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A Comparative Metabolomics 
Approach Reveals Early Biomarkers 
for Metabolic Response to Acute 
Myocardial Infarction
Sara E. Ali1, Mohamed A. Farag2, Paul Holvoet3, Rasha S. Hanafi4 & Mohamed Z. Gad5

Discovery of novel biomarkers is critical for early diagnosis of acute coronary syndrome (ACS). 
Serum metabolite profiling of ST-elevation myocardial infarction (STEMI), unstable angina (UA) and 
healthy controls was performed using gas chromatography mass spectrometry (GC/MS), solid-phase 
microextraction coupled to gas chromatography mass spectrometry (SPME-GC/MS) and nuclear magnetic 
resonance (1H-NMR). Multivariate data analysis revealed a metabolic signature that could robustly 
discriminate STEMI patients from both healthy controls and UA patients. This panel of biomarkers 
consisted of 19 metabolites identified in the serum of STEMI patients. One of the most intriguing 
biomarkers among these metabolites is hydrogen sulfide (H2S), an endogenous gasotransmitter with 
profound effect on the heart. Serum H2S absolute levels were further investigated using a quantitative 
double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). This highly sensitive 
immunoassay confirmed the elevation of serum H2S in STEMI patients. H2S level discriminated between 
UA and STEMI groups, providing an initial insight into serum-free H2S bioavailability during ACS. In 
conclusion, the current study provides a detailed map illustrating the most predominant altered metabolic 
pathways and the biochemical linkages among the biomarker metabolites identified in STEMI patients. 
Metabolomics analysis may yield novel predictive biomarkers that will potentially allow for an earlier 
medical intervention.

Despite considerable advances in the treatment of acute coronary syndrome (ACS), it remains the leading cause 
of morbidity and mortality worldwide1. Recognition of myocardial ischemia is critical for both assessing the 
outcome of ACS and evaluating the response to therapeutic interventions. It is possible to accurately diagnose 
patients with irreversible injury secondary to myocardial infarction (MI) using several biomarkers. However, 
none are suitable for detecting the more subtle insult of myocardial ischemia2. This lack of suitable biomarkers 
prevents the detection of early cardiovascular disease (CVD) risk conditions, and hampers timely and effective 
risk assessment, prevention and management.

Novel biomarkers that can facilitate interventions to prevent the progression of the disease to a severe form 
are desired and needed. This will reduce the use of unnecessary resources in the workup of patients and avoid 
inappropriate discharges3. In this scenario, biomarker profiles with the ability to reliably discriminate ischemic 
from non-ischemic patients would be of inordinate value, and could have important clinical implications in daily 
practice.

Many of the commonly accepted CVD risk factors, such as abdominal obesity4 and insulin resistance5, have 
a metabolic origin. Moreover, altered cardiac metabolism is the primary consequence of myocardial ischemia3. 
Metabolite levels change rapidly in response to physiologic perturbations as they represent proximal reporters 
of disease phenotypes6. The analysis of low-molecular-weight blood metabolites can indeed offer a “fingerprint” 
of the underlying biophysical system and provide insights into the biochemical processes and their regulation7.
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Metabolomics permits a quantitative measurement of the multivariable metabolic responses of living sys-
tems to pathophysiological stimuli. This is achieved by simultaneously monitoring changes in hundreds of 
low-molecular-weight metabolites in tissues or biofluids6. Due to the complexity of the metabolome and metab-
olites diverse properties, no single analytical method can be used to analyze all the metabolites in a biological 
sample8. Several metabolomics platforms have been employed for metabolome measurement. Among several 
detection methods, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS); coupled to an 
array of separation techniques, including gas chromatography [GC] or liquid chromatography [LC] are the two 
most common technologies that prevail as the workhorses for analysis of biological samples9. Integrated analyti-
cal techniques have frequently been used to enable the sensitive and reliable detection of hundreds of metabolites 
in serum; in addition to accelerating the integration of metabolomics into disease diagnostics research10.

A number of targeted and untargeted strategies have been developed for metabolomics analyses6. The tar-
geted approach relies on the analysis of a set of pre-defined metabolites in the samples of interest. Although this 
approach provides high sensitivity, precision and accuracy due to the use of stable isotope internal standards, 
it covers only a part of the metabolome. The untargeted metabolomics approach mostly involves the unbiased 
analysis of a large number of metabolites11. Such an approach provides greater coverage of the metabolome and 
is commonly utilized at the initial stages of the biomarker discovery process and later to be confirmed via other 
targeted profiling methods12.

The current study presents an untargeted comparative metabolomics approach using multiplatform MS and 
NMR high-throughput analytical technologies. The objective was to provide insights into the underlying meta-
bolic pathways that are perturbed in two cardiovascular pathologies: unstable angina (UA) and ST-elevation myo-
cardial infarction (STEMI). Here, we attempted to establish a metabolic signature of myocardial injury in order 
to identify predictive biomarkers that will potentially allow for an earlier intervention and/or a more effective 
approach to treatment. In addition, a targeted enzyme-linked immunosorbent assay (ELISA) was used to further 
quantify the absolute levels of one of the most intriguing molecules in the current results.

Results
GC/MS-based metabolite profiling and multivariate data analyses.  A total of 68 metabolites 
were identified in serum samples from STEMI patients, UA patients and healthy controls using GC/MS. The 
identity, retention time (rt), retention index (RI) and mass-to-charge ratio (m/z) of compounds are shown in 
Supplementary Table S1. Peaks were identified and attributed to endogenous metabolites that are known to be 
involved in biochemical processes, especially in energy and lipid metabolism13. These included organic acids, 
amino acids, fatty acids, sugars and signaling gasotransmitters. Representative GC/MS chromatograms showing 
the average peaks from healthy controls and STEMI patients are depicted in (Fig. 1). Differences in the peak 
intensities were observed among the two groups, with major variant peaks belonging to hydrogen sulfide (H2S), 
glycerol, lactic acid, uric acid and fatty acids.

The acquired data were complex as a result of the large number of monitored metabolites. In order to bet-
ter visualize the subtle similarities and differences among these complex datasets, multivariate data analyses, 
i.e., supervised and unsupervised methods were employed. The unsupervised analysis methods as principal 

Figure 1.  Representative GC/MS chromatograms of serum derived from a healthy control (A) and a STEMI 
patient (B). Peak numbers correspond to those listed in (Supplementary Table ST1).
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component analysis (PCA) was applied to the GC/MS dataset to reduce the dimensionality of the data while 
retaining most of the variation in the dataset14. The PCA score plot shows a clear separation between STEMI 
patients and healthy controls, while the differences between before stent samples of UA patients and healthy 
controls were not so clear (Fig. 2A). The first two components (PC1 and PC2) explained 42% and 16% of the total 
variance, respectively. The corresponding loading plot of PC1 indicated that serum of STEMI patients exhibited 
higher levels of H2S, β​-hydroxybutyric acid, lactic acid, urea, glycerol and glucose as compared to healthy controls 
(Fig. 2B). Therefore, these metabolites may be regarded as marker metabolites for the STEMI group.

A supervised method as orthogonal projection to latent structures-discriminant analysis (OPLS-DA) was 
used to improve separation between groups14. The OPLS-DA score plot demonstrates clear separation between 
STEMI patients and healthy controls and to a lesser extent between before stent samples of UA group and healthy 
controls (Fig. 3A), as in agreement with the PCA score plot (Fig. 2A). The axes plotted in the S-plot represent the 
covariance p[1] against the correlation p(cor)[1]. The loading plot shows an increase in the levels of H2S, urea, 
uric acid and glucose in the serum of STEMI patients (Fig. 3B).

This study also aimed to detect other less abundant low molecular weight metabolites. Therefore, major 
metabolites revealed from the first multivariate analysis were excluded from the dataset. OPLS-DA was applied to 
this cut biased dataset in a second attempt. The OPLS-DA score plot for STEMI patients versus healthy controls 
shows a distinct separation between the two groups (Supplementary Fig. S1A), as in agreement with the first 
OPLS-DA model (Fig. 3A). As compared to healthy controls, a number of low molecular weight metabolites 
showed increased concentration in the serum of STEMI patients, such as α​-hydroxyisobutyric acid, valine, pal-
mitic acid and uric acid, while citrulline was observed in decreased levels (Supplementary Fig. S1B).

GC/MS-based fatty acids profiling and multivariate data analyses.  Serum lipids and lipopro-
teins usually undergo several phased changes in response to MI. Moreover, free fatty acids (FFA) concentration 
increases precipitously during the early-onset MI15. Therefore, the potential of using various lipids fractions as 
biomarkers for predicting the risk of MI was tested. The current study specifically aimed at investigating the 
changes in the levels of fatty acids and cholesterol in response to the disease. A total of 12 fatty acids and cho-
lesterol were identified in serum samples from STEMI patients, UA patients and healthy controls using GC/MS 
(Supplementary Table S1), where they were separately subjected to multivariate data analysis. The PCA score plot 
shows two clusters of samples relating to healthy controls and STEMI patients, while before stent samples of UA 
patients were overlapping with healthy controls (Supplementary Fig. S2A). This suggests that there is a dynamic 
change in the fatty acids profile of STEMI patients. The fatty acids that most contributed for such segregation were 
palmitic acid, linoleic acid, stearic acid and oleic acid, being relatively elevated in the serum of STEMI patients, 
whereas no significant difference was observed for the level of cholesterol among different groups (Supplementary 
Fig. S2B). These results confirm that MI induced marked changes in the levels of FFA.

Figure 2.  GC/MS based PCA of STEMI patients (▴​), before stent samples of UA patients ( ) and healthy 
controls (●​) (A) Score plot of PC1 and PC2 scores (B) Loading plot for PC1 components contributing peaks and 
their assignments, with each metabolite denoted by its mass/rt (min) value. Peak numbers correspond to those 
listed in (Supplementary Table ST1).
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OPLS-DA analysis was also performed on the fatty acids profile of these patients. The OPLS-DA score plot 
shows a clear separation between STEMI patients and healthy controls, whereas before stent samples of UA 
patients were still overlapping with healthy controls (Supplementary Fig. S3A). The corresponding loading plot 
confirmed the elevation of palmitic acid in STEMI patients (Supplementary Fig. S3B), as identified above.

The effect of coronary stenting on the GC/MS derived metabolite profiles of UA patients.  In 
an attempt to investigate the effect of coronary stenting on the metabolite profiles of UA patients, a PCA model 
was performed for before stent versus after stent samples. The PCA score plot shows no discrimination between 
samples, indicating that coronary stenting had no clear effect on the metabolite profiles of UA patients. Samples 
were scattered on the score plot due to the variability in the severity of the disease within this cohort (i.e., lesion 
severity and size of the vessel being treated) (Fig. 4).

Moreover, no valid OPLS-DA model could be derived from modeling before stent versus after stent samples. 
This confirms that both the supervised and unsupervised analysis were not able to discriminate between samples 
pertaining to the UA patients.

Figure 3.  GC/MS based OPLS-DA of STEMI patients (▴​), before stent samples of UA patients ( ) and healthy 
controls (●​) (A) OPLS-DA score plot (B) loading plot derived from samples modeled against each other. 
Selected variables are highlighted in the loading plot with each metabolite denoted by its mass/rt (min) value. 
Peak numbers correspond to those listed in (Supplementary Table S1).

Figure 4.  GC/MS based PCA of before stent ( ) versus after stent samples (■​) of UA patients.



www.nature.com/scientificreports/

5Scientific Reports | 6:36359 | DOI: 10.1038/srep36359

Quantitative determination of serum H2S using ELISA.  One of the most intriguing marker metabo-
lites that indeed merit further investigation is H2S, an endogenous signaling gasotransmitter with profound effect 
on the heart and circulation16. H2S is one of the major discriminatory metabolites observed in the loading plots 
belonging to the STEMI group (Figs 2B and 3B). The considerable interest in H2S urged for further monitoring 
of its level using a double antibody sandwich ELISA. Reconstructed GC/MS chromatograms for serum H2S in 
samples derived from a healthy control, UA patient and a STEMI patient are shown in Fig. 5A, illustrating the 
difference in the level of H2S among different groups. This highly sensitive immunoassay confirmed the elevation 
of H2S in the serum of STEMI patients, as compared to UA patients and healthy controls. Similarly, the level of 
H2S was elevated in the serum of UA patients, as compared to healthy controls. However, the increase was less 
pronounced in UA patients than in STEMI patients. Thus, serum H2S level was able to discriminate between UA 
and STEMI patients (Fig. 5B).

Headspace solid phase microextraction coupled to gas chromatography mass spectrometry 
(SPME-GC/MS) of serum volatile metabolites.  The indication of anaerobic metabolism in STEMI 
patients prompted monitoring other volatile metabolites products of anaerobic metabolism which could have 
evaded detection using such GC/MS methodology. Only samples that showed the most variant response from 
GC/MS analysis of primary metabolites were chosen for SPME-GC/MS analysis.

SPME was attempted to analyze serum volatile metabolites without the prior need for derivatization and 
with trapped volatiles subsequently analyzed by GC/MS. Results of this sensitive technique show an increase in 
acetone levels in the serum of some STEMI patients as compared to healthy controls (Supplementary Fig. S4).

1H-NMR-based metabolite fingerprinting and multivariate data analyses.  Another complemen-
tary technique, 1H-NMR, was applied to provide a broader range of metabolite coverage. A total of 52 metabolites 
were identified in serum samples from STEMI patients, UA patients and healthy controls using 1H-NMR. The less 
number of metabolites detected using NMR compared to 68 peaks via MS is attributed to MS higher sensitivity 
levels. The identities, chemical shift (δ​), coupling constant (J) and multiplicity for individual components are 
presented in Supplementary Table ST2. A representative NMR spectrum of a healthy human serum is shown in 
Supplementary Fig. S5.

Multivariate data analysis was performed for the spectral region of δ​ −​0.4 to 9.0 ppm. The binned data was ini-
tially subjected to PCA with the first two PCs accounting for 39.7% and 20.8% of the total variance, respectively. 
The PCA score plot shows three distinct clusters relating to STEMI patients, before stent samples of UA patients 
and healthy controls (Fig. 6A). The loading plot displays the variables (in bin numbers) responsible for the clear 
separation observed in the score plot. The corresponding loading plot of PC1 indicated increased levels of carni-
tine, betaine, choline, glycerol, glycine and glucose in the serum of STEMI patients (Fig. 6B).

Figure 5.  (A) Reconstructed GC/MS chromatograms for serum H2S in samples derived from a healthy control, 
UA patient and a STEMI patient illustrating the difference in H2S peak (M3) among different groups. Peak 
numbers correspond to those listed in (Supplementary Table ST1) (B) ELISA measured absolute H2S serum 
levels in samples from healthy controls, before stent samples of UA patients and STEMI patients. Results are 
expressed as mean ±​ SEM. Statistically significant difference was observed between UA patients and healthy 
controls (*P ≤​ 0.05), STEMI patients and healthy controls (***P ≤​ 0.001), and STEMI patients and UA patients 
(###P ≤​ 0.001).



www.nature.com/scientificreports/

6Scientific Reports | 6:36359 | DOI: 10.1038/srep36359

A further PCA was performed for STEMI patients versus healthy controls, a PC score plot (PC1 =​ 40.8% and 
PC2 =​ 23.7%) shows a distinct separation between the two groups. However, these groups were clearly separated 
along PC2 (Supplementary Fig. S6A). The loading plot for PC2 exposed the most discriminatory signals and 
confirmed the elevation of choline, glycerol, glycine, glucose, lactic acid and β​-hydroxybutyric acid in the serum 
of STEMI patients (Supplementary Fig. S6B).

The PCA models derived from the 1H-NMR analysis show that NMR signals belonging to lactic acid, 
α​-glucose and β​-glucose were the most significant in contributing to sample group separation (Fig. 6B and 
Supplementary Fig. S6B). Therefore, quantitative NMR analysis was performed for these metabolites. Results 
indicated that the estimated levels of these metabolites were higher in the serum of STEMI patients as compared 
to healthy controls (Supplementary Fig. S7).

A supervised OPLS-DA analysis was performed for STEMI patients versus healthy controls. Goodness of fit 
and predictive ability values (R2 and Q2) were 0.686 and 0.629, respectively. The OPLS-DA score plot shows a clear 
separation between the two groups (Supplementary Fig. S8A). The corresponding loading plot confirmed the 
increase in the levels of carnitine, betaine, choline, glycerol, glycine and glucose in STEMI group (Supplementary 
Fig. S8B). These data mirrored the PCA loading plot derived from the 1H-NMR analysis (Fig. 6B).

In summary, our data indicate that alterations in metabolism are dominated by the MI state with major dis-
criminatory metabolites observed in all loading plots belonging to the STEMI group, whereas the UA-related 
changes in the profiles, although contributing to group separation, are less apparent (Figs 1, 2, 3, 4, 5 and 6 and 
Supplementary Figs S1–S8). The outcome of different metabolomics technologies is shown in (Tables 1 and 2). 
Biomarker metabolites identified in the serum of STEMI patients and their associated metabolic pathways are 
represented in Fig. 7.

Discussion
Current markers for myocardial injury (i.e., Creatine kinase-MB (CK-MB) and cardiac troponin) are not reliably 
detected until at least 4–6 h post myocardial injury, and once detected; the disease is already in its irreversible 
state17. In contrast, the metabolic changes identified in the present study were readily apparent as early as 1–2 h 
post myocardial injury, a time frame in which to our knowledge, no currently used biomarkers are found to be 
elevated.

This study aimed at investigating early markers of endothelial and vascular dysfunction in an attempt to 
identify a disease status that has yet to become symptomatic. A multiplex comparative metabolomics approach 
including GC/MS, SPME-GC/MS and 1H-NMR was for the first time applied for a comprehensive metabolites 
assessment in two common forms of ACS, as STEMI and UA. Previous metabolomics studies have generally 

Figure 6.  1H-NMR based PCA of STEMI patients (▲​), before stent samples of UA patients ( ) and healthy 
controls (●​) (A) Score plot of PC1 and PC2 scores (B) Loading plot for PC1 components contributing bin 
numbers. Differential signals high in STEMI were assigned in each bin as follows: Bin 92, D-glucose, carnitine 
and betaine; bin 94, D-glucose; bin 96, choline and D-glucose; bin 97, D-glucose, glycerol and glycine;bin 102, 
D-glucose; bin 125, β​-glucose; bin 135, α​-glucose.
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employed either NMR3 or GC/MS18. There is growing evidence that no single method is adequate and that com-
bining both MS and NMR offers a powerful approach in leveraging between both technologies limitations.

In the current metabolomics study, UA patients were clinically stable and recruited at elected angioplasty. This 
may explain why the metabolite profiles of UA patients were not significantly different from healthy controls. 
Indeed, UA patients were not in the active phase at the time of blood sampling; rather they were treated because 
of earlier episodes of acute events. In addition, the metabolite profiles of UA patients were not altered after rep-
erfusion which suggests that successful coronary angioplasty restores normal coronary circulatory dynamics19 
(Fig. 4).

Peak no. rt (min) m/z P value a Metabolites
Variations versus 
healthy controls b

M3 7.612 171 0.0197 H2S ↑​

M8 10.317 117 <​0.0001 β​-Hydroxybutyric 
acid ↑​

M9 10.358 191 0.0014 Lactic acid ↑​

M18 12.306 131 0.0042 α​-Hydroxyisobutyric 
acid ↑​

M22 15.377 189 0.0071 Urea ↑​

M25 16.54 205 0.0126 Glycerol ↑​

M41 24.553 186 0.0064 L-Valine ↑​

M48
M49

29.077
29.077

156
155

0.0006
0.0018 Citrulline ↓​

↓​

M57
M65

31.967
33.581

204
204

0.0035
<​0.0001 Glucose ↑​

↑​

M67 34.38 313 0.0011 Palmitic acid ↑​

M69 35.865 441 <​0.0001 Uric acid ↑​

M72 37.526 337 0.0024 Linoleic acid ↑​

M73 37.6 339 0.0326 Oleic acid ↑​

M74 37.967 341 0.0236 Stearic acid ↑​

Table 1.   Marker metabolites identified in PCA and OPLS-DA models of GC/MS based metabolite 
profiling. aThe P value was calculated from independent samples t test. bThe arrows ↑​ and ↓​ indicate increase 
and decrease of metabolite levels in the serum of STEMI patients as compared to healthy controls, respectively.

Bin no.
Chemical shift 

(ppm) P valuea Metabolites
Variations versus 
healthy controlsb

44 1.3200–1.3600 0.0215 Lactic acid ↑​

111 4.0702–4.1102 0.0236 ↑​

92 3.2400–3.2800 <​0.0001 Carnitine ↑​

92 3.2400–3.2800 <​0.0001 Betaine ↑​

92 3.2400–3.2800 <​0.0001

D-glucose

↑​

94 3.3902–3.4302 <​0.0001 ↑​

95 3.4302–3.4702 0.0016 ↑​

96 3.4702–3.5102 <​0.0001 ↑​

97 3.5102–3.5502 <​0.0001 ↑​

102 3.7102–3.7502 0.0207 ↑​

103 3.7502–3.7902 0.0024 ↑​

105 3.8302–3.8702 0.0010 ↑​

106 3.8702–3.9102 0.0116 ↑​

96 3.4702–3.5102 <​0.0001 Choline ↑​

97 3.5102–3.5502 <​0.0001 Glycerol ↑​

97 3.5102–3.5502 <​0.0001 Glycine ↑​

112 4.1102–4.1502 0.0360 β​-Hydroxybutyric acid ↑​

125 4.6302–4.6702 0.0001 β​ -glucose ↑​

135 5.2202–5.2602 <​0.0001 α​-glucose ↑​

Table 2.   Marker metabolites identified in PCA and OPLS-DA models of 1H-NMR based metabolite 
fingerprinting. aThe P value was calculated from independent samples t test. bThe arrows ↑​ and ↓​ indicate 
increase and decrease of metabolite levels in the serum of STEMI patients as compared to healthy controls, 
respectively.
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In STEMI patients, samples were taken from patients presenting at the triage and before admission to the 
ICU. Patients presented with severe chest pain accompanied by diaphoresis, nausea and sometimes syncope sug-
gesting acute myocardial infarction (AMI). Serum collection was performed prior to the administration of any 
medications and when patients’ baseline troponin levels were normal. A dramatic and immediate change in the 
global metabolism of STEMI patients was observed as a consequence of insufficient blood flow and subsequent 
stress response. Serum metabolite profiling of STEMI patients revealed for a myriad of differentially occurring 
metabolites. These included fatty acids such as palmitic acid, stearic acid, linoleic acid and oleic acid, ketone 
bodies as acetone and β​-hydroxybutyric acid, amino acids as valine, glycine, carnitine and citrulline, organic 
acids as α​-hydroxyisobutyric acid, choline, betaine, lactic acid, uric acid, urea and glycerol, sugars as glucose, 
and signaling gasotransmitters as H2S. The identified metabolites present a detailed map of the metabolic path-
ways perturbed by MI and provide information about the metabolic state of myocardial tissue that is associated 
with the disease. The major recognized altered metabolic pathways are mainly referred to as oxidative stress and 
ischemia-induced alterations in energy metabolism, amino acids metabolism, fatty acid oxidation, anaerobic 
glycolysis, urea cycle and pathways linked to endogenous gasotransmitters. These metabolic changes could be 
useful for early risk stratification of MI patients, particularly if troponin results are negative upon patient hospital 
admission, as observed in STEMI patients (Table 3). Using such comparative metabolomics approach, we were 
able to assign distinct clusters of related metabolites that exhibit coordinate responses to ischemia and have great 
potential in the earlier diagnosis of STEMI patients.

Our data suggest that ischemia constitutes the main axis that drives the metabolism of each cell to adapt to the 
deficiency of oxygen in order to maintain their metabolic activity. Based on the ischemic insult severity, elevation 
of catecholamine levels can be observed for prolonged periods of up to 24 h20. Ischemic stress is also associated 
with elevation of hydrocortisone levels which can often blunt insulin sensitivity. Insulin resistance that develops 
in adipose tissue results in altered ability of insulin signaling cascade to store triglycerides. This will induce lipol-
ysis and uncontrolled release of FFA and glycerol21–23. Consistent with such hypothesis, our results indeed points 
to elevated levels of glucose, glycerol and FFA as palmitic, stearic, linoleic, and oleic acid in the serum of STEMI 
patients (Fig. 2B and Supplementary Fig. S2B).

The metabolic alterations in myocardial energy production also affect other important metabolic pathways3. 
The decline in glucose oxidation during ischemia requires the rapid acceleration in the conversion of pyruvate to 
lactate in order to regenerate NAD+ under oxygen limiting conditions, which is required to sustain glycolysis24. 
In addition, an increased reliance on the anaerobic myocardial metabolism takes place, which increases lactic 
acid release out of cardiac myocytes for maintenance of ATP levels. The overall result is an increase in circulating 
lactate after ischemia3, as clearly evident from our results (Fig. 2B).

The elevated levels of ketone bodies is another common metabolic area that could also relate to stress on 
energy metabolism. Both β​-hydroxybutyrate and acetone are ketone bodies that are mainly synthesized from the 

Figure 7.  A detailed map illustrating the most predominant altered metabolic pathways and the 
biochemical linkages among the biomarker metabolites identified in the serum of STEMI patients. 
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oxidation of fatty acids and are known for their roles in glucose and lipid metabolism25. In case of starvation or 
diabetes mellitus, the levels of ketone bodies are significantly increased due to high levels of fatty acids and low 
insulin. In this case, they become the major energy supplier of the myocardium26. Results of the present study 
concurring with others18 suggest that the hypoxia situation comes to “mimic” the physiological situation that 
occurs in diabetes. The low energy yield of glucose metabolism forces cells to use fat as an energy source and 
release ketone bodies as end products. Consequently, elevation in ketone bodies levels denotes for an increase in 
fatty acids catabolism concurrent with the incapacity of the TCA cycle to fully metabolize acetyl CoA27(Fig. 2B 
and Supplementary Fig. S4).

Another interesting potential biomarker that signals for either hyperglycemia or dysregulation of fatty acids 
metabolism is α​-hydroxyisobutyric acid. It was also reported in the blood and urine of lactic acidosis patients28. 
The present study shows an increase in its level that is believed to arise from inefficient fatty acids oxidation 
(Supplementary Fig. S1B).

Carnitine is an essential metabolic mediator which facilitates β​-oxidation by transporting the activated fatty 
acids into the mitochondrial matrix29. Accumulation of carnitine in the serum of STEMI patients may be indica-
tive of an increased β​-oxidation and mitochondrial dysfunction (Fig. 6B). Serum free L-carnitine in combination 
with CK-MB and myoglobin was suggested to be used as a predictor for the diagnosis of AMI30. Increase in car-
nitine and branched chain amino acids (BCAA) levels have been found to act as a biomarker of insulin resistance 
in CVD patients31.

The principal end product of protein catabolism, urea, was found to be increased in the circulation of 
MI group (Fig. 2B). In contrast, citrulline was detected at much lower levels as compared to healthy controls 
(Supplementary Fig. S1B), both of which are members of the urea cycle that feeds into the citric acid cycle. 
Therefore, alteration of their levels indicates that urea cycle has also been impaired32. Sabatine et al. group33 
observed a drop in the level of citrulline in AMI patients. Such decrease in citrulline levels is likely to be mediated 
via the preservation of the citric acid cycle intermediates to defend ATP production in the myocardium.

Oxidative stress has been regarded as one of the most important contributors to the progression of atheroscle-
rosis34. An interesting finding revealed from the current results that could relate to oxidative stress, is uric acid. 
During periods of oxidative stress, mitochondria become less capable in converting ADP to ATP. This results 
in ADP to be shunted to the production of hypoxanthine which is associated with an increase of uric acid35, 
as observed in STEMI patients (Fig. 3B). Uric acid is regarded as a potential risk factor for the development of 
CVD36.

Changes in serum phospholipids levels are associated with silent myocardial ischemia37. Griffin et al.38 
reported that the main metabolic changes monitored using NMR in CVD patients were derived from lipids 
in lipoproteins, as well as choline. Moreover, Senn et al.39 reported an increase in choline and betaine levels in 
patients undergoing coronary angiography. Such an upregulation in these metabolites, being linked via a com-
mon biochemical pathway, add credence to the current results reported herein for observed choline and betaine 
increased serum levels (Fig. 6B). The overall pattern of changes was strongly suggestive for a lipid metabolic 
dysregulation in STEMI patients. Recently, whole blood choline (WBCHO) is used as an early marker for ACS 
patients, in addition to predicting cardiac ischemia in patients with negative troponin40.

One of the most intriguing findings in current results that indeed merit further investigation is H2S, which 
was significantly increased in the serum of STEMI patients (Figs 2B and 3B). H2S has been traditionally viewed 
as a toxic gas and less recognized as an endogenously generated biological mediator. It has recently been hypoth-
esized that H2S is the “third endogenous signaling gasotransmitter” alongside with nitric oxide (NO) and carbon 
monoxide (CO)41. Endogenous H2S is generated in mammalian tissues by two pyridoxal-5′​-phosphate-dependent 
enzymes, cystathionine-β​-synthase (CBS) and cystathionine-γ​–lyase (CSE)42. In the heart, endogenous H2S is 

STEMI patients 
(n = 30)

UA patients  
(Before stent; n = 15)  
(After stent; n = 15)

Healthy controls 
(n = 15)

Age ±​ SD (years) 54 ±​ 14.5 58 ±​ 11 57 ±​ 13.2

Sex (male/female) 24/6 8/7 7/8

Smokers 16 11 5

Ex-smokers 1 1 3

Blood pressure 136/87 ±​ 7 135/82 ±​ 3 125/85 ±​ 5.5

Random blood glucose (mg/dL) 168 ±​ 6.4* 104 ±​ 5.2 96.8 ±​ 8.7

Total cholesterol (mg/dL) 207.6 ±​ 7.2 211.6 ±​ 9.07 199 ±​ 5.75

Triglycerides (mg/dL) 153 ±​ 8.3 151 ±​ 10 118.9 ±​ 4.8

Serum creatinine (mg/dL) 0.95 ±​ 0.2 0.85 ±​ 0.2 0.9 ±​ 0.2

ECG ST segment elevation No ST segment elevation Normal

hs-CRP (mg/dL) 3.8 ±​ 1.23* 1.3 ±​ 0.47 0.8 ±​ 0.25

Serum troponin (1–2 h post 
chest pain) (ng/mL) 0.02 ±​ 0.01 0.02 ±​ 0.01 0.02 ±​ 0.01

Serial serum troponin (6–8 h 
post chest pain) (ng/mL) 5.36 ±​ 1.5* 0.02 ±​ 0.01 0.02 ±​ 0.01

Table 3.   Baseline characteristics of participants involved in this study. Data are represented as mean ±​ SEM. 
A P value ≤​ 0.05 was considered statistically significant.
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synthesized from L-cysteine via CSE43. H2S can regulate heart contractility and protects the heart from ischemic 
injury44. The mechanism underlying the vascular relaxant effect of H2S are yet to be determined, although open-
ing of ATP-sensitive K+ (KATP) channels in vascular smooth muscle cells (SMCs) could mediate for such effect45. 
Recent studies46,47 showed an increase in CSE expression in the infarct area and area-at-risk beside the necrotic 
tissue. This demonstrates that H2S could be produced endogenously in myocardial tissue as a “compensatory 
response” to act as a cardioprotective agent against ischemic insult.

H2S was also found to promote angiogenesis and is anti-atherosclerotic in nature48,49. During atherosclerosis, 
there is an increase in the formation of reactive oxygen species (ROS). H2S can directly quench ROS with its 
strong reducing properties and inhibit ROS production50. Within the atherosclerotic lesion, there is a massive 
proliferation of vascular SMCs. H2S inhibits vascular SMCs proliferation and induces their apoptosis51. Foam 
cells formation from macrophages by oxidized LDL is critical for the initiation and progression of atherosclerotic 
lesions. H2S was shown to inhibit the formation of foam cells52.

There still remains some controversy over the cross talk between H2S and NO. Coletta et al.53 reported that the 
deficiency in endothelial nitric oxide synthase (eNOS) prevented the ability of H2S to induce angiogenesis, sug-
gesting that NO is required for H2S to have its vascular effects. In a recent study54, exogenously administered H2S 
increased eNOS activity and NO bioavailability. Once we better understand how these molecules work together, 
we can begin building therapeutics that maximize the benefits of both signaling molecules.

In the current study, quantitative determination of H2S using ELISA showed that H2S was elevated in the 
serum of STEMI and UA patients, compared to normal levels in healthy controls (Fig. 5). However, distinct 
differences were observed in the level of H2S within ACS patients, with STEMI subjects showing the highest 
elevation. This leads to the obvious question whether the change in its level is correlated with the disease status. 
This targeted immunoassay confirmed the results obtained from the untargeted GC/MS based metabolomics 
approach (Figs 2B and 3B) and in accordance with recent findings showing that H2S levels are critically altered 
during myocardial ischemic injury55.

Therefore, elevation of H2S found in our study could be interpreted in different ways, with an initial explana-
tion being a compensatory response to ischemia and endothelial dysfunction.

In conclusion, using such an untargeted metabolomics approach represents a paradigm shift in metabolic 
research, away from approaches which concentrated on single pathways (hypothesis-directed) to those which 
attempt to gain a comprehensive understanding of complex metabolic networks (hypothesis-generating)38. The 
current study uncovered a number of novel avenues for both identifying and diagnosing patients before they have 
major adverse cardiac events. That issue was addressed in the most challenging scenario, i.e., patients with sponta-
neous acute chest pain presenting at the triage, before admission to the ICU, and with normal baseline troponin lev-
els. The metabolite biosignature presented herein shows high accuracy in discriminating STEMI patients from both 
healthy controls and UA patients. Nineteen marker metabolites were identified in the serum of STEMI patients, all 
of them are considered as potential biomarkers. These findings indicate that metabolite profiling techniques can 
develop a detailed picture of the metabolic changes that occur in response to the disease. Hence, they provide an 
opportunity to develop predictive biomarkers that will potentially allow for an earlier medical intervention.

Further studies are still needed to investigate the clinical implications of our findings. For example, UA 
patients before stabilization and AMI patients after stabilization should be investigated. Also the circadian vari-
ation in metabolites possibly interfering with their diagnostic power should be determined. Finally, interference 
with therapies should be investigated.

Materials and Methods
Ethics, consent and permissions.  All procedures were designed according to the Declaration of 
Helsinki’s56. The study protocol was ethically reviewed and approved by the Ethics Review Committee of the 
German University in Cairo. Signed informed consent was obtained from all subjects prior to their inclusion in 
the study.

Clinical characteristics of patients.  Blood samples were collected from STEMI patients (n =​ 30), UA 
patients undergoing coronary angioplasty (n =​ 15), and sex- and age-matched healthy controls (n =​ 15) recruited 
from the National Heart Institute (NHI, Giza, Egypt).

In STEMI patients, samples were taken 1–2 h post chest pain, at the time of triage, and prior to the emergency 
department admission. Only patients diagnosed with a STEMI based on the admission ECG and/or elevated 
serial troponin levels were included in this study. It should be noted that samples were obtained when patients’ 
baseline troponin levels were normal and prior to the administration of any medications.

For the UA cohort, patients with a history of angina pectoris, ECG evidence of myocardial ischemia and cor-
onary lesions suitable for angioplasty were recruited in this study. Two samples were obtained from each patient; 
one before the percutaneous coronary intervention, which is referred to as “before stent” and a second sample 3 h 
after the intervention, which is referred to as “after stent”.

Volunteers in the control group were included on the basis of a physician’s assessment of their general health 
status (body mass index, normal values in blood plasma and urine standard clinical tests, as well as the absence of 
major illness or chronic medication).

A detailed medical history, physical examination and biochemical profile were obtained for all subjects (Table 3). 
The exclusion criteria for both patients and controls included any concomitant acute or chronic severe diseases that 
would interfere with the evaluation of subjects (i.e., end-stage liver disease, hepatitis, hepatic insufficiency, pulmo-
nary hypertension, renal failure, diabetes mellitus or any autoimmune disease). In addition, patients who had under-
gone any major surgical procedure within 14 days prior to the serum collection, or with a clinical history of MI, 
cardiomyopathy, congestive heart failure or depressed left ventricular function were also excluded from the study.
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Chemicals and reagents.  N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) with 1% Trimethylsilyl  
chloride (TMCS), acetonitrile (99.8%), xylitol (an internal standard for relative quantification using GC/MS), 
pyridine, amino acids, sugars and standard n-alkanes mixture (C8-C40) were purchased from Sigma-Aldrich (St. 
Louis, Mo., USA). Water-d2 (99.80% d), and 2,2-dimethyl-2-silapentane-5-sulfonic acid (DSS) serving as an inter-
nal chemical shift NMR standard were provided from Deutero GmbH (Kastellaun, Germany).

Sample collection.  Five milliliters of blood were collected in sterile vaccutainers without an anticoagulant 
or preservative, then immediately stored at 4 °C to prevent sample degradation (<​2 h). Later, samples were cen-
trifuged (5810R, Eppendorf, Germany) at 4,000 rpm for 5 min and the resulting serum was aliquoted in batches 
of 500 μ​L and stored at −​80 °C until analysis.

Sample preparation for GC/MS and NMR analyses.  For GC/MS analysis, 100 μ​L of serum was mixed 
with 5 μ​L xylitol (1 mg/mL, internal standard) and 200 μ​L of acetonitrile then centrifuged at 13,000 rpm for 
10 min. The supernatant was dried using a speed vacuum concentrator (Eppendorf, Germany). For metabolites 
derivatization, 70 μ​L of MSTFA with 1% TMCS and 70 μ​L pyridine were added to the dried aliquot followed by 
incubation at 60 °C for 45 min.

For NMR analysis, 800 μ​L acetonitrile was added to 400 μ​L of thawed serum then centrifuged at 13,000 rpm 
for 10 min. The supernatant was carefully separated and dried. Dried aliquots were resuspended in 1.5 mL D2O 
containing 0.05% DSS, then the supernatant was transferred to a 5-mm NMR tube after centrifugation (13000 
rpm for 5 min).

GC/MS analysis.  Analysis was performed on a Trace 1300 GC coupled to an ISQ LT– Single Quadrupole 
MSD (ThermoElectron, San Jose, USA) operating at conditions described previously by Farag et al.57. 
Chromatographic separation was achieved on a 30 m TG-5MS column (J&W Scientific; 0.32 mm ID, 1 μ​m film 
thickness, low polarity phase, chemically bonded with a 5% diphenyl and 95% dimethyl polysiloxane cross-linked 
stationary phase) at a constant flow of 0.5 mL min−1 with a temperature program of 80 °C for 2 min, ramped at 
5 °C min−1 to 300 °C, and held for 5 min. To detect and eliminate retention time shifts, standard n-alkanes mixture 
(C8-C40) was injected into the GC/MS during analysis of each batch of samples.

Identification of metabolites via GC/MS.  Raw data acquired from Xcalibur 1.4 (Thermo Fisher Scientific, 
Inc., Waltham, MA) were exported in NetCDF format using the File Converter tool in Xcalibur software. An auto-
mated mass spectral deconvolution and identification system (AMDIS 2.64, NIST, Gaithersburg, Md., USA, www.
amdis.net) was used to deconvolute the measured mass spectra prior to the database search. The RI was calculated 
relative to the standard n-alkanes mixture (C8-C40). The spectra of individual components were transferred to the 
NIST Mass Spectral Search Program MS Search 2.0. Identification of metabolites was performed by mass spectra 
matching against reference spectra of the NIST Mass Spectral Library 2005 (National Institute of Standardization 
and Technology, Gaithersburg, MD, USA), Golm Metabolome Database (Error! Hyperlink reference not valid. 
Golm.mpg.de/csbdb/gmd/home/gmd_sm.html) and Human Metabolome Database (HMDB, www.hmdb.ca/).

GC/MS data processing for multivariate data analysis.  XCMS data analysis software (http://
www.137.131.20.83/download/) was used under R 2.9.2 environment58 for metabolite profiling using peak align-
ment, matching and identification, as described previously57,59. T2 and Distance to Model (DModX) tests were 
used to show whether the sample falls within a pre-defined range of variation or if the sample is an outlier. The 
quality of the OPLS model was assessed by the parameters R2 and Q2. R2 represents the goodness of fit, while 
Q2 represents the predictability of the model. The validity of the model was tested as described by Farag et al.60. 
The variables responsible for grouping of samples on the score plot were identified from the S loading plot of the 
OPLS-DA model. Multivariate data analysis was performed using the program SIMCA-P Version 13.0 (Umetrics, 
Umeå, Sweden).

An independent t test was performed using GraphPad Prism 5.0 software package (Version 5.01, San Diego, 
USA, www.graphpad.com) to investigate the levels of biomarker metabolites identified using PCA and OPLS-DA 
modeling at the univariate analysis level. A P value ≤​ 0.05 was considered statistically significant.

Headspace SPME-GC/MS analysis.  SPME-GC/MS was used for analysis of serum volatile metabolites. A 
volume of 200 μ​L of serum was placed in 1.5 mL SPME vial. The vial was then sealed with a teflon lined magnetic 
cap using a hand crimper for volatiles collection. A 50 μ​m/30 μ​mDVB–CAR–PDMS metal SPME fiber (Supelco, 
USA) was inserted into the headspace above serum. The vial was placed at 50 °C and adsorption of volatiles was 
done for 30 min. Fibers were desorbed at 210 °C for 1 min in the injection port of a GC-17A gas chromatograph 
interfaced with a QP-5000 mass spectrometer (Shimadzu, Japan). GC separation of volatiles was carried out on 
a DB-5 ms column (Agilent, 30 m length, 0.25 mm inner diameter, and 0.25 μ​m film, non-polar phase, phenyl 
arylene polymer). Identification of volatiles was performed using the procedure described by Farag et al.61. Briefly, 
peaks were first deconvoluted using AMDIS software then identified by its RI relative to the standard n-alkanes 
mixture (C8-C40). Identities of metabolites were further confirmed by matching their mass spectra to NIST and 
WILEY library database.

1H-NMR analysis and quantification.  All 1H-NMR spectra were recorded using an Agilent VNMRS 600 
NMR spectrometer operating at a proton NMR frequency of 599.83 MHz and equipped with a 5-mm inverse 
detection cryoprobe. The parameters described by Farag et al.59 were used to record the 1H-NMR spectra. Briefly, 
scans were recorded with the following parameters: digital resolution 0.126 Hz/point, relaxation delay 23.7 s, pulse 

http://www.amdis.net
http://www.amdis.net
http://www.csbdb.mpimp Golm.mpg.de/csbdb/gmd/home/gmd_sm.html
http://www.csbdb.mpimp Golm.mpg.de/csbdb/gmd/home/gmd_sm.html
http://www.hmdb.ca/
http://www.137.131.20.83/download/
http://www.137.131.20.83/download/
http://www.graphpad.com
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width (PW) 5.6 μ​s (90°), acquisition time 2.7 s and number of transient 160. Free induction decays were Fourier 
transformed with line broadening =​ 0.4 Hz. A combination of literature/database searches9,62, chemical shift, peak 
multiplicity and J coupling measurements were used for the assignment of NMR signals. Quantitative NMR anal-
ysis followed the exact procedure described by Farag et al.57 and without water suppression.

1H-NMR data processing for multivariate data analysis.  ACD/NMR Manager lab version 10.0 soft-
ware (Toronto, Canada) was used to automatically Fourier transform the NMR spectra to ESP files. The singlet 
produced by DSS methyl groups was used as an internal standard for chemical shift referencing (set to 0 ppm). 
The spectra were then divided within the region of δ​ −​0.4–9 ppm into evenly spaced windows, named bins or 
buckets, whose width =​ 0.04 ppm. The regions of residual water (δ​ 4.7–4.9) and acetonitrile signals (δ​ 3.33–3.39) 
were removed prior to the multivariate data analyses. PCA was performed using R package (2.9.2) by employing 
custom-written scripts after exclusion of solvent regions and scaling to DSS signal. T2 and Distance to Model 
(DModX) tests were used to show whether the sample falls within a pre-defined range of variation or if the sample 
is an outlier. The quality of the OPLS model was assessed by the parameters R2 and Q2. R2 represents the good-
ness of fit, while Q2 represents the predictability of the model. The validity of the model was tested as described 
by Farag et al.60. The variables responsible for grouping of samples on the score plot were identified from the S 
loading plot of the OPLS-DA model.

Multivariate data analysis was performed using the program SIMCA-P Version 13.0 (Umetrics, Umeå, 
Sweden).

An independent t test was performed using GraphPad Prism 5.0 software package (Version 5.01, San Diego, 
USA, www.graphpad.com) to investigate the levels of biomarker metabolites identified using PCA and OPLS-DA 
modeling at the univariate analysis level. A P value ≤​ 0.05 was considered statistically significant.

Metabolic pathway analysis.  The identified marker metabolites were mapped through their respective 
metabolic pathways using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database (http://www.
genome.jp/kegg/pathway.html) and an interactive metabolic pathways map (Sigma-Aldrich, USA, http://www.
sigmaaldrich.com/technical-documents/articles/biology/interactive metabolic-pathways-map.html).

Quantitative determination of serum H2S using ELISA.  The human H2S kit (New Test Co, USA) uses 
a quantitative double-antibody sandwich ELISA to assay the level of serum H2S in samples. Standard solutions 
over a range of concentrations were prepared via serial dilution of the standard stock solution (3200 pg/mL). 
For the standard wells, 50 uL of standard solution and 50 uL of streptavidin-HRP were added to the appropriate 
well in the antibody pre-coated microtiter plate. For the sample wells, 40 uL of the serum to be tested, 10 uL of 
H2S-antibody and 50 uL of streptavidin-HRP were added to each well. The plate was covered and incubated at 
37 °C for 60 min. After the incubation period, wells were decanted and washed five times with a 30×​ wash solu-
tion. The wells were then incubated in dark with 50 uL chromogen A and 50 uL chromogen B at 37 °C for 10 min. 
To stop the reaction, 50 uL of the stop solution was added to each well which turned the color of the solution into 
yellow immediately. For the blank wells, only chromogen A, B and the stop solution were added. Duplicates were 
carried out for standard, sample and blank wells. The optical density (O.D.) was determined spectrophotometri-
cally at 450 nm using a microplate reader (Victor3 V, USA) and the average of duplicate readings was calculated 
for all wells. A calibration curve was plotted relating the concentration of each standard solution on the horizontal 
(X) axis to the corresponding average O.D. on the vertical (Y) axis. The standard curve linear regression equation 
was calculated and serum H2S concentration in each sample was interpolated from this standard curve.

One-way analysis of variance (ANOVA) and tukey multiple comparison test were employed using GraphPad 
Prism 5.0 software package (Version 5.01, San Diego, USA, www.graphpad.com). Data are represented as 
mean ±​ SEM. A P value ≤​ 0.05 was considered statistically significant.
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