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A laser emitting contact lens 
for eye tracking
A. Khaldi1*, e. Daniel1, L. Massin1,2,4, c. Kärnfelt3,4, f. ferranti3,4, c. Lahuec2,4, f. Seguin2,4, 
V. nourrit1 & J.‑L. de Bougrenet de la tocnaye1

In this paper, we present the first realisation and experimentation of a new eye tracking system using 
an infrared (iR) laser pointer embedded into a wireless smart contact lens. We denote this contact lens 
prototype as the cyclops lens, in reference to the famous hero of the X‑Men comics. the full eye tracker 
device combines the smart contact lens and its eyewear, which provides a primary source of energy 
and the beam detection system. We detail the assembling and encapsulation process of the main 
functionalities into the contact lens and present how a gaze tracking system is achieved, compared to 
existing conventional eye-tracking ones. Finally, we discuss future technical improvements.

Knowing and analysing the gaze direction has become a key operation when using, for instance, augmented or 
virtual reality display systems for which it is useful to assess the attentional or cognitive load or to validate an 
operation by designating it by  gaze1–3. Although a wide range of eye tracking techniques exist, these techniques 
are not always best suited to be used with an AR/VR headset. For instance, electro-oculography4 has limited 
accuracy, scleral-coils5 are uncomfortable requiring the eye to be anesthetized. Standard video-based  techniques3 
require a clear view of the eyes (e.g., glasses are an issue), small yet high aperture cameras and relatively high 
computing power, to provide a sufficiently high accuracy. As a result, the issue of integrating a performing eye 
tracker into an AR/VR headset is still an active research  topic6,7.

In parallel, encapsulation of functions in a wireless contact lens has been made possible thanks to recent 
advances in technologies for manufacturing micro-scale optoelectronic components, as well as methods for 
assembling them onto separately-formed  substrates8,9. As a result, a variety of electronic contact lenses have been 
proposed in the last two decades. Due to the nature of the lens, the applications concern mainly wearable smart 
sensors for health  diagnostics10,11, the correction of vision or refractive  errors12, gaze  tracking13 or  displays14–17. 
Some wireless contact lenses have been tested on persons (e.g. studies carried out at Moorfields Eye Hospital in 
 London18) and have been commercialized in medical products (e.g.,  Sensimed19). However, their overall func-
tions were relatively specific (e.g., intraocular pressure gauge (IOP) or glucose monitoring) they operated as 
interrogators and did not implement complex cognitive tasks. In this context, including a laser pointer directly 
on the eye could provide a potentially simpler and more compact solution to measure eye gaze compared to 
available technologies based mostly on image  processing20,21. It would also allow demonstrating the use of an 
electronic contact lens as component of a more complex system (eye tracking).

The operating principle of the eye tracking system is described below. The idea to use a marker into a contact 
lens is not  new22 and neither the integration of a light source into a contact lens. The integration of a micro-LED 
has already been demonstrated for other applications [e.g.23]. We propose here to use a vertical cavity surface 
emitting laser (VCSEL) because of the good ratio between the laser power and the power supplied as well as 
the very low divergence (few tens of mrad without any additional optics) which allows for a high quality beam 
spot (necessary here to get a good detection accuracy). Our goal was here to scale all the elements to design and 
realize a complete eye tracking system, showing how the spot emitted by a laser pointer can be detected correctly 
by the sensor (independently from the eye rotation) with a good accuracy, for a given distance between the eye 
and the eyewear, and in compliance with the security standards (optical and RF).
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eyetracking operating principle
The idea here consists in encapsulating a laser pointer or a light emitting  source24 into a contact lens to materialize 
the direction of gaze, therefore strongly simplifying its calculation. Most commercial eye trackers rely on imaging 
the eyes. This involves illuminating the eyes with IR light sources, recording several MB of information/s with fast 
cameras and processing this information to extract, from the pupil and corneal reflection position, the gaze direc-
tion at high frequencies. As stated previously, a number of factors such as iris pigmentation, wearing spectacles, 
sunlight can reduce such eye tracker performance. Other approaches such as electrooculography or lenses with 
magnetic coils exist but their implementation makes them suitable only for research or clinical  studies25. Indeed, 
these two techniques, as the cyclops lens, require some preparation (fitting the lens, the electrodes or the coils) 
and are more invasive than the video based eye trackers. When compared to the scleral coil approach, the main 
advantage of the cyclops lens is that there are no external parts. All the electronics is embedded within the lens. 
Electrooculography can be useful in some context (e.g. when the eyes are closed) but offer limited  resolution3 
(~ 2°) and are sensitive to various factors (facial muscle activity, electrical interferences, etc.) that limit its use.

In our system, detecting the laser beam direction will directly provide the gaze direction. This can be achieved 
in different ways. A solution consists in using a 2D planar  detector26 such as a position sensitive detector (PSD). 
In this case, the remote control system is replaced by the eye, provided that a collimated laser with a sufficient 
light power to be detected by the PSD is used, in case this one is far from the lens.

Using a PSD enables, in a simple way, to detect several spots together (in contrast to complex image process-
ing) so, that for each eye equipped with a laser pointer contact lens, it becomes possible to extract the vergence 
angle and then to deduce the sight direction knowing the eye’s position. Transparent PSD (transparent for the eye 
while sensitive (absorbent) for the laser beam; the wavelength being chosen in any case out of the visible range) 
could be manufactured, at the cost of a more complex optimisation of the  substrate27. A simple alternative to a 
transparent PSD consists in using a beam splitter (BS) as shown in Fig. 1 together with an IR camera. This beam 
splitter is coated to reflect the IR beams generated by the two laser spots while being transparent for the eyes and 
coated to avoid unwanted reflections. Furthermore, it enables to materialize the beams (since it intercepts it, cf. 
Fig. 1 so that a single IR camera can be used to detect the spot motions on the BS surface. We use an IR camera 
(ELP Full HD 1920 × 1080 p) for our demonstration. In this case, a very elementary software can be developed 
either to detect the direction of sight or to track the eye trajectories.

In the following section, we present how to make the Cyclops lens and how the energy transfer towards the 
laser pointers is performed to obtain a very compact prototype.

Material and methods
The first part of our work of designing and fabricating the cyclops lens focus on the electronics used to trigger a 
vertical surface emitting laser (VSCEL) via a near-field power transfer-circuit. Figure 2 presents the electronic 
functions to be encapsulated into the Cyclops lens. It involves a harvesting and communication NFC (near field 
integrated circuit) followed by a tank capacitor to enable continuous energy to feed the rest of the circuit. For the 
Cyclops demonstrator, a flasher circuit is done with a free oscillator and a 850 nm VCSEL. To light periodically 
the VCSEL source, an oscillator enables a current pulse with a duty cycle of less than 10% of a period time of 
about a second to display a flashing detectable effect. It allows to decrease the time the VCSEL is on, to decrease 
the device energy consumption and the heating. The harvesting circuit is an NFC NTAG circuit NT3H2221 from 
NXP providing energy harvesting management for autonomous operation with regulated voltage output up to 
10 mW. The communication function of the NFC chip has not been exploited here because not needed for eye 
tracking. However the addition of other sensors in contact lenses may need to communicate data. The human 
eye has been still considered as an attractive healthcare platform for continuous monitoring of biomarkers. 
The flasher uses an oscillator, based on a very low voltage Schmidt inverter (TI) as active device and a timing 
control with low duty cycling (less than 1%) and long period (about one second). The VCSEL has a threshold of 
1.5 to 2 mA and an operating current of 3 to 4 mA potentially being able to deliver 0.5 mW at 850 nm. Due to 
dimensional constrains shown in Fig. 2a), we used thin electronics components and thin polyimide circuits. The 
flexible circuit, ordered from db electronics after design, is made up of a 25 µm polyimide layer, a 12 µm adhe-
sive, 35 µm thick copper, coated with a protective resin (around 30 µm). Where the contacts appear, the copper 
is coated with 3–5 µm thick nickel and 50 nm thick gold. The flexible circuit is 130 µm thick due to the double 

Figure 1.  Gaze direction detection system. Each eye wears a scleral lens where a VCSEL is embedded. The 
VCSEL beams (solid line) are reflected by a beam splitter towards an IR camera placed above the eyes. The spot 
locations on the beam splitter are represented by disks and the direction of gaze by dashed lines.
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copper layer. Before micro-components are transferred to the contact terminals, a silver conductive adhesive 
layer, Polytec EC 101, is applied to each of them. Once all the components are deposited, the adhesive is cured 
at a temperature of 120 °C for 1 h. The circuit is then ready for encapsulation.

The contact lenses used to encapsulate the VCSEL and associated electronics are scleral ones with a diameter 
of 16.50 mm, Fig. 2a. Such a type of contact lens no longer comes into contact with the cornea, but with the sclera 
(white part of the eye) thus providing a protective surface against potentially irritating elements for the eyes 
(dust, projections, irritating gas). This absence of contact with the cornea makes them extremely comfortable. 
They are steady (unlike usual contact lenses) when worn, which is a prerequisite regarding the application. Their 
large dimensions when compared to other contact lenses, and the possibility to use some of the space of a few 
hundred microns between the surface of the cornea and the inner part of the scleral lens, offer more volume for 
the electronics. For these reasons, the scleral lens is well suited for the integration of multiple electronic devices 
for different applications.

A customizable encapsulation for our device has been developed with Loctite 3301 glue to achieve a perfect 
sealing, the best optical properties in the pupil-free zone and to test the cyclops contact lens worn by  human20. 
The “cavity” encapsulating the circuit was obtained by machining a PMMA puck. The prototype consists of two 
half-lenses. A half-lens receives the circuit and a half-lens closes the assembly via a gluing process performed by 
ISO 13485 certified scleral lens manufacturer. Figure 2b presents the contact lens encapsulated hermetically with 
its circuits and components. We observed a slight downward shift of the cyclops lens (Fig. 2a) with respect to 
the pupil centre when it was worn. This is due mainly to three factors; the conjunctiva morphology presenting a 
natural toricity (we used a spherical contact lens here), the weight (contact lens and embedded circuits) and the 
upper eyelid pressure (the thicker the lens, the more important it is). Despite this unexpected positioning, the 
lens was comfortable to wear and one could look through. In the future, the circuitry and contact lens design will 
be reviewed to address this issue. Various solutions are available, for instance, reducing the number of electronics 
components (limited to energy harvesting and laser functions), removing the packaging of the components, a bet-
ter adaptation of the back surface to the corneal geometry of the user, by inducing a toricity on the inner surface 
of the contact lens, and reducing its thickness. Of course, a range of Cyclops contact lenses with different radii of 
curvature would have to be manufactured so that the lens can be fitted correctly to a particular eye physiology.

Figure 2.  Successive steps from device to worn contact lens; (a) dimension and content of the contact lens, (b) 
sealed electronics: from left to the right, electronic circuit and components, encapsulated in the contact lens, 
Cyclops worn on a human eye. (c) top view of the cyclops lens with secondary antenna connected to electronics 
(insert : oblique view of the VCSEL).
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To provide a final contact lens with a satisfying design for a proof of concept, the flexible substrate with the 
components has been encapsulated on a flat surface, while the secondary antenna was reported on the front 
surface of the contact lens and fixed with tapes. The circuit and antenna have been connected by a wire going 
through a hole into the contact lens (see Fig. 2c). The secondary antenna has five turns with 0.3 mm width, with 
R = 4 Ω and L = 1.05 µH. Obviously, the antenna will be embedded into the contact lens in a next iteration, to 
prevent technical issues (electrical vias, comfort etc.), but this prototype allows us to demonstrate the proof of 
concept of a complete eye tracking system with a standard scleral contact lens (in terms of geometry). A key issue 
when encapsulating a light source is the energy consumption and autonomy of the encapsulated optoelectronic 
devices. In practice, this issue can be addressed in several ways, i.e. by incorporating a flexible battery in the 
contact lens as demonstrated  in28 or by using harvesting techniques, the most common being the RF  one29,30 
which has been chosen here and detailed in the next section.

eye tracking prototype, description and operation
The cyclops contact lens is therefore made up of two main elements: the embedded optoelectronic circuitry and 
the secondary antenna. The full eye tracking system needs an external driving element, hosted by the eyewear 
with the primary antenna used to transfer energy (and possibly exchange data) and the optical tracking systems 
(camera).

The primary antenna is designed to fit into the eyewear without impairing the vision. Its characteristics are 
L = 1.47 µH and R = 4 Ω for four turns on double face rigid circuit. It is coupled with the secondary antenna on 
the contact lens to transfer power by magnetic coupling. Several options are possible concerning the operating 
frequency. We have chosen 13.56 MHz (industrial, scientific and medical (ISM) band). This ensures a trade-off 
between the transmission range and efficiency, and the  biocompatibility30. The primary antenna is itself con-
nected by a wire to a generator (in future it will be connected to a battery packaged in the eyewear). In order to 
characterize the output power of the NXP chip, an input electrical power of 25 mW is injected into the primary 
spiral coil antenna. Primary and secondary spiral coil antennas are facing each other and 13 mm apart. Con-
sidering these two fabricated spiral coil antennas and the injected input power into the primary antenna, the 
voltage supplied by the NXP chip as a function of the load current has been measured, giving the output power 
capacity. Figure 3 presents the primary antenna embedded in the eyewear, the NXP chip output power and the 
emitting VCSEL (small bright dot).

The experimental results, Fig. 3c, are analysed to ensure that the NXP chip can power the VCSEL. The first part 
of the curve (from 0 to 1.4 mA) highlights the operation of the voltage regulator included in the NXP chip, the 
output voltage keeps stable in this operating range. The second part of the curve (up to 2.3 mA) shows a voltage 
drop as the load increases. The measurement shows that the power capacity of the NXP chip (considering the 
fabricated spiral coil antennas and the power injected into the primary antenna) is close to the 1.5 mA current 
threshold required by the VCSEL, but less than the nominal operating current of 3 mA. However, the low duty 
cycle (1% of 1 s period) of the timing control enables a continuous function. A 40 µF storage capacitor is charged 

Figure 3.  Transmitted RF Energy from the primary antenna to the NXP output (a) electronic primary antenna 
in the eyewear, a wire in the left corner connects it to a generator, (b) image of the directional flashing VCSEL of 
the smart lens. (c) Power harvesting capability of the NXP chip, with the output supply voltage (filled diamond) 
and the output power (filled square) as a function of the load current.
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by the NXP chip with a current of 1 to 2 mA (requiring less than one second), and powers the VCSEL with 3 mA 
for several ms during discharge, sufficient for laser emission. This also helps to limit the power injected into the 
primary antenna and the effect of RF waves in the human tissues. In parallel, we measured the minimum RF 
power required to make the eyetracker operating correctly (i.e. laser spot emitted is detected by the camera). 
We have found out that we needed only 5 mW of RF power injected into the primary antenna and 600 nW of 
output optical power of the VCSEL in order to have the system operating correctly, values which lead easily to 
compliance with the safety norms.

As previously stated, the electronic eyewear includes an IR surveillance camera (ELP Full HD 1,920 × 1,080 
p) and a beam splitter with custom coating on each surface as depicted Fig. 4. The camera is mounted on top 
of the eyewear. Mechanical holder allows adjusting the position and tilt of the beam splitter with the camera. 
The goal of the beam splitter is to reflect the VCSEL beam and to send it to the camera. The BS coating allows 
maximizing reflections at 850 nm and minimizing the ones in the visible range (enabling the Cyclops lens wearer 
to look comfortably through the system). As a result, a single spot corresponding to the beam position on the 
BS is imaged on the camera. The complete experimental platform is described in Fig. 4. The lens is placed on an 
artificial eye, 15 mm behind the eyewear (which corresponds to the usual eye-glasses distance). A servo-motor 
allows rotating the eye from − 20° to 20° around a vertical axis passing by the centre of the eye. This angular 
domain corresponds to the maximum field of view that would be practically explored by the eyes (i.e. in practice, 
if we need to observe something further than 20° we will turn the head rather than the eyes).

Results and proof of concept
Figure 5a represents the same image, five spots recorded by the IR camera for five different gaze directions 
(− 20°, − 10°, 0°, 10°, 20°). As it can be seen, the high directionality of the VCSEL beam allows obtaining a small 
round spot (approximately seven pixels of diameter) that is not distorted at the periphery. Thus, the coordinates 
of the spot’s centre (which represents the gaze direction) can be easily extracted with basic image processing 
techniques. In our device, the spots travels over 180 pixels between the two extreme positions (± 20°). This vari-
ation is roughly linear, Fig. 5b. A slight asymmetry can be observed which is due to the fact that the VCSEL is 
not positioned right in the middle of the eye and the beam splitter is slightly tilted with respect to the spectacles 
frame. However, this deviation can be easily corrected with proper calibration. Therefore, if we assume an error 
of one pixel when calculating the coordinates of the spot centre, we can say that our device has a 0.2° accuracy 
(or 0.3° if we were to consider both x/y directions). which is almost one order of magnitude better than high end 
commercial wearable eye trackers (although it come close to the 0.6° accuracy reported by Tobii Pro glasses for 
small eccentricities (± 15°)).Obviously, a variety of environmental factors (such as lightings and slippage of the 
beam detector) could reduce the eye tracking performances in real conditions However, this preliminary result 
is all the more interesting that it was achieved with off-the shelves components without trying to optimize the 
eye tracker accuracy).The purpose of our study was a proof of concept of the interest of using a contact lens laser 
pointer as an eye tracker. A careful optimization of the device (e.g. CCD resolution) or, as written previously the 
use of PSD, could allow achieving yet a higher resolution.

Figure 6 gives an overview of the optical demonstrator, while the related attached video shows how the 
system works dynamically in real time. In the first part, we can observe the correlation between the eye robot 
rotation (azymuthal) and the spot motion on the PC screen in the background of the scene, such as detected by 
the camera. In the second part, we can observe the cyclops contact lens motion through the BS in a front view.

The use of a laser close to the eye inevitably raises some health concerns. In perfect conditions of use, one 
part of the eye that the VCSEL beam may interact with is the eyelid during blinking.

If we consider that most people blink around 15 times a minute (150 ms per blink in average), this means that 
during a 1 h use, the eyelid will be exposed to the VCSEL beam approximately 900 times. If we consider that the 
VCSEL beam will always hit exactly the same spot, a laser at 850 nm could potentially trigger some photosensitive 

Figure 4.  Eye tracking demonstrator (a) schematic of the overall system depicting the artificial eye (A) on 
which the cyclops lens is mounted, the servo-motor (F) and associated micro-controller (E) to control the 
eye direction, the eyewear (D) with the primary antenna, the beam splitter (B) reflecting the VCSEL beam 
(represented by a solid red line) towards the IR camera (C) (mounted on top of the eyewear). (b) A photo of the 
prototype.
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reaction or even burn depending on the power emitted and its divergence. In our set-up, the VCSEL was first of 
all chosen for its dimensions, wavelength and availability and could potentially present a risk if used at full power. 
However, in the case were the VCSEL was used at minimum power, the associated radiant exposure (0.5 kJ/m2) 
was, according to regulations (BS EN 60825-1:1994), significantly below the maximum permissible exposure for 
the worst case scenario (4 kJ/m2 considering that the subject keeps his closed all the time). Another potential 
risk associated to the laser beam is the back scattering, i.e. if the laser is reflected towards the retina. The current 
device is not optimized to avoid such reflections but fortunately, this can be easily avoided with classical optical 
engineering techniques (e.g. coatings).

conclusion
We have demonstrated the principle and feasibility of a new generation of eye trackers, using a laser pointer 
embedded into a wireless scleral contact lens. This solution which materializes the gaze direction simplifies the 
detection in terms of computing calculation, and improve accuracy thanks to the low divergence and high beam 
quality of VCSELs compared for instance with light emitting diodes. In particular, we have shown that a low RF 
energy and the associated small emitting optical power is enough to be detected by a standard camera, located 
a few cm far from the eye.

Figure 5.  Results of the eye-tracker (a) Upper image representing successively the VCSEL spot recorded on the 
IR camera for 5 different orientations (− 20°, − 10°, 0°, 10°, 20°). Please note that it is a concatenated image of the 
spot in different positions (See Video S1). (b) The graph shows the VCSEL spot coordinates for the 5 previous 
positions.

Figure 6.  The Cyclops prototype in the foreground, with the camera mounted on the eyewear and connected to 
a PC in the background (we can notice the white spot). See Video S1.
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In ideal conditions (no lens/eyewear slippage), this accuracy depends mainly on the spot size and the photo-
sensor resolution. For a proof of concept, we used a camera with an IR depends mainly on the spot size and 
the photo-sensor resolution. PSD is an alternative, its advantage is that there is no need for imaging optics and 
therefore the detection system can be very thin. In contrast, the detection function is limited to a power peak 
detection. It was not—our objective to compare both options. It has been done, for instance, for a similar con-
figuration to measure laser angular deviation in  refractometers31 and have been shown to enable a very accurate 
spot detection. As previously stated in the results, section, another parameter that can affect the accuracy is 
the contact lens motion. We wish to emphasize here the advantage of using a scleral contact lens to implement 
cyborg contact lenses in the future. Since the late 1800s considerable progress have been made in scleral lens 
design and manufacturing. Thick scleral lenses exist (e.g. lenses with high refractive power or electronics one), 
and techniques to stabilize them have been demonstrated. Modern scleral lenses offer unprecedented stability, 
e.g. 100 microns shift over an hour  (see32). Such a shift would lead to a maximum error of 4 arcmin on the cal-
culation of the angle made by the VCSEL beam.

The fact that the lens appears mispositionned in Fig. 2, is due mainly to two factors: weight and the fact that 
the lens had not been specifically adapted for the eye. Regarding the first point, we only used here off the shelfs 
component to make a lens whose geometry is in agreement with scleral lens standards. Weight could be easily 
reduced with custom components. Regarding lens fitting, a range of cyclops lens with different radii of curvature 
would have to be manufactured so that the lens can be fitted correctly to a particular eye. Therefore, when cor-
rectly fitted, a lens shift should cause a maximum error of few arcmin. A much more serious problem than lens 
slippage is a shift of the beam detector (just like the shift of eye tracking glasses can be an issue).

Concerning the acceptability and safety, to ensure RF safety in practical uses, the impact of RF exposure in 
the human tissues needs to be investigated, and particularly to verify if the specific absorption rate (SAR) satis-
fies specific  limits31,33.  ICNIRP30 and  IEEE33 might have slight differences in setting the regulations for RF safety 
levels. The SAR performance of the cyclops eye-tracking system has not been evaluated yet, however, it will not 
lead to safety issues comparing it to similar ones presented in  literature29. In the  work29, the same power transfer 
mechanism, the same frequency for wireless power transfer (13.56 MHz) and very similar distances between a 
primary antenna on eyeglasses and a secondary antenna on the contact lens were used. The power received at 
the contact lens was higher than in our work and the SAR simulated value was almost 100 times smaller than 
the SAR limit of 2 W/kg proposed by  ICNIRP30. Similarly, before humans could wear a fully functional system, 
several tests (oxygen permeability, cytotoxicity, irritation, tolerance) needs to be carried out to obtain a clinical 
certification.

Concerning the key future developments, they concern mainly the flexible electronics and stretchable trans-
parent antenna compatible with a moulding process. Park et al.17 demonstrated how electronics and antenna 
conforming the curved shape of soft contact lenses operated reliably during mechanical deformations, including 
bending and stretching, making them compatible with large-scale mass production. The second challenge for 
cyborg lenses, expected to include more and more computing power, is the heating dissipation and presence of 
hotspots (e.g. antenna, ASIC, laser). In vivo tests monitoring the temperature change on rabbit’s eyes provided 
substantial promises of future smart contact lenses for non-invasive health care using human  eyes17. However, at 
this early stage, no specific regulations exist. A physiological acceptance between 35° (open eye) and 37° (close 
eye) is cautiously considered. This point will be investigated further in the future. In that frame, using a scleral 
contact lens benefiting from a tear tank between the cornea and the embedded circuit is a real advantage.
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