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Abstract: For AI-based classification tasks in computed tomography (CT), a reference standard
for evaluating the clinical diagnostic accuracy of individual classes is essential. To enable the
implementation of an AI tool in clinical practice, the raw data should be drawn from clinical routine
data using state-of-the-art scanners, evaluated in a blinded manner and verified with a reference test.
Three hundred and thirty-five consecutive CTs, performed between 1 January 2016 and 1 January
2021 with reported pleural effusion and pathology reports from thoracocentesis or biopsy within
7 days of the CT were retrospectively included. Two radiologists (4 and 10 PGY) blindly assessed
the chest CTs for pleural CT features. If needed, consensus was achieved using an experienced
radiologist’s opinion (29 PGY). In addition, diagnoses were extracted from written radiological
reports. We analyzed these findings for a possible correlation with the following patient outcomes:
mortality and median hospital stay. For AI prediction, we used an approach consisting of nnU-Net
segmentation, PyRadiomics features and a random forest model. Specificity and sensitivity for
CT-based detection of empyema (n = 81 of n = 335 patients) were 90.94 (95%-CI: 86.55–94.05) and
72.84 (95%-CI: 61.63–81.85%) in all effusions, with moderate to almost perfect interrater agreement
for all pleural findings associated with empyema (Cohen’s kappa = 0.41–0.82). Highest accuracies
were found for pleural enhancement or thickening with 87.02% and 81.49%, respectively. For
empyema prediction, AI achieved a specificity and sensitivity of 74.41% (95% CI: 68.50–79.57) and
77.78% (95% CI: 66.91–85.96), respectively. Empyema was associated with a longer hospital stay
(median = 20 versus 14 days), and findings consistent with pleural carcinomatosis impacted mortality.

Keywords: empyema; computed tomography; pleural findings; AI; outcome

1. Introduction

Artificial intelligence offers multiple new possibilities for quantitative image analysis
in radiology. AI-aided anatomical segmentation, such as lung segmentation for quan-
tification of lung infiltrates [1], is already established in clinical routines. AI also holds
great promise in classifying different pathologies [2]. However, there are major challenges
regarding the classification of diseases: In order to train and evaluate an algorithm, high
diagnostic accuracy is required for disease classification, but CT-based radiological diagno-
sis often provides only moderate diagnostic accuracy, depending on the clinical question.
Conversely, AI-based quantification or classification is of particular interest for those diag-
noses with only moderate radiological diagnostic accuracy. For the training, validation and
testing of an AI model, high demands should be made of the reference standard (“ground
truth”). Since the primary goal of the development of AI tools should be the application of
these tools in routine clinical practice, a classifier should be developed on a heterogeneous
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dataset that is as independent from the “inclusion” and “exclusion criteria” as possible.
This need for generalizability is often in contrast with published data. A large proportion
of published diagnostic accuracy and outcome studies [3] shows limiting exclusions of
diagnostically challenging cases.

Empyemas are pleural effusions with pus in the pleural space and are most com-
monly secondary to pneumonia [4]. While empyema-related hospitalizations increase [5],
empyemas are additionally associated with worse outcomes, such as prolonged admis-
sion, more complications [6] and therefore more invasive management [7] compared to
parapneumonic effusions. Distinguishing empyema from other forms of pleural effusion is
radiologically challenging; an AI-based classification of effusions could help in the imaging
reading process. CT is an integral part of routine clinical diagnostics for the timely diagno-
sis of empyema; however, there is a large heterogeneity of published diagnostic accuracy
measures [8]. These differences might be explained by small sample sizes, differences in
reference standards, CT-acquisition, and publication date. Currently, there is no diagnostic
accuracy study for the diagnosis of empyema (instead of CT features), nor is there an
investigation of outcome measures based on radiological reporting.

The main objective of this study is to generate a dataset for an AI-classifier for detect-
ing empyema in pleural effusions based on routinely performed CTs with pathological
confirmation in combination with outcome predictors. The first aim is to (1) determine
the diagnostic accuracy of “empyema” and the reported pleural CT features in routinely
acquired radiological reports. The second aim is to ascertain the diagnostic accuracy of
“pleural CT features” in a blinded manner (2). The third aim is to define a consensus based
on routine radiological findings and the blinded interpretation as the reference standard
and to evaluate this consensus based on sensitivity and specificity (3). Fourth, we aim to
assess pleural features for their prediction of hospital stay time and mortality (4) and finally
a prototype for automated empyema prediction is to be developed.

2. Materials and Methods

This study was approved by the local ethics committee (Project ID: 2021-00946) and
is registered on the German Clinical Trials Register (DRKS00025201). No protocol devia-
tion occurred.

2.1. Participants
2.1.1. Eligibility Criteria

Eligible patients were retrospectively identified based on the presence of pleural
effusion in the radiological report between 1st January 2016 and 1st January 2021. All
routine chest CTs were included regardless of contrast phase, with pathological reports
within 7 days. Patients without pathologic reports and follow-up examinations were
excluded. To avoid an inappropriate exclusion, patients who had already received a chest
tube for volume decompression prior to CT were not excluded. Additionally, hospital
stay time, final diagnosis, and presence of death until April 2021 were extracted from
patient records.

2.1.2. Intended Sample Size

We calculated the sample size with an estimated empyema prevalence of 10% in
parapneumonic effusions (power = 0.8; p < 0.5; H0: 0.7; H1: 0.9), with a minimum total
number of 310 patients for sensitivity (min. empyema: 31) and 34 for specificity (min.
empyema: 3). A total of 335 patients with pathological correlation could be identified in
the hospital database for the study period between January 2016 and January 2021, and we
decided to include the entire consecutive cohort in the study.

2.2. CT and Acquisition

Scans were acquired using three different CT scanners: Somatom Definition Flash
(n = 95, 2 × 128-slice system), Somatom Definition AS+ (n = 182, 128-slice system), and
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Somatom Definition Edge (n = 58, 128-slice system; all scanners: Siemens Healthineers,
Erlangen, Germany). The peak kilovoltage was 120 kVp and an automatic tube current
modulation was performed. A contrast agent was administered in 208 of the 335 CT studies,
with routine flow rates of between 2 and 4 mL/s (84 biphasic). Soft tissue kernels (30f),
with 1 mm acquisition and 5 mm reconstructions in the coronal, axial, and sagittal planes,
as well as 0.7–1 mm lung kernels (70f) were used for image interpretation on EIZO RX350
(EIZO, Ishikawa, Japan) diagnostic monitors.

2.3. Pleural CT Features

The empyema-associated pleural CT features described in the literature are pleural
thickening, pleural enhancement, microbubbles, extrapleural fat stranding, and loculation.
Figure 1 shows an example of the typical features of an empyema.

1 

 

 

 

Figure 1. Axial (right) and coronal (left) reconstruction of a 73-year-old patient with empyema on
the right side. The arrowheads show increased pleural enhancement of the parietal (costal and
mediastinal) and visceral (lung) pleura, consistent with a “split pleura sign” associated with pleural
thickening (red dash). Pleural fat stranding (bold green arrows, compared to the normal contralateral
side, thin green arrows) and microbubbles (empty arrows) are also present. Pleural empyema on the
right side is loculated (green *) in contrast to the simple pleural effusion on the contralateral side.
There is reactive hilar and mediastinal lymphadenopathy (blue arrows).

2.3.1. Radiological Report-Based CT Feature Extraction

Text-based, anatomically structured radiology reports, blinded by definition to the
reference standard, were prospectively generated in consensus by a radiology resident and
a board-certified specialist. The radiological diagnosis was routinely made based on image
findings and knowledge of the clinical information. R.S. (4th post-graduate year, PGY; for
details see Appendix A) extracted pleural CT features and test results for pleural empyema.

2.3.2. Prespecified CT Based CT Feature Extraction

All CTs were interpreted independently by R.S. (4 PGY) and N.S. (10 PGY) concerning
the following pleural CT features. The interpretation was blinded to radiological reports,
clinical information, and pathological diagnosis.

Based on the literature, the aforementioned pleural CT features were divided into the
following groups:

Pleural thickening was defined as a visible pleural line and classified based on location
(circumferential, lung-, rib-, mediastinal involvement) and morphology (smooth, nodular
(>2 mm, round), or pleural mass (>3 cm)).

Visible pleural enhancement was also scored as pleural thickening. Thus, the descrip-
tors for location and morphology also apply to any pleural enhancement present. Visible
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pleural thickening without visible enhancement was not considered enhancement. Pleural
enhancement was divided into split pleura sign (visible enhancement of both visceral
and parietal pleura) and hemisplit pleura sign (visible enhancement of either visceral or
parietal pleura).

Microbubbles were defined as gas surrounded by pleural fluid.
The extrapleural fat stranding was defined as having higher HU values compared to

the contralateral side and the subcutaneous fat tissue.
We defined loculation as obtuse angles with the lung (>90◦; <180◦). Interlobular fluid

was defined as fluid within the interlobular fissure.
According to Tsujimoto et al., a cutoff of 3 cm (the maximum measured distance on an

axial slice) was used for the amount of pleural effusion [9]. Rib destruction was defined as
osteolysis adjacent to pleural effusion. Mediastinal/hilar lymphadenopathy was defined
by a short axis > 1 cm.

After evaluation of the interrater agreement, the non-consensus was resolved by J.B.
(29 PGY).

2.4. Reference Standard

As the reference standard, we used the final pathology report within 7 days of the CT.
The reports describing macroscopic pus or fibropurulent changes were rated as positive for
empyema according to literature [10–12]. Additionally, macroscopic or microscopic pleural
tumor manifestations were defined as pleural carcinomatosis. Clinical information and
index test results were available via the hospital information system.

2.5. Possible Applications

We used an nnU-net architecture [13] for 3D pleural effusion segmentation of the
dataset. In order to evaluate the extent to which radiomic features could be suitable for
predicting an empyema, we used the Python software (version 3.7) and the PyRadiomics
package for feature extraction [14]. In the preselection phase, we selected 50 features with
the highest importance among all the extracted radiomic features. Then a random forest
model with bootstrap sampling and 100 decision trees was trained based on a leave-one-
out cross-validation, balanced 1:1 regarding pathologically confirmed empyema (n = 81)
and randomly selected negatives. Finally, the model was applied to all (n = 335) cases to
evaluate prediction performance.

2.6. Analysis

To test for normal distribution, we used the Kolmogorov–Smirnov test (e.g., patients’
age). We used a t-test to compare the differences in patients’ ages between the positive and
negative collectives. Interrater variability was assessed with Cohen’s kappa and waived by
consensus with a third rater (J.B.). Test results were organized into 2 × 2 contingency tables,
displaying true positives, true negatives, false positives, and false negatives. Pearson’s-
Chi (with Cramer’s V), sensitivity, specificity, negative predictive value (NPV), positive
predictive value (PPV), accuracy, diagnostic odds ratio (DOR), area under the curve (AUC)
as well as 95% CI intervals, were calculated for each pleural CT feature. We used Mann–
Whitney-U for the analysis of hospital stay time and performed Kaplan–Meier analysis
for survival time. All statistical analyses were performed with R 4.0.5 (R Core Team,
Vienna, Austria).

3. Results
3.1. Study Population

A total of 2659 eligible patients were identified with pleural effusions between 01/2016
and 01/2021. Of these, 335 patients had pathology workup within 7 days of computed
tomography regardless of effusion cause or underlying disease (see Figure 2) and their
results are available for download [15].



J. Imaging 2022, 8, 50 5 of 13

1 

 

 

 Figure 2. Study flow chart according to STARD [16].

Of the 335 patients included, 125 were female (37.3%). The mean age was 68.6 years
(95-CI: 67.0–70.3, Median: 71, range: 18–96). The primary etiologies (see Figure 3) of
pleural effusion were empyemas (n = 81), pleural malignancy (n = 60, with malignant cells)
and others (n = 194). Other leading causes of pleural effusion were pneumonia (n = 52),
acute or chronic heart failure with pulmonary congestion (n = 50), and trauma (n = 18).
The most common malignancy with associated pleural effusion was lung cancer. Pleural
carcinomatosis was confirmed by pathology in 34 patients. In 20 cases, the etiology of
pleural effusion remained unclear.

Figure 3. (A). The pie chart summarizes the distribution of the different pleural effusion causes
(B). Shows the age distribution in the dataset.

Pathology diagnoses were based either on intra-operative samples (n = 61), biopsies
(n = 42), or fine needle aspiration or thoracentesis (n = 231). A total of 82 patients with
empyema were identified. In 14 empyema cases, malignant cells were additionally detected
in the pathological specimen with known underlying malignancy.

The patients with empyema were slightly younger (mean age 64.4 versus 70.0, t = 2.87,
p = 0.004). In the subset of patients with empyema, 33.8% were women versus 38% in the
subset without empyema. Contrast medium was administered in 79% of the cases.
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3.2. Estimates of Diagnostic Accuracy
3.2.1. Diagnostic Accuracy Based on Radiology Report

Sensitivity and specificity of empyema diagnosis were 72.84% (95% CI: 61.63–81.85)
and 90.94 (95% CI: 86.55–94.05). After contrast administration, sensitivity and specificity
were higher (75.00% (95% CI: 62.35–84.62); 86.81% (95% CI 79.91–91.67), respectively). AUC,
NPV and PPV were 0.84 (95% CI: 0.79–0.90), 91.30% (95% CI: 86.96–94.35%) and 71.95%
(95% CI: 60.77–81.04%), respectively.

Diagnostic accuracy was higher if only benign effusions were considered (sensitivity:
73.75% (95% CI: 62.52–82.67%); 91.86 (95% CI: 92.96–97.83%). The radiological sensitivity
and specificity for pleural carcinomatosis were 70.59 (95% CI: 52.33–84.29) and 96.01 (95%
CI: 92.96–97.83%), respectively.

3.2.2. Interrater Agreement

Regarding pleural features with known association with pleural empyema, we found
a substantial agreement (mean kappa = 0.66) between both readers (pleural thickening:
circumferential = 0.66, lung = 0.41, rib = 0.73, mediastinal = 0.71, smooth = 0.65; pleural
enhancement: hemi- split = 0.77, split pleura sign = 0.79, microbubbles = 0.82, extrapleural
fat stranding = 0.48, loculation = 0.62), whereas thickening of the visceral pleura and
fat stranding were most difficult to assess. Table 1 shows Cohen’s kappa for individual
pleura features.

Table 1. Interrater Agreement.

Kappa *

pleural thickening

Overall 0.68

circumferential 0.66

Lung 0.41

Rib 0.73

Mediastinal 0.71

smooth 0.65

nodular 0.61

pleural mass 0.63

Enhancement *

split pleura sign * 0.79

overall (incl. hemi split pleura sign) * 0.77

gas 0.75

microbubbles 0.82

pneumothorax 0.97

extrapleural fat stranding 0.48

loculation 0.62

amount 0.80

other findings

rib destruction 0.87

blood 0.38

interlobar fluid 0.47

mediastinal lymphadenopathy 0.52
All p-values are ≤0.001. * 208 studies with contrast media including 64 empyemas (17 studies with empyema
where without contrast media).
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3.2.3. Diagnostic Accuracy to Differentiate Pleural Empyema from Other Effusions

The 95%-CI diagnostic odds ratio (DOR) from all the aforementioned pleural CT
features did not include 1, except pleural nodularity, pleural mass, amount, and rib destruc-
tion which are summarized in Table 2. Pleural thickening showed an overall accuracy of
81.49%, a sensitivity of 70.38% (95% CI: 59.04–79.74%), and a specificity of 85.04% (95% CI:
79.92–89.07%). Nodular thickening or a pleural mass were atypical of empyema with an
NPV of 74.68% (95% CI: 69.44–79.31%) and 75.15% (95% CI: 70.00–79.70%), respectively.
When only CTs after contrast administration are considered, pleural enhancement showed
the highest accuracy, with 87.02. The split pleura sign was more specific for diagnos-
ing empyema (93.06%, 95% CI: 87.26–96.43, sensitivity: 59.38%, 95% CI: 46.38–71.24%).
Circumferential pleural thickening/pleural enhancement showed an accuracy of 83.58%,
which is comparable to the split pleura sign (82.69%). While microbubbles and extrapleu-
ral fat stranding had high specificity (91.34%, 95% CI: 87.01–94.37% and 90.94, 95% CI:
86.55–94.05%), loculation showed a higher sensitivity with 80.24% (95% CI: 69.61–87.95%).
28.06% of patients without empyema, 43.59% of patients with pneumonia, and 51.52% of
patients with empyema showed accompanying hilar or mediastinal lymphadenopathy.
Effusion volume was not specific for empyema (19.00%, 95% CI: 14.39–24.37, sensitivity:
82.72, 95% CI: 72.36–89.90). Diagnostic accuracy measures are summarized in Table 2.

Table 2. Diagnostic accuracy of CT features.

Chi2 FP TN TP FN Sensitivity (95% CI) Specificity (95% CI) DOR (95% CI)

pleural thickening

overall 92.81 * 38 216 57 24 70.37 (59.04–79.74) 85.04 (79.92–89.07) 60.00 (39.68–90.73)

circumferential 84.69 * 4 250 30 51 37.03 (26.78–48.54) 98.42 (95.75–99.49) 52.08 (39.41–68.81)

lung 96.13 * 10 244 39 42 48.15 (37.02–59.46) 96.06 (92.66–98.00) 54.2 (39.62–74.14)

rib 103.69 * 10 244 41 40 50.62 (39.36–61.81) 96.06 (92.66–97.99) 57.08 (41.55–78.42)

mediastinal 77.03 * 7 247 31 50 38.27 (27.89–49.78) 97.24 (94.16–98.79) 48.46 (36.1–65.05)

smooth 120.54 * 21 233 54 27 66.67 (55.22–76.51) 91.73 (87.46–94.69) 69.33 (47.23–101.79)

nodular 3.93 * 18 236 1 80 1.23 (0.65–7.64) 92.91 (88.84–95.63) 0.21 (0.03–14.14)

pleural mass 2 12 242 1 80 1.23 (0.06–7.64) 95.28 (91.68–97.42) 0.31 (0.05–20.55)

enhancement **

split pleura sign ** 68.61 * 10 134 38 26 59.38 (46.38–71.24) 93.06 (87.26–96.43) 48.72 (33.3–71.28)

hemi split pleura sign ** 112.65 * 13 131 50 14 78.13 (65.71–87.11) 90.97 (84.75–94.91) 82.2 (49.19–137.38)

gas 39.14 * 52 202 46 35 56.79 (45.33–67.60) 79.53 (73.93–84.21) 31.78 (21.93–46.08)

microbubbles 87.93 * 22 232 46 35 56.79 (45.33–67.60) 91.34 (87.01–94.37) 51.61 (36.37–73.22)

pneumothorax 16.71 * 47 207 33 48 40.74 (30.13–52.24) 81.49 (76.05–85.96) 21.91 (15.21–31.57)

extrapleural fat stranding 59.1 * 23 231 38 43 46.91 (35.85–58.27) 90.94 (86.55–94.05) 39.7 (28.34–55.59)

loculation 39.14 * 54 200 65 16 80.24 (69.61–87.95) 78.74 (73.09–83.50) 73.74 (44.76–121.47)

amount 0.106 206 48 67 14 82.72 (72.36–89.90) 19 (14.39–24.37) 10.87 (0.66–18.02)

other findings

rib destruction 0.86 8 246 1 80 1.23 (0.06–7.64) 96.85 (93.66–98.53) 0.45 (0.07–29.02)

interlobar fluid 5.59 * 128 126 53 28 65.43 (53.96–75.43) 49.61 (43.32–55.91) 16.11 (10.75–24.13)

mediastinal
lymphadenopathy 5.485 * 77 177 36 45 44.44 (33.55–55.88) 69.69 (63.57–75.19) 15.72 (10.8–22.87)

diagnosis

empyema 135.163 * 23 231 59 22 72.84 (61.63–81.85) 90.94 (86.55–94.05) 82.74 (54.28–126.13)

pleura carcinomatosis 141 * 12 289 24 10 70.59 (52.33–84.29) 96.01 (92.96–97.83) 19.93 (10.39–38.25)

* p ≤ 0.05. ** 208 studies with contrast media including 64 empyemas (17 studies with empyema where without
contrast media). FP: False positives. TN: True negatives. TP: True positives. FN: False negatives.
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3.3. Outcome Measures

Among all 335 patients with pleural effusion, 51.04% died (n = 171). Pleural effu-
sion in general had a worse prognosis, with a mean survival of 1103.56 days (95% CI:
890.27–1316.84) in cases without underlying malignancy and 1005.29 days (95% CI: 900.53–
1110.05) in cases with known malignancy (χ2: 0.142, p = 0.706). Radiological intrathoracic
tumor manifestation was associated with a poorer prognosis, with a mean survival of
573.83 days (95% CI: 402.21–745.45) versus 1132.03 days (95% CI: 1023.62–1240.45; median
131 versus 1318 days; χ2: 26.95; p = 0.000). Patients with radiological signs of pleura carci-
nomatosis (n = 36) had a shorter mean survival time (414.45 days: 95% CI: 212.81–616.08)
versus 1061.91 days (95% CI: 961.38–1162.43, χ2: 11.535; p = 0.001, see Figure 4A).

Figure 4. (A). Survival of the patients with (red) and without (blue) CT features of pleural carci-
nomatosis based on Kaplan-Meier survival analysis. (B). Hospitalization duration in pneumonia
patients with and without CT features of empyema.

Patients with pleural nodularity or mass had shorter mean survival, with 445 (95%
CI: 147–734) and 432 (95% CI: 85–779) days compared to 1026 (95% CI: 928–1124) and 1018
(95% CI: 921–1115) days, respectively. Empyema did not show a higher mortality rate but
was associated with increased length of hospital stay (20 versus 14 days median, p = 0.035),
similar to pleural enhancement (p = 0.124). Figure 4B also shows this trend in empyema
versus parapneumonic effusions. Outcome measures are summarized in Table 3.

Table 3. Radiology and Outcome.

CT Features Median Hospital Stay Time in All Patients Survival Time (Kaplan-Meier-Analysis)

pleural thickening with (d) without (d) U p mean with in
days

mean
without (d) χ2 p

overall 20 14 10514 0.319 1094
(846–1069)

957
(846–1069) 1.774 0.183

circumferential 23 15 4220 0.105 1191
(921–1463)

968
(867–1069) 2.485 0.115

lung 22 14 6221 0.236 1238
(1012–1464)

945
(842–1048) 6.141 0.013

rib 22 15 6094 0.083 1220
(982–1459)

955
(852–1059) 3.369 0.066

mediastinal 21 15 5006 0.283 1110
(844–1376)

976
(874–1077) 1.371 0.242

smooth 20 15 9117 0.447 1242
(1045–1441)

925
(818–1033) 7.27 0.007
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Table 3. Cont.

CT Features Median Hospital Stay Time in All Patients Survival Time (Kaplan-Meier-Analysis)

nodular 20 15 2721 0.52 445
(147–734)

1026
(928–1124) 4.131 0.042

pleural mass 23 15 1828 0.459 432
(85–779)

1018
(921–1115) 3.6 0.057

enhancement *

split pleura sign * 20 15 3097 0.048 1214
(991–1438)

1044
(906–1182) 1.88 0.17

overall (incl. hemi
split pleura sign) * 20 14 3558 0.014 1193

(995–1391)
1032

(887–1176) 2.362 0.124

gas 19 14 10630 0.269 1009
(838–1181)

990
(875–1104) 0.055 0.815

microbubbles 20 14 7976 0.144 1106
(903–1308)

962
(855–1069) 1.017 0.313

pneumothorax 18 15 9931 0.801 909
(721–1098)

1025
(914–1135) 1.753 0.186

extrapleural fat
stranding 21 14 7431 0.203 1008

(902–1093)
992

(886–1097) 0.002 0.969

loculation 19 13 12054 0.419 1141
(982–1300)

911
(793–1029) 4.951 0.026

amount 16 14 7072 0.052 978
(872–1084)

1076 (857.74–
1295) 0.555 0.456

other findings

rib destruction 10 15 1227 0.416 264
(6–522)

1013
(916–1110) 2.645 0.104

blood 15 15 142 0.34 642
(225–1059)

1005
(908–1103) 0.722 0.396

interlobar fluid 18 14 12162 0.064 988
(902–1093)

1009
(869–1150) 0.018 0.894

mediastinal
lymphadenopathy 17 15 11960 0.572 894

(732–1056)
1040

(923–1156) 1.512 0.219

diagnosis

empyema 20 14 8695 0.035 1257
(1074–1440)

911
(801–1021) 7.617 0.006

pleura
carcinomatosis 17 15 4631 0.19 414

(212–616)
1062

(961–1162) 11.535 0.001

* 208 studies with contrast media including 64 empyemas (17 studies with empyema where without contrast media).

3.4. Possible Applications

In addition to the CT datasets, the nnU-net based segmentation masks were published
as well and are freely available [15]. Figure 5B shows a corresponding example, with
higher density values depicted within the segmentation mask. It shows that density-
based classification approaches could possibly be useful. The random forest model based
on radiomics features performed with a sensitivity of 77.78% (95% CI: 66.91–85.96) and
specificity of 74.41% (95% CI: 68.50–79.57) for the prediction of pleural empyema.
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Figure 5. (A). Biphasic axial CT with pathologically proven empyema on the right side with pleural
thickening and enhancement. (B). nnU-net based 3D segmentation (blue), within the mask density
values > 15 HU are colored orange. (C). ROC analysis of the random forest model based on radiomics
features to predict empyema. The optimal threshold is based on Youden’s index.

4. Discussion

The sensitivity and specificity of CT to diagnose an empyema in clinical practice are
72.84% and 90.94%, respectively. We found moderate to almost perfect interrater-agreement
with a sensitivity of 70.37% for pleural thickening, 78.13% for pleural enhancement, 46.91%
for fat stranding, and 80.24% for loculation, and corresponding specificities of 85.04%,
90.97%, 90.94% and 78.74%, respectively. The automated detection of pleural empyema
achieved an AUC of 0.80.

With a total of 335 consecutive patients and 81 empyemas, this is the largest study
regarding the total study population (n = 24 [17]–215 [18]) and patients with empyemas
(9 [19]–58 [20]) publicly available containing all CT datasets, pleural 3D segmentation,
radiological features, pathological reference standards, outcome information, and the
random-forest-based radiomics classification model [15].

In comparison to previous studies [8], we found higher sensitivity for pleural thicken-
ing [21–23], pleural enhancement [10,18,20] and loculation [20,22] with comparable specificity.
While most diagnostic accuracy studies used GE 8800 [19,20,24] or GE 9800 [17,19,23,24] scan-
ners, this difference might be explained by newer CT scanner generations with higher
resolution and shorter scanning times in our study (128-slice CT scanners).

Since the nomenclature is heterogeneous, we have attempted to use clear definitions for
pleural findings based on published studies. While Jimenez et al. and Leung et al. described
the anatomic location (e.g., visceral, parietal) of pleural thickening, Tsujimoto et al. [9] used
the term “split pleura” sign for visceral and parietal pleural thickening regardless of contrast
media, whereas Porcel et al. [18] retained the “split pleura” as a threshold for pleural
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enhancement. As we understand every visible pleural enhancement as visible pleural
thickening, we reserved “enhancement”, “split- and hemisplit pleura sign” for contrast-
enhanced CTs and added a more detailed anatomic description for pleural thickening. Our
literature-based definitions might lead to a more standardized reporting nomenclature.

Additionally, this is the first study to evaluate the imaging-based diagnosis of empyema
based on prospective gathered reports. We found a high negative predictive value (NPV) of
91.30%, which is comparable to the NPV of CT based diagnoses of COVID-19 pneumonia [25].

Whereas pleural effusions are known as negative outcome predictors in various disease
entities, which holds true as well for the ongoing COVID pandemic [26], they show high
one-year mortality rates in both non-malignant (25%–57% [27]) and malignant diseases
(e.g., 77% [28]). This is consistent with our results. As pleural carcinomatosis has a poor
prognosis [29], correlation with pleural findings associated with radiological manifestation
is not surprising. With the improvements in patient management and adequate treatment
of acute pleural diseases like empyema, the mortality rates have been reduced. However,
pleural diseases are still leading to longer hospitalizations, which might be improved by
early detection.

With this first radiomics-based study, we have shown that empyema is predictable
with high accuracy and that the translation of known CT features based on 3D segmentation
might be reasonable for AI algorithms. Comparable to other chest pathologies [30], the
tools for risk calculation and outcome prediction are promising.

A limitation of the study is that eligible patients were retrospectively selected on
scanners of one vendor at a single institution. A second limitation is that the reference
standard was only applied if clinically indicated, hence the empyema prevalence might
be higher than expected. Third, in addition to avoiding inappropriate exclusion, patients
with chest tubes in situ were also included, which increased the prevalence of iatrogenic
microbubbles. However, in contrast to a general tendency to exclude these patients, this
better reflects the routine clinical setting. According to the current guidelines [31], only
CT was used as a reference test in the current study; nevertheless, it might be worthwhile
to investigate the diagnostic accuracy of other modalities such as FDG-PET in the future,
which has already proved to be useful for other pleural diseases [32].

With the development of AI-based algorithms for disease detection and classification,
outcome evaluation on diagnostic images might become increasingly relevant. We showed
that known radiological descriptors vary in their potential for prognostication and can be
used as a benchmark for automated tools.

5. Conclusions

This study serves as an update of previous diagnostic accuracy studies in terms of
developments in biomedical engineering, and the results can contribute to more structured
reporting. With an AUC of 0.84, the radiological diagnosis of empyema can help to identify
patients with longer hospital stays. We hope that the openly available, anonymous CT data,
the consensus-based CT features and pathological and outcome data [26] can be used as a
baseline for further AI research.
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Appendix A

Based on the anatomically structured radiology reports, a description of the pleura
was assured. However, neither the individual pleural CT features nor their thresholds were
prespecified, and a uniform definition of pleural CT features was not available at the time
of routine reporting. The radiological diagnosis was routinely made based on the image
findings and knowledge of the clinical information.

Described pleural CT features and test results (empyema) based on differential di-
agnosis were extracted by R.S. and assigned to the subsumed CT features. A linguistic
weighting of the diagnosis of at least 50% as differential diagnosis (“is likely”; “compatible
with”; “diagnosis A versus diagnosis B”) was assessed as a positive test (both for pleural
CT features and the diagnosis of empyema). A weighting of less than 50% (“unlikely”/“no
evidence of”) was rated as a negative test. Cases with no description were rated as negative
(e.g., no split pleural sign if no description of the pleural enhancement was available).
Routine assessment of peripleural fat tissue was not done in the radiological reports and
therefore could not be extracted.
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