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A fast and exact algorithm to calculate the powder pair distribution function

(PDF) for the case of periodic structures is presented. The new algorithm

calculates the PDF by a detour via reciprocal space. The calculated normalized

total powder diffraction pattern is transferred into the PDF via the sine Fourier

transform. The calculation of the PDF via the powder pattern avoids the

conventional simplification of X-ray and electron atomic form factors. It is thus

exact for these types of radiation, as is the conventional calculation for the case

of neutron diffraction. The new algorithm further improves the calculation

speed. Additional advantages are the improved detection of errors in the

primary data, the handling of preferred orientation, the ease of treatment of

magnetic scattering and a large improvement to accommodate more complex

instrumental resolution functions.

1. Introduction

The powder pair distribution function (PDF) is commonly

used to characterize the local structure of a wide range of

materials like disordered crystalline matter, nanoparticles, and

amorphous materials including glasses and liquids (Egami &

Billinge, 2012; Young & Goodwin, 2011; Playford et al., 2014;

Mancini & Malavasi, 2015). Originally developed for the

analysis of disordered bulk materials, the method is nowadays

very widely used for the analysis of nanoparticles as well, with

numerous publications. For an early application see

Korsunskiy & Neder (2005) and Neder & Korsunsky (2005).

While predominantly used with neutron and X-ray diffraction

experiments, more recently it has also been used with electron

diffraction (Abeykoon et al., 2019, 2015; Gorelik et al., 2019).

Other technical developments include the application to

magnetic short-range order (Frandsen et al., 2014) and thin

films (Jensen et al., 2015; Shi et al., 2017; Dippel et al., 2019).

The main application is still in the field of static structural

characterization; for the field of dynamic structure character-

ization see Egami & Billinge (2012).

The PDF is obtained from a powder diffraction experiment

after suitable normalization, division by the average atomic

form factor, and correction for background and further

experimental aspects. This correction converts the powder

diffraction intensity to the normalized total scattering function

S(Q), with Q = 4�sin(�)/�, where � is half the scattering angle

and � is the wavelength of the incident radiation. The widely

used reduced PDF G(r) is obtained from S(Q) via a sine

Fourier transformation:
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GðrÞ ¼
2

�

ZQmax

Qmin

Q SðQÞ � 1½ � sinðQrÞ dQ

¼
2

�

ZQmax

Qmin

FðQÞ sinðQrÞ dQ: ð1Þ

Various other definitions of the PDF exist [see Keen (2001) for

a review]. In this article we will always refer to the reduced

PDF G(r).

The sine Fourier transform that is used in equation (1)

converts the normalized intensity into direct space. The PDF is

thus an extension of the Patterson function, which is also a

Fourier transform of the observed intensities. As the classical

Patterson function uses integrated Bragg intensities only, its

calculation reduces to a Fourier series rather than the Fourier

integral of equation (1) and the Patterson function is inher-

ently periodic in 3D space. Since the Fourier integral in

equation (1) includes all contributions in reciprocal space,

Bragg data and the diffuse scattering, the PDF is no longer a

periodic function in direct space. Still, the PDF as obtained via

equation (1) is essentially a histogram of the interatomic

distances weighted by the scattering power of the pair of

atoms. Thus, the use of different types of radiation like

neutrons, X-rays or electrons yields a PDF in which the rela-

tive contributions of light and heavy elements or different

isotopes will differ according to the strength of the interaction

between the radiation and the atom types present in the

sample.

Conventionally, the model PDF is determined from a

structural model by summing all interatomic distances. This

algorithm is used in common analysis programs such as

DISCUS (Proffen & Neder, 1997; Neder & Proffen, 2008),

PDFgui (Farrow et al., 2007), RMCprofile (Tucker et al., 2007)

and TOPAS (Bruker, 2015; Coelho, 2018). As detailed in the

next section, this algorithm is only exact in the case of neutron

diffraction. Since this algorithm approximates the influence of

the Q-dependent atomic form factor in the case of X-ray and

electron diffraction by a constant number, it represents a

simplification that has been known for a long time (Warren et

al., 1936). To our knowledge, all currently available software

uses this Warren–Krutter–Morningstar approximation. A

common refinement of data in direct and reciprocal space will

lessen the approximation, a notable recommendation

mentioned in the RMCprofile manual. Few attempts have

been made to take this Q dependence into consideration

(Korsunskiy & Neder, 2005; Masson & Thomas, 2013). In the

latter paper an exact expression for the calculation of the PDF

in direct space is derived by splitting the PDF into a linear

combination of modified partial PDFs.

In this article, a new algorithm to calculate the PDF is

introduced. This algorithm no longer relies on the approx-

imation of the atomic form factor. Instead, the PDF is calcu-

lated by a detour via a calculation of the powder pattern. As

this calculation correctly takes the Q dependence of the

atomic form factors into account, it is thus an exact calculation

of the powder PDF for neutron, X-ray and electron diffrac-

tion. Within the article we focus on the calculation of the PDF

for a bulk sample. This mostly corresponds to the capabilities

included in the PDFgui software. The calculation of the PDF

via the powder pattern requires a detailed calculation of the

powder pattern in the case of disordered structures. Two

different approaches are outlined here. The application of the

algorithm and modifications of it with respect to arbitrarily

shaped finite-sized nanoparticles will be presented in a

forthcoming publication.

2. Traditional calculation of the PDF from a model
structure

For the case of a PDF obtained from a neutron diffraction

experiment on bulk samples, the model PDF is readily calcu-

lated for a structure model by summing over all pairwise

interatomic distances:

GðrÞ ¼
1

r

XN

i

XN

j

bibj

hbi2
�ðr� rijÞ

� �
� 4�r�0: ð2Þ

Here the sum runs over all atoms i, j in the model structure,

separated by a distance rij . The terms bi and bj are the

coherent neutron scattering lengths of the atoms i and j,

respectively, and hbi2 is the squared average coherent neutron

scattering length. Finally, �0 is the average number density in

atoms per unit volume. The thermal motion of atoms can be

modelled by convolving the histogram with a distribution

function taken as a Gaussian distribution. Its width is deter-

mined by the combined atomic displacement parameters of

the two atom types involved.

As it stands, equation (2) is correct for the case of neutron

diffraction and a perfect instrument, whose resolution func-

tion is a delta distribution across all scattering angles and data

collected up to Qmax =1. The effect of a finite Qmax value is

incorporated into the PDF calculation by convolving the ideal

PDF with the Fourier transform of the box function:

sincðrÞ ¼
sinðQmaxrÞ

Qmaxr
: ð3Þ

The effect of a finite resolution function is commonly

approximated in the available computer programs by two

instrument-dependent parameters, a damping term and a

broadening term. The damping term is a multiplicative term

expð�Q2
dampr2=2Þ, while the broadening term adds a distance-

dependent component to the width of interatomic distance

distributions. The calculations in DISCUS use the equation

� ¼ �2
ij � Clin=r� Cquad=r2

þQ2
broad r2

� �1=2
: ð4Þ

Here �ij is the width of the distribution that results from the

independent thermal motion of atoms i and j, respectively. The

terms Clin/r and Cquad/r2 allow for correction of the width of

peaks in the PDF at short interatomic distances r. These terms

approximate the correlated thermal motion of atoms at close

distance, as present in an acoustic phonon. The last resolution-

related term Q2
broad r2 results in an approximately linear
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increase in the width of the interatomic distance distributions.

The program PDFgui uses a slightly different equation,

� ¼ �ij 1� Clin=r� Cquad=r2
þQ2

broad r2
� �1=2

: ð5Þ

The two instrumental terms Qdamp and Qbroad are obtained

by refining the model function with respect to the experi-

mental PDF of a highly crystalline material like CeO2 , Si, Ni

or LaB6. In the PDFgui notation the displacement parameters

of the atoms multiply all terms in the root, resulting in

different numerical values for Qbroad compared with DISCUS.

Further differences in numerical values will result if data for a

series of different temperatures are compared. The instru-

mental parameter Qbroad has usually been determined by a

refinement with respect to a standard sample at room

temperature. If this fixed value is subsequently used in equa-

tions (4) or (5) for data measured at different temperatures,

the numerical values for the sample atomic displacement

parameters and their temperature dependence will differ.

3. Shortcomings of the traditional PDF calculations

As mentioned in the previous section, the PDF calculation

according to equation (2) is only exact for the case of neutron

diffraction. For X-ray or electron scattering the scattering

lengths are replaced by the atomic form factors evaluated at a

fixed Q = Qf :

GðrÞ ¼
1

r

XN

i

XN

j

fiðQfÞ fjðQfÞ

hf ðQfÞi
2 �ðr� rijÞ

� �
� 4�r�0: ð6Þ

In many calculations the fixed value of Q is taken as Qf =

0 Å�1, resulting in the ordinal number for a neutral atom.

Alternatively, a value of Qf = Qmax/2 is recommended. The

justification behind this simplification to use a fixed Q value is

the assumption that the value of the quotient fi(Q) fj(Q)/

hf(Q)i2 is reasonably constant across the entire Q range. This

approximation is known as the Warren–Krutter–Morningstar

approximation (Warren et al., 1936). In their original paper

Warren and co-workers used an effective number of electrons

per atom as the approximation to the quotient of the indivi-

dual atomic form factor divided by an average atomic form

factor.

Fig 1 shows the Q dependence of this quotient for the series

ZnO, ZnS, ZnSe, ZnTe. With the exception of ZnSe, the Q

dependence of all quotients is by no means constant. This has

the effect that the integral heights of peaks in a PDF calcu-

lated by equation (6) will vary systematically if different Q

values are chosen. As Fig. 2 further illustrates, the Q depen-

dence of the different partial pair contributions to the PDF

differs as well. Thus, if the PDF is calculated using different Q

values for the atomic form factors in equation (6), the relative

integral peak heights of these pair–pair correlations will

change. This is demonstrated in Fig. 3 for a model of crystal-

line ZnO. The main graph shows PDFs calculated according to

equation (6) using Q = 0 Å�1 for all atomic form factors (blue)

and for Q = 7 Å�1 (red). The difference curve below shows the

difference between the calculations using Q = 0 Å�1 and Q =

7 Å�1. Very significant differences between these two PDFs

are obvious at all peak positions. The agreement between

PDF(Q = 0 Å�1) and PDF(Q = 7 Å�1) is not very good, at an

unweighted R value of 10%. As current model calculations

aim to achieve a difference between model and calculated

PDF that is much less than the difference shown in Fig. 3, this

effect can no longer be neglected.

A second disadvantage of the PDF calculation according to

either equation (2) or (6) is the dependence of the computa-

tional time on the distance range to be calculated. Due to the

double sum over all atom pairs, the computational time is

proportional to the square of rmax.

A further disadvantage lies in the fairly simple treatment

of the instrumental resolution function. Only the two para-

meters Qdamp and Qbroad are used to model the effect of a
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Figure 1
The Q dependence of fi fj /hfi

2 for different ZnX compounds. With the
exception of ZnSe, these curves are not negligibly flat.

Figure 2
The Q dependence of fi fj /hfi

2 for the partial contributions Zn—Zn, Zn—
O and O—O for ZnO. The Q dependence differs for the three partial
contributions.



Q-dependent resolution function. Even though most PDF

beamlines operate at settings that result in a rather broad

resolution function, these two parameters are not really

sufficient to describe these effects, especially in cases of

complex resolution functions like the ones found in neutron

time-of-flight diffractometers (Olds et al., 2018). To deal with

complex resolution functions, Tucker et al. (2001) modified the

inverse transformation method originally developed by

Pusztai & McGreevy (1997). In this approach, G(r) is

corrected for resolution effects by adapting resolution para-

meters in direct space. The resolution parameters are

constrained by requiring a good match between the experi-

mental diffraction pattern and the Fourier transform of the

PDF back into diffraction space. Still, however, this approach

calculates the PDF as a summation in direct space.

4. Improved PDF algorithm

As the PDF obtained from the experimental scattering data is

the sine Fourier transform of the reduced normalized scat-

tering function, an improvement on all three points raised in

the previous section is surprisingly simple. The calculation of

the powder diffraction pattern is straightforward, as demon-

strated in any Rietveld program. As the calculated intensity in

a powder diffraction pattern consists of the purely elastic

contribution and is free from any artefacts that are encoun-

tered in the experiment, it is also straightforward to convert

the calculated intensity of a powder diffraction pattern into

the normalized total scattering function S(Q) (Egami & Bill-

inge, 2012). S(Q) is defined as

SðQÞ ¼
IðQÞ

hbi2
¼

1

hbi2
d�ðQÞ

d�
þ hbi2 � hb2i

� �
: ð7Þ

Here I(Q) is the coherent total elastic intensity and needs to

include a term for the thermal diffuse scattering. S(Q) thus

takes the form

SðQÞ ¼
InðQÞ

hbi2
þ 1� exp �hu2iQ2

� � hb2i

hbi2
; ð8Þ

where In(Q) is the purely elastic powder pattern intensity,

normalized by the number of atoms in the model, and hu2
i is

the average squared atomic displacement. For a periodic

structure model, In(Q) is readily calculated as the sum over all

Bragg reflections, including the standard terms on multiplicity

and the Debye–Waller terms. The model PDF is readily

calculated from equation (8) by the sine Fourier transform of

equation (1), which can be implemented as a fast Fourier

transform algorithm. As the calculation according to equation

(8) is carried out in reciprocal space, the neutron scattering

lengths b included in this equation are equally well replaced

by the Q-dependent atomic form factor, which is equally

included in the calculation of In(Q). Equation (8) is thus exact

for neutron, X-ray and electron diffraction, at least within the

kinematic approximation. Thus, the PDF calculated from a

perfectly periodic model structure via the sine Fourier trans-

form of equation (8) is equally exact for all three cases. This is

the main advantage of this new algorithm, as implemented in

our program DISCUS as of Version 6.0 and later.

The calculation of the purely elastic powder pattern inten-

sity In(Q) allows for several further advantages compared with

the traditional PDF algorithm:

(i) Exact result. As detailed in the initial paragraph of this

section, the calculation of the powder diffraction intensity in

reciprocal space is, within the limits of the kinematic diffrac-

tion theory, exact for neutron, X-ray and electron diffraction.

For X-ray diffraction this is the main advantage of our new

algorithm. Even for electron diffraction, where the use of the

kinematic diffraction theory is a severe approximation, the

new algorithm will be more reliable.

(ii) Instrumental error check. As our new algorithm initially

calculates the diffraction pattern, any errors on the initial I(Q)

data can be checked more reliably. This includes a zero-point

offset and wavelength and distance calibration, as detailed by
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Figure 3
(a) The effect of Q choice for X-ray atomic form factors on the calculated
PDF. The red PDF (background) was calculated for ZnO using Q = 7 Å�1

and the blue PDF for Q = 0 Å�1. The black difference curve reflects the
difference PDF(Q = 0 Å�1) � PDF(Q = 7 Å�1), offset for clarity. (b)
Detail of the graph in panel (a) in the distance range 0–15 Å.



the first example. Identical information would obviously be

obtained from a simultaneous Rietveld refinement of the

powder data along with the PDF data, which is rarely carried

out.

(iii) Computational speed. The calculation of the Bragg

intensities is a well established algorithm that allows a fast

calculation, even if a high value of Qmax has been used in the

experiment. The computational speed of the PDF calculation

becomes independent of the required distance range rmax in

direct space. Only for a calculation over a very short distance

range will the traditional direct-space calculation be compu-

tationally advantageous with respect to this new reciprocal-

space calculation.

(iv) Preferred orientation. Several well tested model func-

tions exist to describe the effects of preferred orientation on

the Bragg intensities. These can be used to calculate In(Q) and

will thus describe the effect of preferred orientation on the

PDF.

(v) Magnetic scattering. The calculation of the powder

diffraction pattern for magnetic structures is also well docu-

mented and is implemented in many Rietveld programs. While

magnetic scattering, and especially handling of the magnetic

PDF, is predominantly the domain of neutron scattering, our

new algorithm allows for an easy implementation of both

neutron and X-ray magnetic PDF calculations.

(vi) Instrumental resolution. The convolution of the Bragg

intensities with an instrumental resolution function likewise is

a well established technique, even for instruments with a

rather complex Q dependence of the instrumental resolution

function.

(vii) Sample contribution. The effects of finite size and

strain on the widths of the Bragg reflections can also be

incorporated into the profile function.

The computational advantages of the PDF calculation via

reciprocal space become significantly less if a structure model

is to include disorder and thus requires the calculation of both

Bragg intensities and diffuse scattering. Such a model requires

the simulation of a large supercell in order to represent the

disordered structure, while maintaining periodic boundary

conditions. If, for example, a supercell of size 20 � 20 � 20 is

used, the number of data points that need to be calculated in

reciprocal space increases by a factor of 203 = 8000. The

computational effort becomes manageable, however, for

models that will produce diffuse scattering in limited sections

of reciprocal space. As examples, consider materials with

stacking faults or materials with 1D disorder, as in host–guest

structures with 1D channels. In the case of stacking faults the

diffuse scattering is limited to 1D rods, while for 1D disorder

in direct space the diffuse scattering is limited to planes in

reciprocal space. In these cases the computational increase

scales linearly or quadratically, respectively, with supercell

size.

As a means of overcoming the huge computational effort in

the case of diffuse scattering that is continuously distributed in

reciprocal space, we have developed a technique to calculate

the PDF via the Debye scattering equation (Debye, 1915). The

details are presented in the Examples section below.

In the traditional PDF algorithm the width of an interatomic

distance distribution is calculated directly according to equa-

tion (4). This calculation allows a description of distance-

dependent widths, especially for the very first interatomic

distance distributions. These are often narrower than distri-

butions at longer distances, since immediate- or second-

neighbour atoms tend to vibrate like an acoustic phonon. Thus

at any given point in time the distances between the atoms in

these pairs tend to be the same, while distances at longer

separations will vary as the atoms vibrate independently.

The difference between PDFs calculated with and without

distance-dependent parameters consists of small peaks whose

intensity quickly decays with increasing distance. The shape of

these peaks reflects the difference between the broad peak for

the independent vibration model and the narrower peak for

the correlated motion model. The position of these difference

peaks depends on the actual crystal structure. Since a Fourier

transform is additive, the effect of the correlated motion on

the diffraction pattern in reciprocal space can be calculated by

a sine Fourier transform of the two PDFs back into the

reduced total scattering function F(Q) = Q[S(Q) � 1]. After

the Fourier transformation, the two F(Q) patterns need to be

subtracted. Equivalently, the difference PDF can be subjected

to the sine Fourier transform. The difference PDF, however,

consists of model-dependent peak positions. As a conse-

quence, the difference F(Q) consists of many model-

dependent Fourier components, which cannot be modelled

straightforwardly with a single parameter, or even with a few

parameters.

Our new PDF algorithm handles the correlated motion

effect with the following steps. The normalized intensity is

divided by exp ð� 1
2 hu

2iQ2Þ. The intensity is next converted

into S(Q) and the sine Fourier transform [equation (1)] is

applied to calculate a temporary PDF. The division effectively

removes the thermal motion from the model, resulting in a

sharpened PDF. The temporary PDF is finally convolved by a

Gaussian distribution whose width depends on the interatomic

distance according to

� ¼ �ij � Clin=r� Cquad=r2
� �1=2

: ð9Þ

Compared with the traditional width-dependent convolution

[see equation (4)], the term �Q2
broad r2 is omitted, as instru-

mental broadening effects are handled by the convolution of

the powder pattern by the appropriate instrumental profile

function. The width of the peaks in the temporary PDF is

predominantly determined by the value of Qmax . The second

example, a silicon data set, will illustrate this part of the

algorithm.

5. Examples

In this section we illustrate the new algorithm with five

examples. The first two are perfectly periodic materials, CeO2

and Si, both collected on beamline 11-IDB at the Advanced

Photon Source, Argonne, USA. The third example demon-

strates the capabilities for handling preferred orientation. The
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fourth example is a purely theoretical one to illustrate how

this algorithm can be applied to extended supercells. The final

example, again a theoretical one, illustrates the capabilities of

the algorithm for extended disordered materials.

5.1. Crystalline CeO2

The first example uses a data set from CeO2 collected on

beamline 11-IDB at the Advanced Photon Source, Argonne,

USA. Data were collected at room temperature in a capillary

geometry in transmission with a wavelength of 0.16 Å and a

PerkinElmer area detector. The data were integrated into a

1D powder pattern and transformed into the PDF with

PDFgetx3 (Juhás et al., 2013). The refinement was carried out

with DISCUS, using a classical least-squares refinement of the

calculated PDF versus the observed PDF. Seven parameters

were refined, the ceria lattice parameter, isotropic B values for

Ce and O, the number density, a scale factor, Qdamp, and

Qbroad. The results are given in Table 1, and Fig. 4 illustrates

the moderate refinement quality (12% weighted R value).

Identical data were also used to refine a model using the new

algorithm. Instead of Qdamp and Qbroad , five pseudo-Voigt

profile function parameters were refined. The mixing para-

meter of the profile function was defined as � = � + �LQ. The

common FWHM for the Lorentzian and Gaussian compo-

nents was defined as FWHM = (uQ2 + vQ + w)1/2. Refined

values are presented in Table 1. The improved fit quality is

illustrated in Fig. 5 and is evident in the weighted R value of

10.1%. Fig. 6 illustrates the calculated F(Q).

Note that the data were not refined against F(Q). As the

refinement in the new algorithm proceeds via a calculation of

the powder diffraction pattern, it is straightforward to

generate the intermittent S(Q) or F(Q) values as well. The

difference curve in Fig. 6 indicates as the predominant error a

zero-point offset of the original F(Q) by 0.0024 Å�1 compared

with the data calculated on the correct Q scale. The final

refinement included a Qzero shift added to the calculated F(Q)

data prior to the conversion into the PDF. This improved the

fit quality to 6.7%. With the exception of the profile para-

meters no parameters shifted significantly. As the new lattice

parameter refined to 5.4143 Å instead of the NIST standard

value of 5.4116 Å this indicates that the original distance

calibration was off by 0.05%. The sine Fourier transform of
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Table 1
Refined parameters for the different models.

Columns headed ‘PDF’ refer to calculations with the original algorithm and
those headed ‘Powder’ refer to the new algorithm.

CeO2

(PDF)
CeO2

(Powder)
Si
(PDF)

Si
(Powder)

wR (%) 12 6.7 6.7 6.8
a (Å) 5.4123 (2) 5.4143 (4) 5.3839 (5) 5.3841 (4)
B(Ce/Si) (Å2) 0.2268 (2) 0.220 (3) 0.529 (2) 0.543 (2)
B(O) (Å2) 1.552 (1) 0.384 (9)
Cclin (Å3) 0.0209 (2) 0.0249 (3)
�0 (Å�3) 0.02429 (5) 0.048646 (5)
Scale 0.3210 (6) 0.2741 (1) 0.949 (9) 0.945 (4)
Qbroad 2.62 (7)

� 10�3
0.0 (1)
� 10�4

Qdamp (Å�1) 2.075 (4)
� 10�2

0.05672 (8)

� 0.097 (2) 0.16 (1)
�L (Å�1) �0.006 (1)
u 5.8 (3)

� 10�5
2.1 (4)
� 10�5

v (Å�1) �1.49 (2)
� 10�4

�4.1 (8)
� 10�4

w (Å�2) 2.42 (5)
� 10�3

1.97 (3)
� 10�2

Qzero (Å�1) �2.90 (5)
� 10�3

Figure 4
The PDF of CeO2 refined with the traditional algorithm. Original data are
in blue (background) and calculated data in red. The difference curve
PDFobs � PDFcalc (black) is offset by �5 Å�2 for clarity.

Figure 5
The PDF of CeO2 refined with the improved algorithm. Original data are
in blue (background) and calculated data in red. The upper difference
curve shows PDFobs � PDFcalc (black) for the model including a Qzero

point correction and is offset by �5 Å�2 for clarity. The second, lower,
difference curve shows PDFobs � PDFcalc (black) for the model
without a Qzero point correction. The inset shows the distance range
from 70 to 80 Å; the dashed line corresponds to the PDF calculated
without a Qzero point correction and is systematically shifted to shorter
distances.



F(Q) does not translate the zero-point shift in F(Q) into a

constant distance shift in the PDF. In the absence of any other

errors in F(Q), a distance-dependent peak shift results. The

PDFs in Fig. 7 were simulated for three different Qzero shifts.

Here, the PDFs for the F(Q) data set with peaks shifted to

larger Q are all systematically shifted to a lower distance r in

the PDF. The distance shift increases with increasing inter-

atomic distance r, as the peak shift in F(Q) acts similarly to a

pure scale in Q, which would result in a pure inverse scale in

the PDF. For the actual ceria sample the PDF shifts are less

systematic, as further errors are superimposed. Thus, such a

zero-point error is not straightforward to detect in the PDF

alone.

5.2. Crystalline Si

The second example uses a data set from Si, also measured

on beamline 11-IDB at the Advanced Photon Source,

Argonne, USA. As silicon is a single-atom-type compound the

direct PDF calculation is of course exact as well. This example

serves to illustrate that the new algorithm can describe the

effect of correlated motion just as well as the traditional

algorithm. The first peaks in the experimental PDF were

analysed with single line fits, resulting in FWHMs of the first

three peaks of 0.17, 0.22 and 0.24 Å. Further, the Si—Si

distance peaks show the same FWHM of 0.24 Å as well. Figs. 8
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Figure 6
The PDF of CeO2 refined with the traditional algorithm, comparing the
reduced scattering functions F(Q). The experimental data (blue) are
shifted by �Q = 0.0024 Å�1 compared with the PDF calculated (red)
without a Q offset. The peak shapes of the difference curve indicate a
zero-point error in the experimental data.

Figure 7
The effect of a Qzero shift on the PDF. The (blue) PDF marked with a +
was calculated from F(Q) shifted by � = 0.005 Å�1 and the (black) PDF
marked with a � by � = 0.005 Å�1. The difference curves are the
differences between the ideal PDF (red) and the respective shifted PDF.
The effect of a Q shift on the PDF is a distance-dependent peak shift.

Figure 8
The PDF of Si refined with the traditional algorithm. The experimental
PDF is in red and the calculated PDF in blue. The inset shows the distance
range 1.5–5.5 Å.

Figure 9
The PDF of Si refined with the improved algorithm. The experimental
PDF is in red and the calculated PDF in blue. The inset shows the distance
range 1.5–5.5 Å.



and 9 illustrate that both refinements result in equally good

agreement with the observed data and that the different

widths of the first three peaks are described equally well by

both algorithms. The three structural parameters [a, B(Si) and

clin] are identical within the uncertainties (Table 1).

5.3. Preferred orientation

The effect of preferred orientation on the intensities in a

powder diffraction pattern can be treated by multiplying the

intensities of the Bragg reflections with an hkl-dependent

function, for example the commonly used modified March

equation (Dollase, 1986),

PðhklÞ ¼ xþ ð1� xÞ d cosð	hklÞ
� �2

þ
sin2
ð	hklÞ

d

� 	�1=2

; ð10Þ

where x is the fraction of the sample that is not affected by

preferred orientation, d is a damping coefficient, and 	 is the

angle between the preferred orientation axis and the reci-

procal-space vector represented by hkl. The damping para-

meter d describes how sharply the intensity drops as function

of 	. A more general description is based on the orientation

distribution function (Bunge, 1991; Bergmann et al., 2001).

Currently, no algorithm has been published that allows a direct

treatment of preferred orientation of the PDF.

As an example for our new algorithm, the powder diffrac-

tion pattern of copper was simulated without and with

preferred orientation [Fig. 10(a)] and the powder pattern

transformed into the PDF [Fig. 10(b)]. The preferred orien-

tation axis was chosen as [1, 1, 1], the fraction x = 0.6 and the

damping coefficient d = 0.5. Fig. 10(c) illustrates the effect of

the damping parameter d. As d decreases, the preferred

orientation becomes more pronounced. Besides peak height

changes, the most prominent change in the PDF is an

asymmetric background modulation around the peaks in the

PDF.
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Figure 10
The effect of preferred orientation on the PDF. (a) Calculation of S(Q) for copper without (blue) and with (red) preferred orientation. (b) Comparison
of the corresponding PDFs. (c) Effect of the damping parameter d. A decrease in d causes an asymmetric background around the PDF peaks.



5.4. Application to extended supercells

The first two examples illustrated the capabilities of the

algorithm for perfectly periodic materials. As the main

emphasis of the PDF technique lies in the realm of disordered

materials we will now illustrate the application of the algo-

rithm to the case of extended supercells.

For this example the initial PDF of a hypothetical perov-

skite-type structure, TaSrO3 in space group Pm3m, with Ta on

0, 0, 0, Sr on 1
2,

1
2,

1
2 and O on 1

2, 0, 0, has been calculated using

the algorithm described in Section 4. An initial PDF was

calculated, based on a single unit cell. The structure was

further expanded to a 30 � 30 � 30 supercell, i.e. a crystal of

135 000 atoms. This crystal was shaped into a sphere of 100 Å

diameter, reducing the number of atoms to 47 785. Using the

Debye scattering equation (Debye, 1915) the powder

diffraction pattern of this finite object was calculated. The

reduced normalized scattering function for this finite object

was converted to the PDF as described in Section 4. As

expected, the peak-height PDF of this finite object decreases

with increasing distance r according to the envelope shape

function for a finite object (Howell et al., 2006; Kodama et al.,

2006),

feðr; dÞ ¼ 1�
3

2

r

d
þ

1

2

r

d


 �3
� �

�ðr; dÞ; ð11Þ

where d is the sphere diameter and � is a step function of value

1 for r < d and 0 otherwise.

As a final step, the PDF of this finite object was divided by

the envelope function of the sphere with diameter 100 Å. This

division creates a PDF that corresponds to the PDF calculated

from the original single unit cell with periodic boundary

conditions, either through an explicit PDF summation in direct

space or through the detour via the powder diffraction

pattern. Fig. 11 shows the different calculated PDFs. The

difference curve corresponds to the difference between the

PDF calculated via the powder diffraction pattern from a

single unit cell (blue curve) and the PDF calculated via the

Debye scattering equation from the powder pattern of the

spherical extended object. The two PDFs are in very good

agreement up to approximately 80% of the sphere diameter.

Beyond this limit the shape-corrected PDF of the sphere starts

to diverge, as the envelope function approaches a value of

zero. At shorter distances than the limit of 80%, the differ-

ences between the two calculated PDFs are caused by the

finite size of the spherical object. Its actual surface is not a

perfect sphere but consists of small terraces. Small voids exist

between the actual particle surface and the idealized spherical

radius that was used to cut the surface. Thus as a function of

the distance r, the sphere diameter d and the actual crystal

structure, small deviations remain between the two calculated

PDFs.

This concept of creating a PDF with effectively periodic

boundary conditions could equally well be applied to any

other crystal shape whose envelope function can be calculated

analytically. The sphere has the advantage of being a very

simple and isotropic object, whose envelope function depends

on just a single parameter, the diameter.

Despite the small differences, the new algorithm can very

well be used to calculate the PDF of an extended crystal under

the assumption of spherical boundary conditions. The algo-

rithm implemented in DISCUS allows the user to calculate a

PDF that is valid up to distances that correspond to the limit of

80% of the diameter of the largest sphere that can be placed

inside the supercell. If the structure within the supercell has

been built using any kind of short-range order algorithm, one

has to keep in mind that distances longer than 50% of the

supercell edge lengths might be subject to aliasing effects.

5.5. Disordered perovskite

In the previous section we showed that our new algorithm

can be applied to generate the PDF from a supercell while

maintaining the periodic boundary conditions. Here we apply

this technique to generate the PDF of a large disordered

supercell. The PDF is then refined with a single unit-cell

model, once at short distances and then using the PDF data at

longer distances.

The supercell for this section was based on the same

hypothetical perovskite-type structure TaSrO3 as in the last

section. The modelling approach is similar to the illustration of

the domain concept by Neder & Proffen (2008). The concept

was to create a supercell that consists of domains of a tetra-

gonally distorted perovskite-type structure. Within each

domain, the octahedrally coordinated Ta atom at 0, 0, 0 is

shifted along one of the three base vectors of the underlying

cubic structure. No further distortions of the unit-cell dimen-

sions were applied.

To build the disordered perovskite structure, a primitive

unit cell with the perovskite lattice parameters and a single

atom at 0, 0, 0 was expanded to a supercell consisting of
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Figure 11
The calculation of a PDF with periodic boundary conditions via the
Debye scattering equation. The PDF calculated from a spherical object
(green) is divided by the envelope function to yield a PDF (red) that
matches the PDF (blue) calculated through the new algorithm up to
approximately 80% of the sphere diameter. Beyond 85% the two PDFs
differ substantially.



43 � 43 � 43 unit cells. All atoms were replaced at equal

probabilities by six dummy atom types that each represented a

perovskite unit cell with the distortion along the plus or minus

direction of one of the three base vectors. These dummy atoms

were sorted with positive pair correlations to create reason-

ably large domains that each consist of a single one of the six

atom types. The sorting achieved a final pair correlation

coefficient of 0.93. As the structure consists of six different

dummy atoms, the probability of finding an identical atom

drops below 50% at a distance of 3.5 unit cells, resulting in an

average domain size of approximately seven unit cells. Each of

the dummy atoms was then replaced by a corresponding

complete perovskite unit cell in which the Ta atom at 0, 0, 0

was displaced along one of the three base vectors by a frac-

tional coordinate of 0.1. A sphere of 150 Å was inscribed into

the structure and all atoms outside this sphere were removed.

The PDF with periodic boundary conditions was calculated

from this structure using the algorithm described in the

previous section.

Two different single-unit-cell models were refined against

this PDF. In the first model only the distance range up to 8.3 Å

was used, while for the second model the distance range from

50 to 100 Å was used.

For the short distances one can expect the structure to

reflect the structure of a single domain, since on this local level

all domains are identical except for their orientation.

Accordingly, for the single-unit-cell model the displacement of

the Ta atom and independent atomic displacement parameters

for all atoms were refined. The scale and profile parameters

were fixed to the values used for the initial model building.

Table 2 shows the refined parameters and Figs. 12(a) and 12(b)

compare the observed and calculated PDFs. As expected, the

PDF calculated using a single-unit-cell model does not

describe the PDF at a distance range beyond some 15 Å with
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Figure 12
Fits of single-unit-cell models to a PDF simulated from a disordered 43 � 43 � 43 supercell of a perovskite-type structure, TaSrO3. (a), (b) The results of
a refinement to the short-distance range up to 8.3 Å. The calculated PDF (red) matches the experimental PDF (blue) for short distances only. (c), (d) The
results of a refinement to the long-distance range 50–100 Å. A good match is observed between the observed PDF (blue) and the calculated PDF (red) in
the distance range 50–100 Å. The red dots in panel (c) show the probability of remaining within a given domain as function of distance r. The trend of the
probability scales well with the overall height of the difference PDF (black).



acceptable accuracy. At a short-range distance, the fit is

perfect up to 5 Å and very good for most peaks up to roughly

10 Å. Those peaks that are dominated by Ta—Ta pairs quickly

start to diverge, reflecting the finite size of the domains.

For the long-distance range, the single-unit-cell model must

reflect an average of all domains. To this effect, a model

structure in space group Pm3m was refined with Ta on an

x, 0, 0 split position with one-sixth occupancy. As with the

short-distance model, independent ADPs were refined while

all other parameters were fixed at the input values. Refined

values are reported in Table 2 and the calculated PDFs are

shown in Figs. 12(c) and 12(d). Fig. 12(c) shows the excellent

fit in the range 50–100 Å and the lack of fit for shorter

distances, especially below 20 Å, which is shown in more detail

in Fig. 12(d) for distances up to 15 Å.

6. Timing results

The calculation speed of the algorithm depends on the tech-

nique that is used to calculate the initial powder diffraction

pattern. The timing results reported here were recorded on a

PC with an eight-core Intel Xeon E2136 CPU running at

3 GHz.

For the calculation of the PDF via the classical summation

in direct space there are three essential steps that affect the

CPU time required. In the first step, all partial histograms at

all interatomic distances must be established via the double

sum over all atom pairs. It scales at least with the atom number

squared and to the third power of the maximum distance. In

the second step, all partial histograms must be convolved with

the distance-dependent profiles that describe the thermal

motion and the distance-dependent broadening. This step

scales linearly with the number of different pairs and linearly

with the maximum distance. In the third step, the partial

histograms are summed, and the sum is convolved with the

Qmax termination function and multiplied with the damping

function. The overall rate-determining step is the build up of

the initial histograms.

For the calculation of the PDF from the content of a single

unit cell via the powder diffraction pattern, the steps are the

calculation of the powder diffraction pattern, the convolution

of the powder pattern by the resolution function, and the

normalization and conversion of the powder diffraction

pattern into the PDF. The first step scales linearly with the

number of atoms per unit cell and to the third power of Qmax ,

since the number of Bragg reflections scales accordingly. For a

fixed Qmax , the number of Bragg reflections scales linearly

with the unit-cell volume. As the number of atoms scales

linearly with the unit-cell volume (if we assume a constant

number density), the calculation scales with the square of the

unit-cell volume at a fixed Qmax .

For the calculation of the PDF via the Debye scattering

equation, the first step is again the calculation of all partial

histograms. Each partial histogram must be transformed and

the partial contribution to the powder pattern multiplied with

the Q-dependent atomic form factors. The next two steps are

again the convolution of the powder pattern by the resolution

function and the normalization and conversion of the powder

diffraction pattern into the PDF. The rate-determining steps

are the summing of the histograms and their Fourier trans-

formation.

To estimate the CPU requirements, a single unit cell was

used to calculate the PDF up to 100 Å. The number of atoms

in the unit cell was modified from 12 to 580 atoms. The (cubic)

lattice parameter was scaled to maintain a constant number

density. For the standard PDF algorithm, the times required to

calculate the PDF and to store the final PDF in the internal

software memory ranged from 0.18 to 308 s and are well

described by

t ¼ 9:2� 10�4 s�1 N; ð12Þ

where N is the number of atoms per unit cell. For the new

algorithm the CPU time is essentially constant at 0.031 s for

unit cells with less than 50 atoms. For the larger structures the

times increased to 0.21 s and follow

t ¼ 0:029 sþ 5:2� 10�7 s�1 N; ð13Þ

resulting in a computational advantage of three orders of

magnitude for the larger structures.

For a comparison of the PDF calculation via the standard

summation in direct space and the detour via the Debye

scattering equation (DSE), spherical ceria particles of

diameter 10–200 Å were simulated. These correspond to

objects with 45–369 007 atoms.

For the standard PDF calculation, the times increased from

0.015 to 176 s. For the DSE-type calculations the times were

0.81–184 s. Both trends are well described by

t ¼ 1:8� 10�9 s�1 N 2; ð14Þ

except that the equation for the DSE-type calculation requires

an additional offset of approximately 1 s.

Both computations used an identical spherical object.

Several other parameters favour the computation time of one

method or the other. The constant offset of approximately 1 s

in the case of the DSE route corresponds to the overhead due

to the Fourier transformation and the convolution of the

powder pattern with the profile function. This time is

favourably affected by a smaller Qmax value and increases if

the convolution requires a more complex profile function. The

time is essentially independent of rmax , as a fast Fourier

algorithm is used for the sine Fourier transformation to the

PDF. For the standard algorithm, the main rate-determining

step besides the computation of the partial histograms is the

convolution by the distance-dependent Gaussian function that
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Table 2
Structural parameters for the perovskite structure for the ideal structure
used in the demonstration of the periodic PDF, and the refined values for
the model based on the short- or long-range distances.

Ideal Short Long

x(Ta) 0 0.0960 (4) 0.10009 (1)
B(Ta) (Å2) 0.1 0.188 (1) 0.1253 (3)
B(Sr) (Å2) 0.2 0.133 (1) 0.1974 (5)
B(O) (Å2) 0.3 0.264 (4) 0.355 (1)



is used to describe the effect of the thermal motion and the

instrumental broadening influence expressed by Qbroad . This is

moderately increased by larger displacement parameters and

a larger value of Qbroad . In contrast to the calculations with

periodic boundary conditions, the calculation is almost inde-

pendent of rmax .

7. Conclusions

A fast algorithm has been developed that allows a calculation

of the PDF that is exact for any type of radiation within the

limits of the kinematic scattering theory. As the algorithm

calculates the PDF via the sine Fourier transformation of a

calculated powder diffraction pattern, any modification to the

powder diffraction pattern, such as a convolution with a

profile function or treatment of preferred orientation, will

properly propagate into the calculated PDF. No restrictions

apply to the calculation of the powder diffraction pattern, and

examples have been presented for a Rietveld-type calculation

of the powder diffraction pattern based on Bragg reflections

only, as well as examples based on the calculation via the

Debye scattering equation. The first calculation mode allows

for very fast PDF calculations and distance-dependent

refinements of single-unit-cell models, while the second mode

is open to any disordered material.
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