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Development and validation of an inflammatory response-related 
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Background: Gastric cancer (GC) is an aggressive disease that requires prognostic tools to aid in clinical 
management. The prognostic power of clinical features is unsatisfactory, which might be improved by 
combining mRNA-based signatures. Inflammatory response is widely associated with cancer development 
and treatment response. It is worth exploring the prognostic performance of inflammatory-related genes plus 
clinical factors in GC.
Methods: An 11-gene signature was trained using the least absolute shrinkage and selection operator 
(LASSO) based on the messenger RNA (mRNA) and overall survival (OS) data of The Cancer Genome 
Atlas-stomach adenocarcinoma (TCGA-STAD) cohort. A nomogram was established using the signature 
and clinical factors with a significant linkage with OS and was validated in 3 independent cohorts (GSE15419, 
GSE13861, and GSE66229) via calculating the area under the receiver operator characteristic curve (AUC). 
The association between the signature and immunotherapy efficacy was explored in the ERP107734 cohort.
Results: A high risk score was associated with shorter OS in both the training and the validation sets (the 
AUC for 1-, 3-, 5-year in TCGA-STAD cohort: 0.691, 0.644, and 0.707; GSE15459: 0.602, 0.602, and 
0.650; GSE13861: 0.648, 0.611, and 0.647; GSE66229: 0.661, 0.630, and 0.610). Its prognostic power was 
improved by combining clinical factors including age, sex, and tumor stage (the AUC for 1-, 3-, 5-year in 
TCGA-STAD cohort: 0.759, 0.706, and 0.742; GSE15459: 0.773, 0.786, and 0.803; GSE13861: 0.749, 0.881, 
and 0.795; GSE66229: 0.773, 0.735, and 0.722). Moreover, a low-risk score was associated with a favorable 
response to pembrolizumab monotherapy in the advanced setting (AUC =0.755, P=0.010).
Conclusions: In GCs, the inflammatory response-related gene-based signature was related to 
immunotherapy efficacy, and its risk score plus clinical features yielded robust prognostic power. With 
prospective validation, this model may improve the management of GC by enabling risk stratification and 
the prediction of response to immunotherapy.
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Introduction

Gastric cancer (GC) is a commonly occurring malignant 
tumor, ranking fifth for incidence and fourth for mortality 
worldwide, with over 1 million new cases diagnosed in  
2020 (1). Despite the substantial advancements in the 
traditional surgical techniques and chemotherapeutic 
regimens (i.e., 5-fluoracil–based regimen and platinum-
based regimen) (2), the prognosis of patients with GC 
remains unsatisfactory, and thus advanced targeted therapy 
and immunotherapy has been applied to GC. However, 
only a portion of patients respond well and benefit from 
these treatment approaches due to tumor heterogeneity, 
the tumor immune microenvironment (TME), a diversity 
of risk factors, and varied genetic characteristics among 
the population (3). Given the high heterogeneity of the 

disease, identifying biomarkers for predicting prognosis and 
treatment response is urgently needed, as this can enable 
risk stratification and provide information for individualized 
treatment options, facilitating more potent adjuvant therapy 
and intensive follow-up visits in high-risk patients (4). The 
TNM staging system of the American Joint Committee 
on Cancer (AJCC) is widely used for GC staging (5,6). 
However, patients with the same AJCC stage and similar 
clinical treatments may have a variety of prognoses, which 
suggests that more parameters beyond staging are needed 
for the estimating prognosis in GC. In addition to tumor 
stage, previous studies have attempted to explore the potential 
of other clinicopathologic features as prognostic factors, 
although the predictive efficacies were unsatisfactory in GC 
patients, including the histologic grade (7), abnormal tumor 
markers (8), and lymph node invasion (9,10). Recently, 
next-generation sequencing (NGS)–based approaches, 
including RNA-sequencing (RNA-seq), whole-exome 
sequencing (WES), whole-genome sequencing (WGS), 
and targeted sequencing have provided insights into the 
molecular mechanisms of GC development (8,11,12). 
Potential tumor mutational burden (TMB) identified with 
advanced sequencing technologies is also a promising 
therapeutic and prognostic biomarker for immunotherapy 
and tumor management (13). Additionally, together with 
the establishment of public databases, the sheer volume 
of sequencing data has enabled numerous studies to 
explore the prognostic and predictive gene markers for 
GC management (11). For instance, based on artificial 
intelligence algorithms, such as least absolute shrinkage and 
selection operator (LASSO) (14) and principal component 
analysis (PCA) (15), novel prognostic signatures have been 
developed based on pyroptosis-related long noncoding  
RNAs (16) and genes (17), metastasis-related epithelial–
mesenchymal transition pathways (18), angiogenesis-
associated genes (19), and immune ferroptosis–related  
genes (14). The unsatisfactory predictive accuracies, 
the prognostic value validated in limited populations, 
and the high cost of tests owing to a large number of 
features involved in the model have limited their clinical 
applications. Despite the expanded knowledge of the 
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Highlight box

Key findings 
• This study developed a novel prognostic model based on 

messenger RNA (mRNA) expression of 11 inflammatory 
response–related genes in gastric cancer, which was proven to 
be independently associated with survival outcomes in both the 
training and validation cohorts. The risk score was associated 
with immune cell infiltration and responses to chemotherapeutic, 
targeted, and immunotherapeutic treatments.  

What is known and what is new?  
• Inflammatory response is widely associated with the development 

of cancer and is a key consideration in cancer treatment. However, 
its associations with prognosis and treatment response in gastric 
cancer remain unclear.

• This study developed a promising inflammatory response–
related prognostic model and further explored the potential 
roles of inflammatory response–related genes in the oncogenesis, 
progression, tumor immune microenvironment, and potential 
treatments.

What is the implication, and what should change now? 
• With further investigations in a prospective setting, this 

inflammatory response–related model may potentially change the 
management of gastric cancer by enabling risk stratification and 
predicting response to systemic therapy.
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molecular mechanisms related to GC, the establishment 
of a universally applicable robust model remains distant. 
Prognostic nomograms are pictorial and quantitative models 
with high precision and predicting capacity which have 
been established in clinical practice to assess cancer survival, 
including GC (10,20). By considering crucial prognostic 
indicators, nomograms can more correctly estimate survival 
for individual patients than the AJCC staging method (21).

Inflammatory responses are critically involved in tumor 
initiation, growth, progression, metastasis, and response to 
therapy (22-24). Several prognostic scoring systems based 
on hematological inflammatory parameters have been 
developed to predict survival outcomes in GC (25-30). For 
instance, the Glasgow prognostic score has been shown 
capable of independently predicting survival in patients with 
GC (31). Besides, the systemic immune-inflammatory index, 
which consists of lymphocytes, neutrophils, and platelets 
(platelets × neutrophils/lymphocytes), was identified as an 
effective prognostic signature in GC by various studies and 
meta-analysis (32), suggesting the potential inflammatory-
related mechanisms are of great potential to predict the 
GC prognosis and treatment response accurately. Most of 
the previous related studies have focused on the systemic 
inflammatory response, with the prognostic value of the 
messenger RNA (mRNA) expression of the inflammatory 
response–related genes in cancer tissues remaining largely 
unknown.

In anticancer therapy, acute inflammatory response 
has been recognized as a strong modulator of the 
TME, and chronic inflammation causes an increase in 
immunosuppressive cell populations in the TME (33). 
Chemotherapeutic agents and radiation therapy can induce 
immunogenic cell death and activate antitumor T-cell 
responses (34-36). On the other hand, these therapies 
may induce chronic inflammation events which may cause 
resistance and failure of therapy (33,37). One of the major 
obstacles for immunotherapy is an immunosuppressive 
TME shaped by chronic inflammation (38), while acute 
inflammation induced by other therapies can improve 
immunotherapy’s effectiveness (39,40).  Thus, the 
inflammatory response–related signatures of the tumor may 
also predict its response to treatments.

In the present study, an 11-gene prognostic model 
was developed in The Cancer Genome Atlas-stomach 
adenocarcinoma (TCGA-STAD) cohort and validated 
in 3 independent cohorts. Further investigations were 
implemented to determine the associations of the model 
and inflammatory response–related genes with immune 

cell infiltration and the responses to chemotherapeutic, 
targeted, and immunotherapeutic agents. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jgo.amegroups.com/article/
view/10.21037/jgo-23-128/rc).

Methods

Study design

First, the mRNA expression levels of 1,153 inflammatory 
response–related genes were compared between the tumoral 
and normal samples from TCGA-STAD cohort. The 
differentially expressed genes (DEGs) were identified for the 
construction of the prognostic model. Second, a prognostic 
signature was developed in the TCGA-STAD cohort and 
validated in 3 independent cohorts (GSE15459, GSE13861, 
and GSE66229); its prognostic effect was further explored 
in the TCGA pan-cancer data sets. Third, a nomogram 
involving the risk score, age, sex, and tumor stage was 
constructed in the TCGA-STAD cohort and validated in 3 
cohorts (GSE15459, GSE13861, and GSE66229). Fourth, 
the association of the risk score with drug sensitivity, TME, 
clinical characteristics, and gene mutation was analyzed in 
TCGA-STAD cohort. Finally, the ability of the risk score 
to predicting immunotherapy efficacy was examined in the 
ERP107734 cohort. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
flowchart of this study is shown in Figure 1.

Data collection

Transcriptomic and clinical data of patients with GC 
were downloaded from the University of California Santa 
Cruz (UCSC) Xena (TCGA-STAD, 348 tumor and 31 
nontumor tissues), the Gene Expression Omnibus (GEO) 
database (GSE15459, 190 tumors; GSE13861, 64 tumors; 
GSE66229, 300 tumors), and the European Nucleotide 
Archive (ENA) database (ERP107734, 45 patients with 
advanced GC receiving pembrolizumab monotherapy). 
Patients with gene expression matrix and prognostic 
information were included in this study. Overall survival 
(OS) was reported as the prognostic outcomes in the 
training and validation datasets. Clinical features including 
age, sex, tumor stage, EBV infection status, microsatellite 
instability (MSI) status, TP53 mutation, H. pylori infection 
status, radiation therapy, and race were described in 
the TCGA-STAD cohort, while the other 3 validation 

https://jgo.amegroups.com/article/view/10.21037/jgo-23-128/rc
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Figure 1 Flowchart of the data collection and analysis. DEG, differentially expressed gene; TCGA-STAD, The Cancer Genome Atlas-
stomach adenocarcinoma; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; OS, overall survival; GDSC, 
genomics of drug sensitivity in cancer.

cohorts provided only the age, sex, and tumor stage 
information. The baseline characteristics of the samples 
in the training and validation data sets are described in  
Table S1. Immunohistochemistry (IHC) staining samples 
were obtained from The Human Protein Atlas (HPA) 
database (Human Protein Atlas v22.0. proteinatlas.org, 
https://www.proteinatlas.org/) (41). All used data are 
publicly available and were analyzed following the data 
access policies and publication guidelines. The 1,153 
inflammatory response–related genes analyzed in our study 
were retrieved from the National Center of Biotechnology 
Information (NCBI) gene database with the keyword 
being “inflammatory response” and the filter being “Homo 
sapiens.” The genomic indices including TMB, neoantigens, 
number of segments, fraction altered, and aneuploidy score 
were retrieved from a pan-cancer TCGA study (42).

Construction of the prognostic signature based on 
inflammatory response–related genes

In TCGA cohort, the “limma” package in R (The R 
Foundation of Statistical Computing) was used to identify 
the DEGs between tumor tissues and nontumor tissues 
with a threshold of |log2(fold change)|≥1 and an adjusted 
P value (Q value) <0.05 (43). A univariable Cox analysis of 
overall survival (OS) was performed to screen inflammatory 
response–related genes with a prognostic value. The 
LASSO-penalized Cox regression analysis was applied to 
construct a prognostic model with the “glmnet” package in 
R (44). The risk scores of patients were calculated according 
to the log2 [fragments per kilobase million (FPKM) + 1] of 
each gene and its corresponding regression coefficients as 
follows:

https://cdn.amegroups.cn/static/public/JGO-23-128-Supplementary.pdf
https://www.proteinatlas.org/
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Here, n is the number of prognostic genes, expi is the 
expression level of gene i, and βi refers to the regression 
coefficient of gene i. The risk score was constructed in 
the training cohort (TCGA-STAD cohort) and calculated 
with the fixed equation for validation in the GSE15459, 
GSE13861, and GSE66229 cohorts.

Univariable and multivariable analyses were implemented 
to evaluate the independence of the risk score and identify 
clinical features for nomogram development. The common 
clinical factors identified in the univariable analysis across the 
training and validation sets were involved in the construction 
and validation of the nomogram. The nomogram was 
constructed using the R package “survival” in TCGA cohort 
and validated in the GSE15459, GSE13861, and GSE66229 
data sets.

Enrichment analysis

The R package “clusterProfiler” (45) was used to conduct 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses based on the 
inflammatory response–related DEGs [|log2 fold change|≥1 
and false discovery rate (FDR) <0.05].

Estimation of immune cell infiltration in the TME

To interpret the composition of the tumor microenvironment, 
we used cell-type identification by estimating relative 
subsets of RNA transcript x (CIBERSORTx) to calculate 
the fraction of 22 types of immune cells in the tumor  
tissues (46). CIBERSORTx is considered to have better 
compare to previous deconvolution methods for the analysis 
of complicated mixtures.

Drug sensitivity analysis

Based on the genomics of drug sensitivity in cancer 
(GDSC) database, we used the “pRRophetic” package 
in R to evaluate the susceptibility of patients with GC to 
chemotherapeutic and targeted agents (47).

Statistical analysis

To assess the between-group differences, we used (I) the 
Wilcoxon test for continuous variables and (II) Kaplan-

Meier curves, log-rank test, and Cox proportional-hazards 
regression model [hazard ratio (HR) and the 95% CI] for 
the time-to-event variables. The variables with a P value 
below 0.10 in the univariable analysis were included in the 
following multivariable model. The time-dependent area 
under the receiver operator characteristic (ROC) curve 
(AUC) was used to assess the prognostic performance and 
to compare the performances of the current model and 
previously published models. Spearman correlation was 
used to test the correlations between continuous variables. 
Multiple corrections of P values were performed using 
the Benjamini-Hochberg method.  All statistical analyses 
were performed with R software (version 4.0.0) or SPSS 
(version 23.0, IBM Corp.). A two-sided P value less than 
0.05 was considered statistically significant unless otherwise 
specified. A predictive model with an AUC value >0.70 was 
considered as a good predictive efficacy.

Results

Identification of prognostic inflammatory response–related 
DEGs in TCGA cohort

Of the 1,153 inflammatory response–related genes 
identified from the NCBI database, 123 were expressed 
differently between the tumor and the nontumor tissues 
of TCGA cohort (Figure 2A). The chromosomal loci of 
these genes are shown in Figure 2B. Somatic mutations of 
these inflammatory response–related genes are shown in  
Figure 2C. TP53 mutations were observed in 46% of 
patients, and other genes were mutated in a small fraction 
of the patients.

To elucidate the biological functions of the inflammatory 
response–related DEGs, GO enrichment and KEGG 
pathway analyses were performed. As expected, these DEGs 
were enriched in inflammation-related biological processes, 
especially the chemotaxis and migration of myeloid 
leukocytes (Figure 2D). Being enriched in membrane 
organelles, these genes may involve the binding of cytokines 
or chemokines with receptors in the signaling pathways 
associated with cancer or innate immunity, such as tumor 
necrosis factor (TNF) signaling, toll-like receptor signaling, 
and complement cascades (Figure 2E).

Construction and validation of the prognostic model based 
on the inflammatory response–related genes

Univariable Cox analysis revealed that 21 inflammatory 
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Figure 2 Identification of the candidate prognostic inflammatory response–related genes in TCGA cohort. (A) Heatmap of inflammatory 
response–related DEG expression. (B) Chromosomal loci of the DEGs. Downregulated genes in tumor tissues are highlighted in blue and 
upregulated genes in red. Inflammatory response–related DEGs are indicated with squares or circles. (C) Somatic mutation landscape of the 
inflammatory response–related DEGs with the top 20 mutation frequency. (D) GO enrichment of inflammatory response–related DEGs. (E) 
KEGG enrichment of inflammatory response–related DEGs. TCGA, The Cancer Genome Atlas; DEG, differentially expressed gene; GO, 
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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response–related DEGs (treated as continuous variables) 
were correlated with the OS of TCGA cohort (Figure 3A). 
When TCGA patients were divided into 2 groups based 
on the median of the mRNA level of individual genes, 
significant differences were seen between the survival of the 
2 groups (Figure 3B,3C). LASSO Cox regression analysis 
was applied to analyze the association of OS with the 
expression of these 21 genes, and an 11-gene prognostic 
model based on the optimal λ valve was established 
(Figure 3D,3E). The 11 genes that most contributed to the 
prognostic model were SERPINE1, CREB3L3, ADAMTS12, 
APOD, GFRA1, KIT, ZFP36, APOA1, DNMT1, PVT1, 
and TNFAIP2, respectively (Table S2). The representative 
images concerning the IHC staining of the proteins coded 
by these genes are downloaded from the Human Protein 
Atlas database (Human Protein Atlas v22.0. proteinatlas.
org, https://www.proteinatlas.org/)  and shown in  
Figure S1. ADAMTS12, APOD, and GFRA1 were enriched 
in fibroblasts, while APOA1 and CREB3L3 were enriched 
in tumor cells. SERPINE1 was observed in both fibroblasts 
and tumor cells, while DNMT, TNFAIP2, and ZFP36 were 
observed in fibroblasts, tumor cells, and tumor-infiltrating 
immune cells. In contrast, the protein of KIT was not 
detected in any cell types.

According to the median of risk score, TCGA patients 
were stratified into a high-risk group (n=174) or a low-
risk group (n=174). The high-risk group had a significantly 
worse OS than did the low-risk group (HR =2.08, 95% CI: 
1.49–2.90; P<0.001; Figure 3F). The performance of the 
risk score was further evaluated by time-dependent ROC 
curves, and the 1-, 3-, and 5-year AUCs were 0.691, 0.667, 
and 0.678, respectively (Figure 3F).

To test the robustness of this model, 3 independent data 
sets including the GSE15459 (n=190), GSE13861 (n=64), 
and GSE66229 (n=300) were used as the validation cohorts. 
The risk score of each individual was calculated with the 
regression coefficient values of the 11 genes (Table S2) 
according to the equation mentioned above. The high-
risk and low-risk groups were defined according to the 
median value in each cohort. The high-risk patients also 
had a shorter OS compared with their low-risk counterparts 
(GSE15459: HR =2.04, 95% CI: 1.33–3.14, P<0.001; 
GSE13861: HR =2.85, 95% CI: 1.29–6.28, P=0.007; 
GSE66229: HR =1.75, 95% CI: 1.27–2.42, P<0.001;  
Figure 3G-3I). The 1-, 3-, and 5-year AUCs were 0.602, 
0.602, and 0.650 in the GSE15459 cohort, 0.648, 0.611, and 
0.647 in the GSE13861 cohort, and 0.661, 0.630, and 0.610 
in the GSE66229 cohort, respectively (Figure 3G-3I).

Univariable and multivariable Cox regression analyses 
were implemented in TCGA and GEO cohorts (Table 1). 
After adjustment for the confounding factors, the association 
between the risk score and OS remained significant in the 
multivariable models (TCGA: multivariable HR =2.35, 
95% CI: 1.49–3.71, P<0.001; GSE15459: multivariable 
HR =2.10, 95% CI: 1.37–3.24, P=0.001; GSE13861: 
multivariable HR =2.54, 95% CI: 1.15–5.60, P=0.02; 
GSE66229: multivariable HR =1.55, 95% CI: 1.12–2.14, 
P=0.008). 

Compared with other previously published models 
(12,14,15), the risk score exhibited a higher concordance 
index (proposed risk score: 0.654; Qing et al.: 0.584; Wang 
et al.: 0.572; Song et al.: 0.576) and numerically better AUCs 
in predicting the 1-, 3-, and 5-year OS (Figure S2A-S2C). 
The exploratory analysis of the prognostic power of the risk 
score in other cancer types was implemented using TCGA 
data. A high risk score was associated with shorter OS in 
patients with mesothelioma (HR =2.38, 95% CI: 1.44–3.92; 
P<0.001), brain lower grade glioma (HR =1.88, 95% CI: 
1.28–2.76; P<0.001), bladder urothelial carcinoma (HR 
=1.71, 95% CI: 1.26–2.30; P<0.001), thyroid carcinoma 
(HR =3.91, 95% CI: 1.11–13.75; P=0.022), lung squamous 
cell carcinoma (HR =1.45, 95% CI: 1.10–1.90; P=0.008), 
sarcoma (HR =1.56, 95% CI: 1.04–2.32; P=0.029), or breast 
invasive carcinoma (HR =1.39, 95% CI: 1.00–1.93; P=0.048; 
Figure S3). In comparison, a high-risk score was linked with 
a longer OS in thymoma (HR =0.10, 95% CI: 0.01–0.83; 
P=0.010; Figure S3).

Construction and validation of the nomogram based on the 
risk score and key clinical features

According to the results of univariable analysis, clinical 
features including age, sex, and tumor stage were involved 
in the construction of a nomogram, together with the 
risk score (Figure 4A). Together with the risk score (the 
AUC for 1-, 3-, 5-year in TCGA-STAD cohort: 0.691, 
0.644, and 0.707; GSE15459: 0.602, 0.602, and 0.650; 
GSE13861: 0.648, 0.611, and 0.647; GSE66229: 0.661, 
0.630, and 0.610), clinical features including age (TCGA-
STAD cohort: 0.585, 0.585, and 0.555; GSE15459: 0.516, 
0.460, and 0.454; GSE13861: 0.505, 0.595, and 0.547; 
GSE66229: 0.550, 0.520, and 0.525), sex (TCGA-STAD 
cohort: 0.522, 0.469, and 0.525; GSE15459: 0.503, 0.592, 
and 0.594; GSE13861: 0.553, 0.502, and 0.436; GSE66229: 
0.445, 0.473, and 0.494), and tumor stage (TCGA-STAD 
cohort: 0.571, 0.549, and 0.562; GSE15459: 0.697, 0.782, 
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Figure 3 Construction and validation of the 11-gene prognostic model. (A) The results of the univariable Cox regression analysis between 
inflammatory response–related gene expression and OS. (B,C) OS comparison of 2 groups based on SERPINE1 or TNFAIP2 expression. 
(D) Confidence intervals for each λ value in LASSO Cox regression. (E) Regression coefficients of 11 candidate genes. (F) Kaplan-Meier 
analysis of the high- and low-risk group of TCGA-STAD cohort (left) and time-dependent ROC curves of TCGA-STAD cohort (right). (G) 
Kaplan-Meier analysis of the high- and low-risk group of the GSE15459 cohort (left) and time-dependent ROC curves of the GSE15459 
cohort (right). (H) Kaplan-Meier analysis of the high- and low-risk group of the GSE13861 cohort (left) and time-dependent ROC curves 
of the GSE13861 cohort (right). (I) Kaplan-Meier analysis of high- and low-risk group of the GSE66229 cohort (left) and time-dependent 
ROC curves of the GSE66229 cohort (right). OS, overall survival; TCGA-STAD, The Cancer Genome Atlas stomach adenocarcinoma; 
ROC, receiver operating characteristic; LASSO, least absolute shrinkage and selection operator.
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Table 1 Prognostic and predictive efficacy of the inflammatory-related risk score in univariable and multivariable models

Parameter
Univariable analysis Multivariable analysis

HR (95% CI) P value HR (95% CI) P value

TCGA gastric cancer cohort

Age (≥65 vs. <65 years) 1.54 (1.09–2.17) 0.01 1.34 (0.86–2.10) 0.19

Sex (male vs. female) 1.35 (0.95–1.94) 0.10 1.16 (0.74–1.82) 0.53

Tumor stage (III/IV vs. I/II) 1.81 (1.27–2.58) 0.001 1.56 (1.00–2.43) 0.05

EBV infection (positive vs. negative) 0.94 (0.48–1.85) 0.86

MSI (MSI-H vs. MSI-L/MSS) 0.73 (0.46–1.16) 0.19

TP53 mutation (mutated vs. wild type) 0.80 (0.54–1.18) 0.26

H. pylori infection (positive vs. negative) 0.65 (0.28–1.50) 0.31

Radiation therapy (with vs. without) 0.32 (0.15–0.66) 0.002 0.36 (0.17–0.75) 0.007

Asian (yes vs. no) 0.70 (0.43–1.15) 0.16

Risk score (high-risk vs. low-risk) 2.08 (1.49–2.90) <0.001 2.35 (1.49–3.71) <0.001

GSE15459

Age (≥65 vs. <65 years) 0.94 (0.63–1.40) 0.75

Sex (male vs. female) 1.40 (0.91–2.17) 0.13

Tumor stage (III/IV vs. I/II) 6.51 (3.60–11.81) <0.001 6.66 (3.67–12.10) <0.001

Risk score (high-risk vs. low-risk) 2.04 (1.33–3.14) 0.001 2.10 (1.37–3.24) 0.001

GSE13861

Age (≥65 vs. <65 years) 1.20 (0.58–2.52) 0.62

Sex (male vs. female) 1.27 (0.59–2.73) 0.55

Tumor stage (III/IV vs. I/II) 7.70 (2.32–25.54) 0.001 7.17 (2.15–23.85) 0.001

Risk score (high-risk vs. low-risk) 2.85 (1.30–6.28) 0.009 2.54 (1.15–5.60) 0.021

GSE66229

Age (≥65 vs. <65 years) 1.32 (0.96–1.81) 0.09

Sex (male vs. female) 1.11 (0.79–1.55) 0.56

Tumor stage (III/IV vs. I/II) 3.41 (2.34–4.96) <0.001 3.24 (2.22–4.73) <0.001

Risk score (high-risk vs. low-risk) 1.75 (1.27–2.42) 0.001 1.55 (1.12–2.14) 0.008

CI, confidence interval; HR, hazard ratio; TCGA, The Cancer Genome Atlas; EBV, Epstein-Barr virus; MSI, microsatellite instability; MSI-H, 
microsatellite instability-high; MSI-L, microsatellite instability-low; MSS, microsatellite stability. H. pylori, Helicobacter pylori.

and 0.798; GSE13861: 0.695, 0.745, and 0.747; GSE66229: 
0.680, 0.691, and 0.668) were involved in the nomogram. 
The 1-, 3-, and 5-year AUCs of the nomogram were 0.759, 
0.706, and 0.742 in TCGA-STAD cohort, respectively 
(Figure 4B), with the calibration curves showing a robust 
prediction of 1-, 3-, and 5-year OS (Figure 4B). The 
nomogram was validated in the GSE15459 (1-, 3-, and 
5-year AUCs were 0.773, 0.786, and 0.803, respectively; 

Figure 4C), the GSE13861 (1-, 3-, and 5-year AUCs were 
0.749, 0.881, and 0.795, respectively; Figure 4D), and the 
GSE66229 (1-, 3-, and 5-year AUCs were 0.773, 0.735, 
and 0.722, respectively; Figure 4E). Compared with single 
clinical signatures and the risk score, the nomogram 
exhibited improved predictive accuracy in both the training 
and validation datasets (Table 2). These results suggest that 
the combination of the risk score and clinical features may 
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Figure 4 Construction and validation of a nomogram integrating the risk score and clinical characteristics. (A) A nomogram integrating 
the risk score, age, sex, and tumor stage predicting OS in patients with GC at 1-, 3-, and 5-year. (B) Time-dependent ROC curves of the 
nomogram (left) and calibration plot (right) for predicting 1-, 3-, and 5-year OS in TCGA-STAD cohort. (C) Time-dependent ROC curves 
of the nomogram (left) and calibration plot (right) for predicting 1-, 3-, and 5-year OS in the GSE15459 cohort. (D) Time-dependent ROC 
curves of the nomogram (left) and calibration plot (right) for predicting 1-, 3-, and 5-year OS in the GSE13861 cohort. (E) Time-dependent 
ROC curves of the nomogram (left) and calibration plot (right) for predicting 1-, 3-, and 5-year OS in the GSE66229 cohort. GC, gastric 
cancer; ROC, receiver operating characteristic; OS, overall survival; TCGA-STAD, The Cancer Genome Atlas stomach adenocarcinoma. 
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be a robust tool for risk stratification in patients with GC.

Correlation of the risk score with the clinical characteristics 
of patients

In the analysis of the association between the risk score and 
clinical characteristics of patients with GC, no significant 
difference was observed between patients with different sex, 
age, tumor stage, or of Helicobacter pylori infection status 
(Figure S4A-S4D), while the patients who did not receive 
radiation therapy had a significantly higher risk score than 

those who did (Figure S4E).
The risk score also varied among molecular types. The 

genome stable subtype had a higher risk score than did 
the chromosomal instability (CIN), Epstein-Barr virus 
(EBV)–positive, and MSI subtypes, while the MSI subtype 
showed the lowest median of the risk score (Figure S4F). 
The low-risk group and the high-risk group held similar 
somatic mutation patterns, but the former tended to have 
a higher mutation frequency (Figure S4G-S4H) and also 
significantly higher silent and nonsilent mutation rates and 
higher single-nucleotide variant neoantigens (Figure S4I).

Table 2 Time-dependent AUC values of the clinical features, risk score, and nomogram in predicting 1-, 3-, and 5-year OS in the training and 
validation cohorts

Prognostic signatures 1-year OS AUC 3-year OS AUC 5-year OS AUC

TCGA gastric cancer cohort

Sex 0.522 0.469 0.525 

Age 0.585 0.585 0.555 

Tumor stage 0.571 0.549 0.562 

Risk score 0.691 0.644 0.707 

Nomogram 0.759 0.706 0.742 

GSE15459

Sex 0.503 0.592 0.594 

Age 0.516 0.460 0.454 

Tumor stage 0.697 0.782 0.798 

Risk score 0.602 0.602 0.650 

Nomogram 0.773 0.786 0.803 

GSE13861

Sex 0.553 0.502 0.436 

Age 0.505 0.595 0.547 

Tumor stage 0.695 0.745 0.747 

Risk score 0.648 0.611 0.647 

Nomogram 0.749 0.881 0.795 

GSE66229

Sex 0.445 0.473 0.494 

Age 0.550 0.520 0.525 

Tumor stage 0.680 0.691 0.668 

Risk score 0.661 0.630 0.610 

Nomogram 0.773 0.735 0.722 

TCGA, The Cancer Genome Atlas; OS, overall survival; AUC, area under curve.

https://cdn.amegroups.cn/static/public/JGO-23-128-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-128-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-128-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-128-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-128-Supplementary.pdf
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Associations of the inflammatory response–related genes 
with treatment responses

First, we analyzed the correlations of the risk score with 
the sensitivities to common antitumor drugs (Figure 5A and 
Table S3). For cisplatin and docetaxel, the risk score showed 
no significant correlation with the half maximal inhibitory 
concentration (IC50) values. However, the sensitivity of 
tumor cells to some other chemotherapy drugs, including 
mitomycin-C and vinorelbine, slightly decreased with 
the increase of the risk score. A negative correlation was 
revealed between the risk score and the IC50 values of the 
drugs targeting the BCR–ABL fusion protein, sarcoma 
(Src), vascular endothelial growth factor (VEGFR), and 
phosphatidylinositol-3-kinase (PI3K)–mammalian target 
of rapamycin (mTOR) pathway. However, the IC50 values 
of several inhibitors of epidermal growth factor receptor 
(EGFR) or polo-like kinase (PLK) were positively correlated 
with the risk score, especially afatinib (BIBW2992).

Considering that the activated TME may lead to better 
survival outcomes, especially for patients treated with 
immune checkpoint inhibitors (ICIs), we quantified the 
fractions of 22 immune cell subpopulations in the tumor 
samples (Table S4). In the low-risk group, there were more 
activated CD4+ memory T cells and follicular helper T 
cells, while more naïve B cells, monocytes, and resting mast 
cells were observed in the high-risk group (Figure S5). 
Correlation analysis also revealed that the risk score was 
positively correlated with the densities of monocytes, M2 
macrophages, resting CD4+ memory T cells, and resting 
mast cells, while it was negatively correlated with activated 
CD4+ memory T cells (Figure 5B). The expressions of 
most of the candidate DEGs were significantly related to 
the infiltration of activated/resting CD4+ memory T cells, 
M2 macrophage, and monocytes. These results suggest 
that the tumors with a higher risk score may have an 
immunosuppressive microenvironment, which may impede 
the immune surveillance and elimination of the cancer cells.

Subsequently, the ERP107734 cohort including 45 
patients with advanced GC treated with pembrolizumab 
monotherapy was used to estimate the association 
between the risk score and response to ICIs. Compared 
to the nonresponders (n=33), the responders (n=12) had 
a significantly lower risk score (P=0.009; Figure 5C). We 
plotted the ROC curve for predicting the patient’s response 
to pembrolizumab based on the risk score and found an 
AUC of 0.755 (95% CI: 0.595–0.915; P=0.010; Figure 5C).

Discussion

Inflammation, which enables epigenetic alterations and 
results in the production of growth factors, is a crucial cause 
of newly emergent tumors and malignant progression. 
Inflammation-reducing strategies that inhibit either the 
initiation or propagation of persistent inflammation (e.g., 
anti-infective agents, nonsteroidal anti-inflammatory 
drugs (NSAIDs), and other inflammation-reducing drugs 
including statins and metformin) might therefore prevent 
or delay cancer initiation (48). In gastric cancer, antiviral 
therapies for EBV and antibacterial therapies for H. pylori 
are the main anti-inflammatory strategies in GC treatment. 
Besides, targeting interleukin-6 may overcome stroma-
induced resistance to chemotherapy in GC (49). However, 
some pro-inflammatory cytokines or stimulators (TNF-α, 
cGAS-STING pathway activators) can promote the 
infiltration of immune cells into infected tissues and thus 
significantly improve the efficacy of tumor therapy (50), 
suggesting that inflammation is a “double-edged sword”, 
making inflammation regulation an important issue to 
improve the efficacy of cancer therapy (51). Identification 
of the most critical drivers affecting inflammatory TME 
tumor, avoidance of the conversion of acute-to-chronic 
inflammation induced by anticancer therapies, and reduction 
of the severe inflammatory side effects of anticancer therapies 
(CAR-T therapy induced inflammatory storm) are important 
challenges involved in inflammation regulation (51,52). In 
addition, the different inflammatory responses of cancer 
patients should be considered in cancer management, and 
personalized treatment strategies regarding tumor-associated 
inflammation will help improve anti-cancer efficacy.

In this study, we systematically investigated the mRNA 
expression of inflammatory response–related genes in GC 
tissues and analyzed their associations with OS. A novel 
prognostic model integrating 11 inflammatory response–
related genes was constructed based on TCGA GC data 
and validated in 3 independent cohorts. Further analyses 
revealed that the risk score obtained by our model may 
represent the pattern of the TME constructed through 
the recruitment and differentiation of various immune 
cells. A high risk score indicated the presence of an 
immunosuppressive microenvironment, potentially leading 
to patients’ nonresponse to immunotherapy, which is 
supported by the results of ERP107734 cohort. Moreover, 
the risk score was related to the tumor cell’s sensitivity to 
chemotherapeutic and targeted drugs.

https://cdn.amegroups.cn/static/public/JGO-23-128-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-128-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-23-128-Supplementary.pdf
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Figure 5 Relationship between the risk score and antitumor treatment. (A) Correlation between antitumor drug IC50 and the risk score/
candidate gene expression. (B) Correlation between immune cell infiltration fraction and the risk score/candidate gene expression. (C) 
Comparison of the risk score between responders and nonresponders in the ERP107734 cohort and ROC curve for predicting patient 
response to immunotherapy with the risk score in the ERP107734 cohort. IC50, half maximal inhibitory concentration; ROC, receiver 
operating characteristic.
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The relationship between inflammation and cancer has 
been well studied, and cancer prognosis estimation based 
on inflammatory response–related factors, such as with the 
Glasgow prognostic score and its modified version, has 
been conducted (31). Although the early studies in this area 
were limited to a few typical factors, such as C-reactive 
protein, albumin, and lymphocyte–monocyte ratio, the 
development of high-throughput sequencing technology 
in the last decade has made it possible to comprehensively 
screen hub biomarkers. We first analyzed the correlation 
between the expression of multiple inflammatory response–
related genes and the survival outcomes of patients with 
GC. A weighted model to estimate the prognosis was 
established, and its independence and robustness were 
then verified in a training cohort and an external validation 
cohort. Several candidate genes in our model, including 
ADAMTS12, APOA1, APOD, and ZFP36, have been 
reported to be inflammation inhibitors (53-57) and were 
associated with a high-risk score in our study. On the other 
hand, PVT1, DNMT1, and TNFAIP2 have been reported 
to be proinflammatory genes (58-64), and their expressions 
were negatively correlated with the risk score in our study. 
Overall, our model attested to the role of inflammatory 
response in cancer prognosis, highlighting the importance 
of inflammatory response in the suppression of the tumor.

In addition to the association between GC prognosis 
and mRNA levels of inflammatory-related genes, previous 
study has also explored the role of gene polymorphisms in 
GC. For instance, the rs2227692 C>T polymorphism in 
SERPINE1 intron affecting gene expression is associated 
with diffuse-type gastric cancer susceptibility (65). The 
TNFAIP2 3' UTR rs8126 T>C polymorphism, which might 
affect TNFAIP2 protein expression, is associated with GC 
risk in the Chinese population, especially in cases with males 
aged 60 years or older, H. pylori-negative, non-smoking and 
non-drinking individuals (66). Besides, several researches 
and meta-analyses have also demonstrated the association 
between the DNMT1 rs2228612 A>G polymorphism and 
GC risk (67-69). These results emphasized the potential roles 
of inflammatory-related gene polymorphisms in GC, and the 
associations of polymorphisms of CREB3L3, ADAMTS12, 
APOD, GFRA1, KIT, ZFP36, APOA1, and PVT1 with GC 
risk are of great potential for further researches.

Although the risk score was trained in TCGA-STAD 
cohort with a majority Western population, it was 
validated in both the Asian population cohorts (GSE15459 
and GSE66229) and the Western population cohort 
(GSE13861), indicating the race-independent prognostic 

power of the risk score. The combination of the risk score 
and clinical features including age, sex, and stage achieved 
consistent prognostic power across all cohorts, suggesting 
that the risk score may be a robust and useful tool for risk 
stratification in patients with GC.

Various immune cells involved in inflammatory response 
constitute the complicated immune microenvironment, 
which may affect the immune surveillance and elimination 
of tumor cells during treatment, especially immunotherapy. 
In the present study, patients with a high-risk score tended 
to have a poor survival outcome, an immunosuppressive 
TME, and an unfavorable response to pembrolizumab 
monotherapy. These results indicate the potential of 
predicting immunotherapy efficacy using the activity of 
inflammatory response in advanced GC. We also found 
that the tumor cells with a high-risk score may be resistant 
to several chemotherapeutic drugs and sensitive to the 
chemicals targeting BCR–ABL, Src, PI3K/mTOR, and 
VEGFR. These results suggest the possibility of applying 
this model in more scenarios.

TCGA project has uncovered four molecular subtypes 
of gastric cancer: EBV, MSI, genomically stable (GS), and 
CIN. Based on our results, the EBV and MSI subtypes 
obtained lower risk scores compared to the CIN and GS 
subtypes (Figure S4F), which was associated with improved 
prognosis. These results coincide with previously published 
studies reporting the worst prognosis in the GS subtype 
and the best prognosis in the EBV subtype (70). Besides, 
the lower risk scores in the EBV and MSI subtypes were 
associated with lower densities of immunosuppressive 
tumor-infiltrating immune cells, lower levels of TGF-beta 
response, and response to pembrolizumab, suggesting the 
potential of immunotherapies in EBV and MSI subtypes 
of GC with lower risk scores. Taken together, hopefully, 
these results can explain preferably the association between 
the risk score and the GC molecular subtypes, which may 
provide evidence for further research into the inflammatory 
features in GC molecular subtypes. Constructed and 
validated in 4 independent cohorts, our model exhibited 
wide utility in different populations. Besides, the 
measurement of mRNA levels of 11 genes was relatively 
economic, and together with the easily accessible clinical 
information, this model is of great potential for clinical 
practice. However, some limitations to this study should 
also be mentioned. First, since our model was constructed 
and validated with limited retrospective public data, more 
prospective studies are warranted to verify its clinical utility. 
Second, the links between the risk score and immune 

https://cdn.amegroups.cn/static/public/JGO-23-128-Supplementary.pdf
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activity or drug sensitivity based on in silico prediction 
need to be experimentally addressed. Third, considering 
the highly complex TME of GC and multiple driving 
factors of the GC prognosis, a single model integrating 
only mRNA data might not be sufficient to guide the 
clinical decision-making. Although we have developed a 
nomogram including the risk score and clinical features 
including age, sex, and stage, the prediction accuracy of 
this nomogram can be improved if other genomic features 
are also incorporated. However, the genomic data are only 
available in TCGA training cohort and are missing in the 3 
validation sets. A GC cohort with multiomics data should 
be included in future research.

Conclusions

Our study constructed a novel model based on the mRNA 
expression of 11 inflammatory response–related genes in 
GC. The risk score obtained by this model was proven 
to be independently associated with survival outcomes in 
both the training and the validation cohorts, demonstrating 
the robustness of its prognostic utility. Additionally, the 
risk score was associated with immune cell infiltration 
and responses to chemotherapeutic, targeted, and 
immunotherapeutic treatments. With further validation 
using a prospective setting, this inflammatory response–
related model may potentially change the management of 
GC by enabling risk stratification and predicting response 
to systemic therapy.
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