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A B S T R A C T   

Positioning and navigation are essential components of neuroimaging as they improve the quality 
and reliability of data acquisition, leading to advances in diagnosis, treatment outcomes, and 
fundamental understanding of the brain. Functional ultrasound imaging is an emerging tech-
nology providing high-resolution images of the brain vasculature, allowing for the monitoring of 
brain activity. However, as the technology is relatively new, there is no standardized tool for 
inferring the position in the brain from the vascular images. In this study, we present a deep 
learning-based framework designed to address this challenge. Our approach uses an image 
classification task coupled with a regression on the resulting probabilities to determine the po-
sition of a single image. To evaluate its performance, we conducted experiments using a dataset of 
51 rat brain scans. The training positions were extracted at intervals of 375 μm, resulting in a 
positioning error of 176 μm. Further GradCAM analysis revealed that the predictions were pri-
marily driven by subcortical vascular structures. Finally, we assessed the robustness of our 
method in a cortical stroke where the brain vasculature is severely impaired. Remarkably, no 
specific increase in the number of misclassifications was observed, confirming the method’s 
reliability in challenging conditions. Overall, our framework provides accurate and flexible 
positioning, not relying on a pre-registered reference but rather on conserved vascular patterns.   

1. Introduction 

Advances in medical imaging over the past decades have largely changed clinical practice. In particular, the advent of image- 
guided neurosurgery has significantly improved patient outcomes by allowing the accurate identification of critical areas and tra-
jectory estimation for the surgical procedure [1,2]. An essential aspect of neuro-navigation systems is their ability to match 
intra-operative positions to pre-operative images, called registration process [3,4]. 

Likewise, preclinical research has benefited greatly from the development of neuroimaging technologies and faces similar re-
quirements in terms of positioning. Indeed, for interpreting the data or targeting specific regions, scientists use references typically 
defined by the cellular structure of the brain, e.g. in the Allen [5] and Paxinos [6] atlases for rodents. Accurate localization and 
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registration of the recorded data is therefore critical. As a consequence, specific software packages have been developed for different 
imaging modalities [7–11] and inter-experiments alignment [12]. 

Applied in both preclinical (e.g., rodent [13–16], bird [17], ferret [18] and non-human primate [19,20]) and clinical contexts (e.g., 
neonates [21,22] and adults [23,24]), functional ultrasound (fUS) imaging is a breakthrough technology combining large 
depth-of-field and high spatiotemporal resolution [25–27]. By repeating the acquisition of micro-Doppler images over time, fUS tracks 
the hemodynamics of brain vessels [13,25,28,29] reflecting changes in neuronal activity [15,30–33]. Nonetheless, a micro-Doppler 
image does not provide the morphological information generally used by other modalities for registration, as the correspondence 
between cerebro-vasculature and anatomy is only partial. 

Manual registration of micro-Doppler images is typically performed by matching landmarks (e.g., cortical surface, major brain 
regions and vessels) with a reference atlas [27,34]. Performing the precise localization of single images with this process is challenging 
as it does not fully account for morphological variability across individuals or models [35,36]. Furthermore, this approach is time 
consuming and subject to inter-operator variability. Therefore, there is a strong need for a positioning system accurately inferring 
anatomical positions from the conserved brain vasculature [37–39]. 

An automated methodology has recently been proposed for ultrasound-based neuro-navigation on mice [40]. It relies on the online 
registration of a micro-Doppler scan acquired at the beginning of every experiment to a reference micro-Doppler volume pre-registered 
to an atlas. Yet, the registration is sensitive to inter-animal variability and the initial brain scan makes the approach not compatible 
with all experimental contexts. This includes for instance small imaging windows and larger brains where only a limited portion is 
imaged. 

To circumvent these limitations, we designed a deep learning-based framework leveraging convolutional neural networks (CNN) to 
predict the anatomical position of input micro-Doppler images. We propose to train a model to classify input images into a fixed set of 
positions evenly distributed across the brain. Resulting probability distribution are further used to regress the location of single micro- 
Doppler images with 176 μm precision. Solely based on the brain vasculature, this strategy is reliable, reference-free, and user- 
independent. 

2. Materials and Methods 

2.1. Animals 

Experimental procedures were approved by the Committee on Animal Care of the Catholic University of Leuven, in accordance with 
the national guidelines on the use of laboratory animals and the European Union Directive for animal experiments (2010/63/EU). 
Adult male Sprague-Dawley rats (n = 51; Janvier Labs, France) with an initial weight between 200 and 300 g were housed in standard 
ventilated cages and kept in a 12 : 12 h reverse dark/light cycle environment at a temperature of 22 ◦C with ad libitum access to food 
and water. 

2.2. Cranial window for brain-wide imaging and stroke induction 

The entire procedure for animal preparation and imaging is performed under isoflurane anesthesia (Iso-Vet, Dechra, Belgium). A 
mixture of 5% isoflurane in compressed dry air was used to induce anesthesia, subsequently reduced to 2.0–2.5% during surgery, and 
to 1.5% for imaging (see Brunner et al. [41] for details on surgical procedure). Xylocaine (0.5%, AstraZeneca, England) and Metacam 
(0.2 mg/kg, Boehringer Ingelheim, Canada) were injected subcutaneously as pre-operative and post-operative analgesia; respectively. 
Intraperitoneal injection of 5% glucose solution was provided every 2 h to prevent dehydration. The cranial window extended from 
Bregma +4.0 to − 7.0 mm antero-posterior, laterally ±6.0 mm was performed in all rats. 26 rats were subjected to stroke by the mean 
of permanent occlusion of the distal branch of the left middle cerebral artery as detailed in Brunner et al. [41]. 

2.3. Micro-Doppler ultrasound imaging of brain vasculature 

The data acquisition was performed using an ultrasound imaging scanner equipped with custom acquisition and processing soft-
ware described in Ref. [27]. The scanner is composed of a linear ultrasonic transducer (15 MHz, 128 elements, Xtech15, Vermon, 
France) connected to 128 channel emission-reception electronics (Vantage, Verasonics, USA) controlled by a high-performance 
computing workstation (fUSI-2, AUTC, Estonia). The transducer was fixed to a fine resolution motorized linear stage (T-LSM200A, 
Zaber Technologies Inc., Canada) allowing for the precise postero-anterior scanning of the brain. The acoustic coupling between the 
brain and the probe is ensured by a layer of agarose and ultrasound gel (Aquasonic Clear, Parker Laboratories Inc, USA). Each coronal 
Doppler image is 12.8 mm width and 9 mm depth and is composed of 300 compound images acquired at 500 Hz. Each compound 
image is computed by adding nine plane-wave (4.5 kHz) with angles from − 12◦ to 12◦ with a 3◦ step. The blood signal was extracted 
from 300 compound images using a single value decomposition filter and removing the 30 first singular vectors [42]. The 
micro-Doppler image is computed as the mean intensity of the blood signal in these 300 frames that is an estimator of the cerebral 
blood volume [13,25]. This sequence enables a temporal resolution of 0.6 s, an in-plane resolution of 100 × 110 μm, and an off-plane 
(thickness of the image) of 300 μm27. Using these parameters, a scan of the brain vasculature consisting of 89 coronal images of size 
183 × 128 pixels and spaced by 125 μm was performed between Bregma − 6.5 to +3.0 mm. 
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2.4. Registration of micro-Doppler images 

The micro-Doppler 2D scans from all animals were aligned along the antero-posterior axis with respect to recognizable anatomical 
and vascular patterns (Fig. 1-c). This alignment is necessary for correcting potential shifts occurring either during surgery, imaging or 
due to inter-animal variability. The process was performed independently by two experts, and any disagreement was resolved post-hoc 
by consensus. Such alignment resulted in 77 common positions across animals. Each micro-Doppler image is then identified by its 
anatomical position with respect to the Bregma reference point, e.g., Bregma − 3.0 mm. 

2.5. Down-sampled datasets generation 

Several datasets have been extracted from the initial scans using a down-sampling factor ranging from 2 to 5. This corresponds to an 
artificial increase in the spacing between two consecutive micro-Doppler images. To create the dataset associated with a given factor F, 
we extracted images from Bregma − 3.0 mm with a spacing of Fx125 μm within the limits of the cranial windows, yielding a subset of 
common positions. The 5 datasets spaced by [250, 375, 500, 625, 750] μm, respectively contain [39, 26, 20, 15, 13] different positions. 
50% of the animals were randomly selected for training, 25% for tuning the hyperparameters (i.e., validation) and the remaining 25% 
for evaluating the final performances of the model (i.e., test). 

Fig. 1. Methodological approach and spacing selection. a- Acquisition setup for large-scale micro-Doppler imaging of rat brains. The ultrasonic 
probe is moved along the postero-anterior axis using a motorized linear stage. The imaging was performed from Bregma − 6.5 to +3.0 mm with a 
125 μm spacing for a total number of 89 images. b- Set of micro-Doppler images extracted from a single scan overlaid with a simplified version of the 
Paxinos brain atlas [6] in white. Main anatomical structures are identified in black: Cortex (Ctx), Hippocampus (Hip), Thalamus (Tha), Striatum 
(Str). The Bregma position (in mm) of the micro-Doppler images is shown in the lower right corner. Scale bar: 2 mm. c- Schematic representation of 
the position inference procedure. Left: a set of positions (K1, …, KN) with spacing λ μm is defined over the brain. Center: an image with unknown 
position K is fed to a neural network trained to classify input micro-Doppler images depending on their position. Right: the network output a 
probability distribution over the positions (K1, …, KN). It can be used either to determine K as being the most likely position within (K1, …, KN) 
(classification), or to estimate K as a weighted sum of all positions using their respective probabilities (regression). d- Down-sampling procedure 
used to determine an optimal set of positions. Each scan is down-sampled using 5 factors, corresponding to an increase in the spacing λ between two 
consecutive images: 250, 375, 500, 625 and 750 μm. e- Classification accuracy (%) of DenseNet121-CNN (black) and HOG-SVM (grey) models for 
each spacing (testing, n = 13 rats). f- Regression error (μm) obtained from the DenseNet121-CNN model for each spacing (testing, n = 13 rats). A: 
anterior, L: left, R: right, V: ventral. 
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2.6. Image preprocessing 

To equalize the contrast value distributions, a correction factor (power of 0.25) has been applied to every pixel of all images in each 
dataset. The intensity amplitude was then normalized to fit into a [0, 1] interval. The overall process has been implemented using 
MATLAB (R2018b, Mathworks, USA). 

2.7. Positioning methodology 

Our design is composed of a neural network classifier followed by a linear regression for predicting the anatomical position of input 
micro-Doppler images. Due to the technology’s off-plane resolution of 300 μm, a predefined set of positions is used to avoid or 
minimize information overlap during training. However, this limits the positions that can be inferred to the predefined set. To 
circumvent this issue, we added a linear regression stage leveraging the probability distributions learned during the classification to 
infer locations between predefined positions. 

2.8. Model selection 

To select the optimal classifier for the experiments, we evaluated 5 convolutional neural network architectures (CNN; ResNet50 
[43], DenseNet121 [44], VGG11 [45], ViT-Base-16 [46] and EfficientNetV2-S[47]), and support vector machines (SVM) with different 
feature extraction methods (HOG [48], SIFT [49], PCA) and kernels [50]. These models were selected for their compatibility with 
datasets of relatively small sample sizes. Both ResNet50-CNN and DenseNet121-CNN were pretrained on ImageNet [51] as previously 
suggested [52]. The default parameters and architectures were used, as implemented in the ‘torchvision’ (PyTorch, version 0.7.0) 
Python package. The last layer of the network - the classifier - was replaced by a fully connected layer outputting n values, n being the 
number of positions in the training set and passed through a softmax layer afterwards. Both CNN and SVM models were trained and 
evaluated on the dataset with 375 μm spacing, corresponding to the smallest spacing above the antero-posterior spatial resolution of 
the modality employed. It therefore corresponds to the largest dataset without overlapping information. SVMs were implemented 
using the ‘scikit-learn’ (version 0.23.1) Python package. 

Training and evaluation procedures for CNNs. 
For each of the datasets used in this work, images were resized to 224 × 320 pixels by bicubic interpolation, and their grey channel 

extended in RGB to fit the ImageNet format imposed by the pre-training [51]. All the data were normalized with the mean and standard 
deviation of the full dataset. We augmented the size of the training set with rotations of ±4◦and ±8◦ applied to all micro-Doppler 
images. The significance of such process was validated through an ablation study, resulting in lower accuracy but with no statisti-
cally significant difference (79.6 versus 81.9 %, p = 0.322, McNemar test). The weights of the network were optimized with the Adam 
algorithm using a cross-entropy loss function. The hyperparameters were selected through a random search (see Supplementary 
Tables S3 and S4). Other parameters were kept with default values. The final model performance was then evaluated on the testing set. 
The overall procedure has been performed on a single machine, equipped with Xeon E5-2620 CPU (Intel, USA), 64 Gb RAM and 4 
RTX2080 (8 Gb) GPUs (Nvidia, USA). 

2.9. Probability-based regression and positioning error calculation 

This step occurs after the training of the model for the classification task. When an input image is fed to the network, it outputs a 
probability P(Ki) for each one of the positions (Ki)1≤i≤N included in the training set. We use these probabilities to obtain an estimate K̂ 
of the position K using the following equation: 

K̂ =
∑N

i=1
Ki . P(Ki)

The positioning error is defined as σ(K − K̂), where σ denotes the standard deviation. 

2.10. Visualization of relevant features for image classification using GradCAM 

We extracted the pixels in the input image driving the classification using the Gradient-weighted Class Activation Map (GradCAM) 
technique, following the recommendations Adebayo et al. [53] on the relevant visualization approaches. This method aggregates the 
gradients associated with the prediction for each feature map in a given layer, to produce a coefficient measuring the contribution of 
each of the map to the network’s prediction. Here, the gradients and feature maps were extracted at the last layer before the classifier. 
The output heatmaps were then resized by bilinear interpolation to the original image and a threshold at 0.7 was applied to limit the 
effect of the interpolation. 

2.11. GradCAM registration on atlas for anatomical extraction 

We used a digital version of the rat brain Paxinos atlas [6,34] to extract the anatomical regions associated with the GradCAM 
heatmaps. The input scan was taken as a volume and interpolated to fit the atlas resolution (50 × 50 × 50 μm3 voxel size). A 3D rigid 
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registration was performed using a MATLAB custom script [27,41]. This procedure has been applied to all the samples from the 
validation and testing sets by an expert. To extract the regions from the GradCAM heatmap, a volume (89 planes as the input data) was 
constructed from the heatmaps by zero-padding the missing sections before applying the transformation matrix. 

2.12. Evaluation on the stroke dataset 

We used 26 rats subjected to stroke (see above and ref. [41]). All rats were imaged in the original dataset, and 14/7/7 individuals 
were respectively present in training/validation/testing sets. The scans were registered and a dataset with 375 μm spacing was created 
following the same procedure as for the previous experiment. The classes predictions were obtained by processing the images through 
the DenseNet121-CNN previously trained on the pre-stroke dataset with 375 μm spacing, without re-training. 

3. Results 

3.1. Operating principle 

Our method uses a neural network trained on a classification task to find the position of a given image. Three main elements are 
required for the implementation: 1) an input dataset of images aligned with respect to a predefined reference, 2) a neural network 
trained to classify images depending on their position, and 3) a probability-based regression that infers the position of a new input 
image. These parts are detailed below in the context of rat brains and with a DenseNet121-CNN. However, it is important to note that 
this operating principle is not species- nor neural network-specific.  

1) Input dataset 

In this study we used a set of 51 rat brains. Each brain was scanned with 77 micro-Doppler images extending from Bregma +3.0 to 
− 6.5 mm with an in-between image spacing of 125 μm (Fig. 1-a). A micro-Doppler image has an in-plane resolution of 100 × 110 μm 
and 300 μm slice thickness in this setting [13,25,27]. Example micro-Doppler images on which major anatomical structures and vessels 
were annotated are shown in Fig. 1-b andSupplementary Fig. S1. Scans were aligned on reference positions by expert consensus 
(Materials and Methods – Registration of micro-Doppler images), allowing for associating each image with an anatomical position 
defined with respect to Bregma, e.g., Bregma − 3.0 mm.  

2) Neural network-based image classification 

For the needs of this study, we constrained the selection to classical models. After a preliminary performance evaluation (Sup-
plementary Table S1, Materials and Methods – Model selection), a DenseNet121-CNN and HOG-SVM with additive χ2-kernel were 
selected as main and baseline models, respectively [44,48]. Both were trained to classify input micro-Doppler images with respect to 
their position on a subset of 25 rats, for a given set of positions (Fig. 1-c). The hyperparameters were tuned on a validation set of 13 rats, 
and their performance was assessed on a testing set of 13 rats.  

3) Navigation stage 

Given a new image with unknown position, the CNN outputs a probability for each position included in the training dataset. The 
training positions themselves are used as regressors and their probabilities as corresponding coefficients in a regression model, 
providing the actual position estimate (Fig. 1-c). 

A block diagram providing an overview of the different elements of the model is provided inSupplementary Fig. S2. To assess the 
performance of our approach, we evaluated the accuracy of the classifier and the associated positioning error, analyzed their spatial 
dependence, and extracted the anatomical regions supporting the inference. 

3.2. Effect of the scanning spacing in the input dataset 

In order to determine a suitable spacing to scan the brains in the input dataset, we created five datasets by down-sampling the 
original brain scans at 250 μm (39 positions), 375 μm (26 positions), 500 μm (20 positions), 625 μm (15 positions) and 750 μm (13 
positions) (Fig. 1-d). 

Both DenseNet121-CNN and HOG-SVM show an increase in the classification accuracy along with the spacing (250–750 μm), from 
56.2% to 98.2% and from 58% to 95.9%, respectively (Fig. 1-e andSupplementary Table S2). The training and validation accuracies 
follow similar trends, indicating that the models did not pathologically overfit training data (Supplementary Fig. S3). As an additional 
control, we performed a 5-fold cross-validation on the 375 μm dataset, which resulted in comparable testing accuracy (80.9 ± 2.3%). It 
should be noted that the CNN did not converge with 125 μm spacing. 

The testing accuracy is lower for the HOG-SVM compared to the DenseNet121-CNN, irrespective of the spacing. However, the 
performance comparison using the McNemar [54] statistical test exhibited no statistically significant differences apart from spacings 
500 and 625 μm (**p = 0.0012 and * p = 0.012, respectively;Supplementary Table S2). With regards to the extrema, both models 
achieve similar maximum class accuracy, while the DenseNet121-CNN provides respectively higher and lower minimum class 
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accuracy than the HOG-SVM for spacings 625/500 μm and 375/250 μm. 
Although better for the classifier accuracy, increasing the spacing decreases the resolution of the positioning. To determine the 

value that gives the most accurate results, we estimated the positioning error. It is defined as the standard deviation of the differences 
between the predicted positions and the target positions in the animals of the validation set (Fig. 1-c, Materials and Methods – 
Probability-based regression and positioning error calculation). The 375 μm spacing dataset gave the best result with a regression error 
of 176 μm and was therefore selected for further investigation. For comparison purposes, we also computed the positioning error with 
the other CNN models (i.e., ResNet50, DenseNet121, VGG11, ViT-Base-16, and EfficientNetV2-S; seeSupplementary Table S1). 

3.2.1. Spatial dependency of the classification 
To assess the reliability of the inference in different parts of the brain, we examined the classification accuracies by position on the 

dataset with 375 μm spacing. The values are non-uniformly distributed and range from 30.8 to 100% (Fig. 2-a). The DenseNet121-CNN 
and HOG-SVM displayed similar results overall, and the anterior part of the brain generally elicited lower accuracies for both models (5 
of the 8 positions with accuracy below the mean are between Bregma 0.0 to +3.0 mm). The DenseNet121-CNN-associated confusion 
matrix reveals that misclassified images were mapped to neighboring positions (Fig. 2-b) and were not concentrated in a subset of rats. 

We then computed the positioning error per position for the DenseNet121-CNN model (Fig. 2 c, Materials and Methods – 
Probability-based regression). Although not fully proportional, the distribution of positioning errors closely matches the classification 
accuracies, especially with higher error in the anterior part of the brain. 

Fig. 2. Per position analysis of the DenseNet121-CNN predictions a- Per position display of the DenseNet121-CNN accuracies for the dataset with 
375 μm spacing (testing, n = 13 rats). The horizontal dashed line represents the mean classification accuracy. For each position, the black dash 
represents the accuracy for the HOG-SVM model. b- Representation of the extended diagonal of the DenseNet121-CNN confusion matrix. Each arrow 
goes from the correct position towards the predicted position. The different colors represent the number of misclassified micro-Doppler images (375 
μm spacing, testing, n = 13 rats). c- Distribution of positioning error with respect to the Bregma position (DenseNet121-CNN trained on 375 μm 
spacing dataset, testing, n = 13 rats). 
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3.2.2. Spatial localization of the discriminative patterns 
To visualize the discriminative features underlying the accurate classification, we computed the gradient-weighted class activation 

maps (GradCAM) [55]. This visualization technique highlights the area of an image contributing the most to the network’s inference of 
a given prediction. We registered the 2D scans with a digital version of the rat Paxinos atlas [6] (as previously done by Brunner et al. 
[41]) to i) adjust for potential differences in probe positioning and ii) allow for inter-animal comparison. For each position, the 
GradCAM results were averaged across animals and a threshold was applied to mitigate the effect of interpolating such low resolution 
heatmaps (Fig. 3-a). 

The average maps were overlaid per position on the corresponding registered micro-Doppler images (Fig. 3-b). Interestingly, a 
single part of the micro-Doppler image is driving the classification regardless of the location in the brain, except for Bregma − 2.625 
and − 1.875 mm exhibiting two small, connected areas. Furthermore, the GradCAM heatmaps are almost entirely located in the 
subcortex up to Bregma, where the proportion starts to decrease in favor of the cortex (Fig. 3-c). It corresponds to the general increase 
in the proportion of cortex in the image. 

As the GradCAM maps appeared to be conserved across rats, we identified the associated local brain vasculature. It revealed that 
several branches of large vessels play a major role in the classification process. Most of these vessels supply brain regions located in 
subcortical regions, such as the thalamus, the hippocampus and the striatum [37,38], as shown in Fig. 1-b, Fig. 3-c and Supplementary 
Fig. S1. 

Specifically, the most important vessels in the classification of the posterior part (Bregma − 6.375 to 0.0 mm) include the thalamo- 
perforating arteries branching from the posterior cerebral artery (PCA), the thalamostriate veins and branches (tlv), and the patterns 
created by adjacent vessels such as the great cerebral vein of Galen (GcvG) and the longitudinal hippocampal veins (lhv). The clas-
sification of the anterior part (Bregma 0.0 to +3.0 mm) mostly relies on the anterior cerebral artery (ACA), the azygos pericallosal 
arteries (APCA) and the thalamostriate veins/arteries. 

3.3. Model robustness evaluation on a cortical stroke model 

To further validate the reliability of the highlighted subcortical vascular patterns and the robustness to pathological condition, we 
assessed the performance of the DenseNet121-CNN on a cortical stroke model. From the 51 rats of the input dataset, a subset of 26 rats 
were subjected to cortical stroke by means of the permanent occlusion of the left middle cerebral artery (MCA) distal branch, pro-
voking a significant decrease of signal (− 60%) in the cortex of the left hemisphere. Brain-wide micro-Doppler scans were acquired after 
stroke onset (top and bottom row, respectively; Fig. 4-a). More details about the experimental procedure and quantification are 

Fig. 3. Visualization of the predictions using Gradient-weighted Class Activation Map (GradCAM). a- Workflow for generating the average 
GradCAM heatmap. Each image is processed through the DenseNet121-CNN model to collect the GradCAM heatmaps and is registered in parallel for 
in-plane alignment. The 26 heatmaps, including validation and testing sets, are averaged and a threshold at 0.7 is applied. b- Averaged GradCAM 
heatmaps overlaid on corresponding (registered) micro-Doppler images. The color scale indicates the GradCAM intensity (a.u., arbitrary unit). The 
Bregma position (in mm) of the micro-Doppler images is shown in the lower right corner. Scale bar: 2 mm. c- Proportion of the GradCAM heatmap 
located in subcortical regions (orange). The error band corresponds to the 95 % confidence interval. The black curve displays the reference pro-
portion of cortex for each position. 
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Fig. 4. Effect of a cortical stroke on the classification accuracy. a- Set of micro-Doppler images before (Pre-stroke - top row) and after stroke in-
duction (Post-stroke- bottom row). A simplified version of the Paxinos atlas [6] is overlaid in white. Main anatomical structures are identified in 
black: Cortex (Ctx), Hippocampus (Hip), Thalamus (Tha). The position from Bregma (in mm) of the micro-Doppler images is shown in the lower 
right corner. Scale bar: 2 mm. b- Proportion of micro-Doppler images misclassified before (Pre-stroke, black dash) and after (Post-stroke, grey bar) 
the stroke induction at each position for DenseNet121-CNN (n = 26 rats). c- Distribution of positioning error with respect to the Bregma position 
before (black) and after (grey) stroke induction (DenseNet121-CNN trained on 375 μm spacing dataset, n = 26 rats). 
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available in Ref. [41]. It should be noted that the anterior positions are minimally affected by the signal loss because those territories 
are poorly supplied by the MCA [38]. 

The positions of the post-stroke images were predicted without prior retraining and the proportion of post-stroke misclassifications 
was computed. Images of animals originally present in the training, validation and testing sets were pooled for this experiment. 
Overall, 16.5% of the images were misclassified as compared to the 18.1% on the pre-stroke test set. Looking at the distribution of 
misclassifications per position, pre- and post-stroke exhibit similar results with only local variations (Fig. 4-b). Likewise, the regression 
error did not display significant post-stroke change in terms of average error (176 vs. 185 μm, respectively pre/post), with consistently 
higher positioning error from Bregma +0.0 mm (Fig. 4-c). 

4. Discussion 

In this study, we proposed a classification framework suited for accurate and robust brain positioning and neuro-navigation during 
fUS imaging. Our approach relies on a neural network-based image classification task to identify a set of training positions. This serve 
as a reference frame from which the location of a micro-Doppler image can be inferred with precision through a regression. We have 
selected a DenseNet121-CNN as main model and an HOG-SVM as baseline model, nevertheless the methodology is not neural network- 
specific and can therefore be applied with other architectures. 

First, we have defined a set of anatomical reference positions that act as classes in our classification task. By analyzing the effect of 
differently spaced positions, we concluded that 375 μm provides an optimal positioning error of 176 μm. We computed the positioning 
errors with the other models that were included in the model selection process. ResNet50 and VGG11-CNN yielded worse results 
(~300 μm positioning error), while ViT-Base-16 and EfficientNetV2-S-CNN gave errors comparable to DenseNet121, thus demon-
strating the framework’s versatility. 

As a result, the position of an unknown image can be determined with an error of 352 μm with 95 % confidence. This is consistent 
with the size of the micro-Doppler image thickness (~300 μm). Such 375 μm spacing is a trade-off between the resolution and the 
classification confidence: indeed, using a larger spacing allows more accurate classification but at the cost of less precision in inferring 
the final position. Conversely, a too small spacing has a detrimental effect on the overall positioning error, which can be attributed to 
the vascular similarity in adjacent planes when exceeding the technology resolution. 

Further analysis using the GradCAM visualization technique revealed that the classification was mainly driven by highly consistent 
vascular structures located in subcortical regions. Since ImageNet pretraining is known to introduce a bias towards texture differences 
[56], the richer vascular texture of the subcortex may account for its prevalence compared to the cortex. This can also explain why the 
cortical curvature and thickness variation across anatomical locations are not essential in our approach. 

Finally, we validated the CNN predictions in rats subjected to cortical stroke. The analysis revealed no significant differences in the 
number of misclassifications, except for local variations, thus confirming the robustness and reproducibility of the inference in 
challenging contexts. 

Nevertheless, it should be noted that anterior positions in our datasets exhibited higher positioning errors following the stroke 
induction, while not being the most affected areas [41]. This observation further highlights the difficulty of performing accurate 
positioning anterior to Bregma +1.0 mm. This can be partially attributed to the similarity of the vascular patterns across positions in 
this area (cortical vessels, anterior cerebral artery and thalamoperforating vessels). To circumvent this issue, a first strategy could be to 
perform the positioning using a reference located farther away (e.g., before Bregma +1.0 or +3.0 mm), at the cost of a potentially 
wider cranial window. Another way could consist of leveraging super-resolution images obtained by the so-called Doppler slicing 
strategy [57] to search for clearer differences in vascular features across positions. 

Overall, automated brain positioning and neuro-navigation with micro-Doppler images is an issue recently raised by new fUS users, 
but not yet widely investigated. To date, only one work has addressed the positioning problem through the automated registration of a 
micro-Doppler scan to a reference [40]. Our approach offers more flexibility as a single image is sufficient to find a position, while 
CNNs are fast enough for real-time implementation in the neuro-navigation context. 

These benefits come at the cost of a need for large datasets to train the classifier. For this proof-of-concept study, we used a rather 
standardized dataset with limited data augmentation and validated the performance on a stroke dataset. Yet, datasets comprising more 
subjects as well as more variability (transducer orientation and position, different animal preparation and imaging sequences, further 
data augmentation, …) will be required to build a model suitable for routine use. In this regard, the increasing adoption of the fUS 
technology by the neuroscience community will facilitate the construction of large databases, especially for mice, the leading 
mammalian model. 

Although our work is validated on anesthetized rats, our strategy is directly applicable to awake imaging and is not conceptually 
limited to rodents. Micro-Doppler imaging has been successfully applied to humans in neurosurgery [23,58,59] and non-invasively in 
newborns by imaging through the fontanel [21,22]. For such clinical applications where accurate positioning is critical, further 
research will be needed to address the challenges posed by the limited imaging depth and large differences in vessel scale. 

5. Conclusion 

This work presents an accurate all-ultrasound navigation strategy that can be customized for various experimental contexts. The 
approach combines a neural network-based classification task with regression to predict the position of single micro-Doppler images 
with an error of 176 μm. Although the preclinical study involved a large number of animals, the dataset size is still small compared to 
deep learning standards. To further refine the method, more samples and variability will be required. Future work should focus on 
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extending this strategy to 3D positioning with other transducer orientations, such as sagittal, and larger animal models to enable 
navigation in human brains. 
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