation —0.07 0.51 0.1 0.798
Concn of DIF and genetic differentiation of STR -0.12 0.74 NA NA
Concn of DIF and genetic differentiation of cyp57A —0.115 0.3 NA NA
Genetic differentiation of STR and that of cyp57A 0.222 0.18 NA NA
Frequency of VOR resistance and that of cyp57A mutation 0.955 0.01 0.960 0.000
Frequency of cross-resistance and that of cyp57A mutation 0911 0.01 0.960 0.000

aNA, not available.

DISCUSSION

High genetic diversity and gene flow. In this study, high-level genetic diversity
was found among the 233 A. fumigatus strains from nine greenhouses within Jinning
county, metropolitan Kunming, China. The high-level genetic diversity included a num-
ber of novel alleles and many novel genotypes not reported previously in early investi-
gations. Our results showed that the overall genetic difference among the greenhouse
populations around Kunming were very limited (PhiPT=0.019, P = 0.001), similar to
results reported recently from six local populations from Auckland, New Zealand (47).
The limited differentiation is consistent with gene flow between local greenhouse pop-
ulations, potentially mediated by air current, anthropogenic activities, and/or shared
population histories. Indeed, previous studies have shown that certain multilocus ge-
notypes were shared by isolates from different ecological types (air, water, and oil) or
even countries and continents separated by long distances (1, 5). However, different
from the Auckland, New Zealand, population where no genetic differentiation was
found, several greenhouse populations here showed significantly different allele fre-
quencies from each other. The results suggest that the greenhouse structure could act
as gene flow barriers among greenhouses, causing the frequencies of certain alleles
and allelic combinations to differ from each other among the greenhouses.

While a few multilocus genotypes were shared among isolates from the nine green-
houses, no genotype sharing was found between our isolates and those from AfumID
representing broad geographic regions in the world. DAPC and PCoA results showed
that our isolates were clustered differently from most other geographic populations.
Many factors could have contributed to the observed geographic differentiation,
including geographic barriers, nonrandom mating, mutation, genetic drift, and selec-
tion (1, 5, 46, 47). Furthermore, sample sizes could also affect the observed differentia-
tion between geographical populations (56). Yunnan is characterized by high moun-
tains and deep rivers, and exchanges of goods and travel between Yunnan and other
regions were relatively limited until recently. These factors could have contributed to
the observed differentiation between our greenhouse samples of A. fumigatus and
those from other geographic regions.
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Among the alleles in our A. fumigatus isolates, 98 of 233 isolates had allele 4 at locus
4C, representing a very high frequency (0.42) in our sample. Interestingly, this allele
was also found in high frequency (0.431) in Cameroon, Western Africa, but is absent in
strains from nine other geographic populations worldwide (Belgium, France, Germany,
India, Netherlands, Norway, Spain, Switzerland, and the United States) (56). At present,
the reason(s) for the shared high frequency of this allele between the two distant geo-
graphic populations in southwestern China and Cameroon is unknown.

STRUCTURE analyses of both our greenhouse strains and a global collection of A.
fumigatus strains identified two broadly divergent clades (5, 25, 31, 39-42). This result
contrasts with what was described previously based on a global sample of 2,026 A.
fumigatus isolates from 14 countries in five continents, where nine genetic clusters
were identified (1, 47, 56). We believe that the reduction in the number of genetic clus-
ters was most likely due to the increased sample sizes representing more geographic
regions and with more genotypes. These new genotypes linked a previously reported
large number of small clusters into a small number of large clusters (i.e., natural repro-
ductively distinct groups). However, the current number of two distinct clusters in this
species is likely robust, as it has received support not only from the nine STR loci but
also from whole-genome sequence analyses (57), potentially representing two differ-
ent genome species (58).

Azole resistance and correlation with soil fungicide residues and cyp51A
mutations. In our study, we found a large number of medical triazole-resistant strains
from the nine greenhouses. Specifically, almost 80% of all strains were resistant to one
of the two commonly used medical triazole drugs (ITR and VOR) for treating invasive
aspergillosis, with 33% showing cross-resistance to both ITR and VOR. The frequency of
triazole resistance in our sample represents the highest so far reported in the literature
across the globe. For example, Chen et al. (43) reported that the prevalence of azole re-
sistance from hospital gardens, city parks, and farmlands in China was 1.4% (2/144).
The prevalence of azole resistance from greenhouses in Zhejiang Province in China
was 4.11% (3/73) (27), that from strawberry fields was 10.20% (21/206) (43). Outside
China, the prevalence of azole resistance was approximately 19% in the United States
(17), approximately 30% in the Netherlands (22), and approximately 19% in Italy (24).
Within Italy, the highest rate of azole resistance was found in apple orchards (50% [3/
6]) and olive groves (41% [7/171]).

Greenhouse environments insulate crops from the influence of natural growth con-
ditions and seasonal fluctuations of weather conditions. To maintain high productivity
year-round in such an environment, frequent applications of fungicides are a common
practice in China. For example, it has been estimated that the total amount of azole
fungicides used in agriculture in China was more than 27 million kg/year during 2013
to 2016, and the usage of TEB and prochloraz almost doubled between 2012 and 2016
(43). The detection of the three common azole fungicides in the soil of almost all nine
greenhouses is consistent with their frequent usage in these greenhouses. Specifically,
the azole residue concentrations of DIF and TEB in our greenhouse soils were much
higher than those in agricultural soil from other parts of China (Harbin, Beijing,
Weifang, Nanjing, Wuhan, Hangzhou, Yichun, and Loudi), with concentrations of DIF
and TEB that range from 0.0104 to 0.0385 mg/kg and 0.015 to 0.0805 mg/kg, respec-
tively (43). Frequent applications of azole fungicides would select for fungal strains
that are resistant to these drugs. Due to the high structural and functional similarities
between agricultural and medical triazoles, resistance to agricultural triazole often
leads to resistance to medical triazoles (59). An additional factor is the high-tempera-
ture environment in greenhouses and tolerance of A. fumigatus to high temperature.
Kunming’s monthly average temperature ranges from 12 to 22°C; however, green-
houses can reach very high temperatures, including in winter during midday. At a high
temperature such as 45°C, many fungi in the greenhouse environment would have
reduced survival and reproduction. However, A. fumigatus can grow well at tempera-
tures above 50°C, thus potentially contributing to its high prevalence in the green-
house environment. Its high population size in greenhouses increases the likelihood
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that mutations to azole resistance could develop and be selected due to the presence
of azole fungicides in the soil.

Thirty-three of the 233 A. fumigatus isolates had insertional mutations in the pro-
moter region of the cyp571A gene. Three types of insertional mutations were detected:
TRs, (n=28), TR,s (n=3), and TRs; (n=2). All three types of mutations have been
reported previously in other geographic areas such as Europe, India, East Asia, the
Middle East, and the Americas (19, 42, 60-63). However, most of these insertional
mutations were also associated with amino acid substitution mutations, similar to
what we found here. For example, the most frequent mutation found in our study,
TR;,/L98H (n=25; 76%), was also the most frequently found in India and the
Netherlands (47, 60). A mutation found in our sample, TR,s/Y121F/T289A (n=3; 9%),
was the most frequently found in flower fields in Colombia (n=17; 80.9%), where the
proportion of TR;,/L98H accounted for only 4.8% (1/21) of the azole-resistant isolates
(64). Interestingly, experimental exposure of A. fumigatus to the agricultural fungicide
TRI led to reduced susceptibility to three clinical triazole drugs (ITR, VOR, and POS) and
with the most common mutation being TR,s/Y121F/T289A (n=6), but no TR,,/L98H
mutation was found (27). Compared to the TR;, and TR, insertional mutations, the
TRs; insertional mutation was rarely reported (only twice) in the past few years. The
first report of the TRs; mutation was in 2009, and the mutated sample was isolated
from a patient with chronic granulomatous disease in the Netherlands (23). The second
report was in 2016, and two strains with the mutations were isolated from flower fields
in Colombia (64). To our knowledge, our study is the first report of the TRs; mutation
from Asia. In addition, our analyses of STR genotypic relationships among global
strains indicated that different mutations of the cyp57A gene could lead to triazole
resistance and that the same type of mutation could arise independently among
strains of different genetic backgrounds in different geographic regions. As shown
previously, some of the triazole-resistant mutant genotypes are capable of dispersing
long distances (59).

Triazole susceptibility tests showed that except for one TR;,/L98H isolate that was
sensitive to VOR, all other 32 A. fumigatus isolates with the TR,, insertional mutation
were resistant to both ITR and VOR (MIC = 4 pg/ml) and had high tolerance to TRI
(MIC = 32 ug/ml) and TEB (MIC = 16 wg/ml). These results indicated that cross-resist-
ance was frequent in our strains and attention should be paid to designing alternative
treatment strategies in the clinic when patients are infected with multidrug-resistant
fungal pathogens. Interestingly, the 33 A. fumigatus isolates with insertional mutations
were not evenly distributed among the nine greenhouses, with frequencies ranging
from 0% (pop. 2) to ~40% (pop. 1 and pop. 9). As shown in pop. 2, while the presence
of azole fungicides is likely a significant selection force for azole-resistant strains in the
environment (43, 59, 65, 66), we failed to identify a statistically significant positive cor-
relation between the detected azole residue concentration in the greenhouse soil and
the prevalence of azole-resistant strains and mutations among the nine greenhouses.
A similar result was obtained in a previous study between azole resistance of A. fumiga-
tus and azole usage in Italy (67). At present, the reason for such a lack of correlation is
not known. In our study, only one-time testing of the soil samples for both the fungus
and the azole residues was performed for each greenhouse. Multiple testing over a
prolonged period of time of both the fungus and the soil samples is needed in order
to critically evaluate their relationships (68).

Our statistical analysis showed a strong positive correlation between the frequency
of insertional mutations in the promoter of the cyp57A gene and that of VOR resistance
among the 9 greenhouses (R=0.960, P < 0.001). However, the overall frequency of
insertional mutations and associated SNPs (0.1416 [33/233]) was significantly lower
than those of ITR resistance (0.7854 [183/233]) and VOR resistance as determined
based on microbroth susceptibility testing (0.3391 [79/233]). These results confirmed
that, though very important, mutations at the cyp57A gene are not the only mecha-
nisms responsible for azole resistance in these greenhouses. Mutations in other parts
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of the cyp571A gene independent of the insertional mutations and in other genes such
as those encoding ABC transporters, MFS transporters, and 3-hydroxy-3-methylglu-
taryl-coenzyme A (HMG-CoA) and those involved in stress response and biofilm forma-
tion could be involved as well. For example, we found that there was a high level of
polymorphism in the coding DNA sequence (CDS) of the cyp51A gene, with 34.76%
(81/233) of our A. fumigatus isolates containing SNPs different from the reference
strain, including 4 synonymous mutations and 11 nonsynonymous mutations. Natural
selection drives adaptive evolution by selecting for and increasing the occurrence of
beneficial traits in a population that enhance the individual’s ability to survive in the
environment (69). In our study, there was evidence that mutations in the cyp57A gene
was positively selected, consistent with azoles playing a role in the origin and mainte-
nance of these mutations (66).

Our phylogenetic analysis of the cyp571A gene sequences suggested that the azole
resistance-associated nonsynonymous mutations on cyp57A gene did not share ances-
try but arose multiple times independently in the natural populations. Interestingly,
we found that among the 4 synonymous mutation sites, the mutation of 267A—G,
1074G—A, and 1362C—T occurred together at a frequency of 0.0601 (14/233), but evi-
dence for recombination/convergent mutation was found between two pairs of sites
(267A—G and 540G—A; 540G—A and 1074G—A). Our study is the first report of evi-
dence for potential recombination within the cyp571A gene in A. fumigatus. Previous
studies have shown that recombination could accelerate adaptation to novel environ-
mental conditions in a related fungus Aspergillus nidulans (25, 70). Recombination-
mediated adaptive evolution could similarly occur in A. fumigatus. In contrast, the
coexistence of amino acid substitutions at several sites across the population at high
frequencies suggested that such combinations likely have functional significance.

In summary, our study identified novel allelic and genotypic diversities in green-
house populations of A. fumigatus in a small region from southwestern China.
Significantly, we found a high frequency (~80%) of triazole-resistant strains, the high-
est reported so far in the literature. Many of those strains have high tolerance to multi-
ple azole drugs, including both agricultural fungicides and medical triazoles used to
treat patients with invasive Aspergillus infections. Our study calls for systematic evalua-
tion of the effects of azole fungicide usage in greenhouses on human health. More
broadly, with increasing prevalence of infections by A. fumigatus and other fungal
pathogens, systematic studies linking agricultural and environmental fungicide usages
and drug-resistant fungal infections are urgently needed.

MATERIALS AND METHODS

Soil samples. In December 2019, 900 soil samples from nine different greenhouses were collected
at a depth of 0 to 5cm. These greenhouses were located in Jinning county, part of metropolitan
Kunming, the capital city of Yunnan Province in southwest China. These greenhouses were used for the
productions of coriander, cucurbita pepo, pea, lettuce, and fennel. Within each greenhouse, 100 soil
samples of approximately 10 g each were collected in sterile zip-lock plastic bags. Individual soil samples
were approximately 2 m apart from each other. The nine greenhouses were approximately 0.5 to 5.0 km
away from each other. Detailed information of the soil samples is shown in Table 2.

Strain isolation, DNA extraction, molecular identification, and STR genotyping. Isolation of A.
fumigatus complex strains was according to previously described methods (47). To minimize isolating
strains of the same genotype and phenotype, we obtained and analyzed a maximum of one isolate from
each soil sample. We used the tip of a very thin needle to transfer spores and hyphae from the edge of a
colony into a tube containing sterile distilled water, vortexed the spore suspension, and streaked the
suspension onto a fresh medium plate. A single newly formed colony distant from other colonies on the
plate was then transferred to another new plate from which strain phenotype and genotype were subse-
quently determined for each strain. Genomic DNA was extracted from the mycelia collected from single-
spore cultures growing on a cellophane membrane on peptone-dextrose agar (PDA) medium according
to the modified cetyltrimethylammonium bromide (CTAB) method (71).

ITS sequences of 60 randomly selected strains representing all populations were obtained according
to the method described by Zhang et al. (72) to further confirm the morphological identification of these
A. fumigatus isolates. Genotyping of A. fumigatus isolates was performed with a panel of nine STR loci
(namely, STRAf 2A, 2B, 2C, 3A, 3B, 3C, 4A, 4B, and 4C), as previously described (38). We determined the
number of microsatellite repeats at each locus for each strain. Alleles at the nine STR loci were combined
to generate the multilocus STR genotype for each strain.
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Population genotype data analyses. Aside from our own data obtained for the nine greenhouses
in Jining, Kunming, the STR genotype data of A. fumigatus isolates from other countries, which were
reported in previous work and deposited in the STRAf database (http://afumid.shinyapps.io/afumID) (1,
5, 47), were used for comparative analyses. The STR genotype data of our samples was imported into
GenAlEx 6.1 (73) to calculate the pairwise PhiPT values between pairs of populations from each green-
house and determine the potential correlation between genetic and geographical distances (Mantel
test) among populations from the greenhouses. The analysis of molecular variance (AMOVA) was per-
formed to estimate the relative contributions of geographic separation to the overall genetic variation.
To investigate the pattern of genetic diversity in our data, a multivariate analysis was first conducted via
discriminate analysis of principal components (DAPC), which was implemented by adegenet package in
R version 3.0 (Vienna, Austria) to detect the relationship between our A. fumigatus isolates and those
from other countries (74), including those of our own data from Canada, Cameroon, and New Zealand
reported in our previous studies (1, 47, 56). Using the LOCPRIOR model with admixture and correlated al-
lele frequencies, the program STRUCTURE version 2.3.3 (75) was then used to explore the number of
genetic clusters (K) occurring in the combination of our samples and all 750 STRAf genotypic data down-
loaded from http://afumid.shinyapps.io/afumID. A total of 10 replicates were performed of each simula-
tion for the number of genetic clusters K of 1 to 12, with a burn-in of 10,000, and Markov chain Monte
Carlo (MCMC) of 100,000 iterations for the best estimate of K. Unweighted pair group method using av-
erage linkages (UPGMA) clustering was conducted to investigate the genetic relationship between geo-
graphic populations and multiple cyp57A variants of our A. fumigatus isolates and those from AfumID
(750 isolates). A minimum spanning tree was constructed with default settings for microsatellite markers
(BIONUMERICS 8.0; Applied Maths, Belgium).

Antifungal susceptibility of A. fumigatus isolates. Susceptibilities of each strain to four triazoles,
ITR, VOR, TRI, and TEB, were tested according to the CLSI M38-A2 method (76). Triazoles ITR and VOR are
commonly used for treating patients with invasive fungal infections, including IA, while TRI and TEB are
frequently used in agricultural fields, including those for growing vegetables. The MIC was defined as
the lowest antifungal concentration at which visual growth of a microorganism was completely inhib-
ited. MIC,, was defined the lowest concentration that inhibited 50% of visual growth. There is currently
no recommended cutoff value for defining resistance for TRI and TEB fungicides. Instead, our methods
were in accordance with the study by Chowdhary et al. (60), and we described the concentration range
of these two drugs used in our tests and their corresponding MIC values as recommended by for CLSI
M38-A2 method. The tested drug concentration ranges of ITR, VOR, TRI, and TEB were 0.0078 ng/ml to
16 wg/ml, 0.0078 wg/ml to 16 wg/ml, 0.0156 wg/ml to 32 wg/ml, and 0.0156 wg/ml to 32 wg/ml, respec-
tively. A. fumigatus isolates were grouped as susceptible (MIC = 1 wg/ml) and resistant (MIC = 4 ug/ml)
for ITR and VOR (76). Reference strains ATCC 22019 (Candida parapsilosis), ATCC 22019 (Candida krusei),
and ATCC 10231 (Candida albicans) were used as controls. Our susceptibility tests were repeated for
each strain at least three times on different days, including on all reference strains and our susceptible
and resistant A. fumigatus strains.

cyp51A gene sequencing and analyses. Primers A7 (5'-TCATATGTTGCTCAGCGG-3') and P450-A2
(5'-CTGTCTCACTTGGATGTG-3') were used to amplify the cyp57A gene and its promoter region from
each strain, followed by DNA sequencing, using the procedures described previously (77). Mutations of
cyp51A gene and its promoter region were identified by comparing with the reference sequence of a
wild-type azole-susceptible A. fumigatus strain under the accession number AF338659 in GenBank (77,
78). A maximum likelihood (ML) phylogeny based on synonymous sites of cyp51A gene was constructed
using raxmlIGUI1.3 with 1,000 replicates (79). The ancestral range of the genotypes of nonsynonymous
sites of cyp51A was reconstructed using dispersal-vicariance analysis (S-DIVA) implemented in the pro-
gram Reconstruct Ancestral State in Phylogenies (RASP) 4.2 (80).

To identify a potential convergent mutation(s) and recombination within the cyp571A gene, we also
assessed the associations among single nucleotide polymorphic sites, using the program Multilocus 1.3.
Specifically, two tests were performed for our data, namely, the index of association (I,) and phyloge-
netic compatibility (81). Both analyses were performed for synonymous and nonsynonymous SNPs.
Since the numbers of SNPs were very different among greenhouse samples (see Results), the I, values
were adjusted based on the numbers of variable nucleotide sites to obtain the standardized rBarD val-
ues. Finally, to infer the potential selection on the observed sequence variation, mutational rate ratio @
(dN/dS) at the cyp51A locus was tested using MEGA version 6 (82). The ratio of nonsynonymous to syn-
onymous mutational rates was calculated to infer the types of selection impacting specific sites, with @
between 0 and 1, equal to 1, and >1 representing negative purifying selection, neutral evolution, and
positive selection, respectively (83).

Detection of triazole fungicide residues in soil samples. In this study, three main fungicides (TRI,
TEB, and DIF) used in agriculture in China were selected as targets for triazole pesticide residue detec-
tions in the greenhouse soils. Gas chromatography-mass spectrometry (GC-MS) with a GCMS-QP2020
(Shimadzu, Japan) was employed, and known reference solution concentrations (100 wg/ml; TMRM,
China) were used as controls. A total of nine soil samples were tested, one from each greenhouse. To
prepare the soil sample from each greenhouse, 2 g of soil from each of the 100 soil samples from each
greenhouse were combined to make one bulk soil sample of 200.0 g.

Each soil sample (200.0 g) was ultrasonically extracted with 200 ml of acetonitrile and 10.0 g NaCl for
30 min, and then the supernatant was transferred to the rotary evaporator for condensation. One hun-
dred fifty milliliters acetonitrile was added to the soil residue again, and they were extracted twice. After
evaporation and extraction, the concentrated solution was cleaned using a series of purification columns
(Mega Bond Elut-NH2 and Mega BE Carbon/NH2; Agilent Technologies, USA). The liquid was collected
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and condensed again to approximately 0.5 ml in a water bath at a temperature of 40°C. Five milliliters n-
hexane was added to the concentrated solution twice to carry out solvent exchange. After the final vol-
ume of the liquid reached approximately 1 ml, 40 ul of an internal standard solution was added and
mixed. Soil samples from each greenhouse were tested twice.
Correlation analysis. Correlation analysis is used to detect the potential relationships among tria-
zole fungicide residues, mutation frequency at the cyp57A gene, and the occurrence of ARAF among the
greenhouses. Moreover, the relationship between genetic differentiation of nine STRs and that of
cyp51A gene from isolates in each greenhouse population was also calculated. IBM SPSS statistical soft-
ware V22.0 was used for the correlation analysis.
Data availability. All data necessary to support the conclusions of the study are contained in the fig-
ures, tables, and supplemental files associated with the manuscript.
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