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Terminal epoxides undergo lithium 2,2,6,6-tetramethylpiperidide-induced a-lithiation and subsequent interception with Ph3P to

provide a new and direct entry to B-lithiooxyphosphonium ylides. The intermediacy of such an ylide is demonstrated by represen-

tative alkene-forming reactions with chloromethyl pivalate, benzaldehyde and CD30D, giving a Z-allylic pivalate, a conjugated

E-allylic alcohol and a partially deuterated terminal alkene, respectively, in modest yields.

Introduction

B-Lithiooxyphosphonium ylides 4 are useful intermediates in
synthesis as they react with a variety of electrophiles to provide
a convergent entry to alkenes, often with high regio- and stereo-
control (Scheme 1) [1-9]. These ylide intermediates can be
generated by initiating a Wittig reaction between an aldehyde 1
and a phosphorane 2 at low temperature in the presence of
lithium salts, which promote ring opening of the initially
formed oxaphosphetane 3, followed by deprotonation typically
using PhLi [5].

We recently reported the use of methylenetriphenylphos-
phorane (2) (R2 = H) in this chemistry for the synthesis of
Z-allylic esters such as 6 [8] and conjugated E-allylic alcohols
such as 7 [9]. B-Lithiooxyphosphonium ylides 4 (R? = H) can
also be generated by double deprotonation of B-hydroxy prima-

ry phosphonium salts [10-19], where the latter are obtained
from Ph3P and 1,2-halohydrins [10-16,19] or (in the presence of
acid) from terminal epoxides [17,18]. In seeking a more concise
way than the above approaches to B-lithiooxyphosphonium
ylides 4 (R% = H), we were attracted to the possibility of phos-
phines intercepting a-lithiated terminal epoxides 10 (Scheme 2)
and report here the results of that study. Such carbenoids 10 are
unstable, but they can be easily formed from terminal epoxides
8 by using hindered lithium amides, such as lithium tetra-
methylpiperidide (9, LTMP) [20], and have shown synthetic-
ally useful carbene reactivity (e.g., cyclopropanation [21,22],
dimerization [23-25]). The reaction of carbenes and carbenoids
with heteroatom lone pairs is a popular strategy to access ylides
[26], although phosphonium ylides for carbonyl-olefination
chemistry are usually prepared by deprotonation of phos-
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Scheme 1: Typical generation of ylide 4 and reaction examples.

phonium salts [1-4]. In fact, phosphine trapping of lithium
carbenoids followed by carbonyl olefination has been little
studied since Seyferth and Wittig independently reported the
synthesis of chloro alkenes in modest yields (20-30%) by this
route (using CH,Cl, and BulLi in the presence of Ph3P) over
half a century ago [27-31].

i g oo, oLi
0 . 0 3, __PPh
R R <L-Li R1J\/ :
RZ
8 10 4 (RZ=H)

Scheme 2: Proposed ylide 4 formation from o-lithiated epoxide 10.

Results and Discussion

The feasibility of generating and reacting B-lithiooxyphos-
phonium ylides 4 (R = H) derived directly from epoxides
began with studies to produce allylic ester 6 under LTMP-based
conditions for a-lithiation of terminal epoxides [20-22] but with
Ph3P also present (Scheme 3). Encouragingly, a red-orange
colour, which is characteristic of a B-lithiooxyphosphonium
ylide [8,9], gradually developed (mixing only LTMP and PPhj
in THF at 0 °C for 24 h, gave no colour change from an initial
yellow solution), becoming very intense after 3 h, although
some epoxide 11 was still present after 24 h (TLC monitoring);
the reduced activity of LTMP may be due to phosphine coordin-
ation [32]. At this point, following cooling to —78 °C [8],
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chloromethyl pivalate (5) was added, resulting in the isolation
of allylic ester 6 (23%). Only the Z-isomer of 6 was observed,
indicating that stereoselectivity is not altered by this method of
B-lithiooxyphosphonium ylide formation. The presence of LiBr
(1 equiv) from the start of an otherwise identical reaction made
no significant difference to the yield of Z-allylic ester 6 (26%),
although the presence of such a salt is considered essential for
efficient generation of 4 from carbonyl compounds (Scheme 1)
[5]; this observation lends support to the notion that the prin-
cipal role of LiBr is to facilitate oxaphosphetane ring opening to
enable subsequent lithiation, and its presence does not signifi-
cantly influence subsequent reaction steps, at least with this
electrophile. While simple phosphoranes (Ph3PCH, and
Ph3;PCHMe) are known to react with epoxides (32—-68% yields)
in the presence of soluble lithium halides [33,34], the
homoallylic alcohol, which would arise [35] from any reaction
of B-lithiooxyphosphonium ylide and terminal epoxide, was not
observed in the present studies; this suggests that the latter
ylides are not capable of reacting with terminal epoxides [35],
or the presence of LTMP and/or PPhj prevents this reaction

from occurring.

LTMP, PPh3 (1 equiv each)

&0 THF, 0°C, 24 h Catr™
CgH17

then (0] 5
CI/\OJ\t-Bu

-78°C

OPiv

1 6 23%, Z >99%

Scheme 3: Z-Allylic ester 6 from epoxide 11.

The original study on the reaction between LTMP and terminal
epoxides in THF showed this to be an efficient way to prepare
the corresponding isomerized aldehydes [20] (later established
as proceeding through an intermediate TMP enamine) [36,37].
In the present work, neither decanal nor its corresponding TMP
enamine were not detected as side-products, and we also estab-
lished that the presence of LiBr (1 equiv) did not interfere in
this isomerization process, giving decanal from epoxide 11 in
65% yield (67% without LiBr) and with no unreacted epoxide
observed. The use of shorter reaction times (2—4 h) for the
generation of the epoxide-derived ylide 4 (R% = H), including
increasing the quantities of LTMP and Ph3P (to 3 equiv), or the
use of +~-BuOMe as solvent [21,22], did not lead to improved
yields of ester 6.

As terminal epoxides are readily available as single enan-
tiomers [38,39], it was considered important to study the possi-
bility of using an aldehyde electrophile with the epoxide-
derived ylide. This would provide an entry into allylic alcohols
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[40], where the epoxide stereocentre is preserved in the product
[17,18]. In the event, benzaldehyde was successfully trapped to
give E-allylic alcohol 7 in up to 33% yield (Scheme 4) by using
LTMP (1 equiv), Ph3P (5 equiv) and LiBr (2 equiv; 24% yield
in the absence of LiBr). Essentially the same yields (31% and
30%) were obtained under otherwise identical conditions but
with 2 equiv of Ph3P, or with excess LTMP (3 equiv) and Ph3P
(9 equiv). Other experimental variations (use of sub-
stoichiometric TMP (0.25 equiv) [22] or substitution of LiBr by
LiCl) did not improve the yield of alcohol 7 (20% and 10%, res-
pectively), whereas substitution of Ph3P by BusP or CysP did
not lead to the orange—red colouration suggestive of ylide for-
mation, and only starting epoxide 11 was observed.

LTMP (3 equiv)
PPh3, LiBr (2 equiv each)

o THF, 0 °C, 24 h OH
=
CgHq7 then o7 Ph CsH17)\/\Ph
1 -78°C 7 31%, E >99%

Scheme 4: E-allylic alcohol 7 from epoxide 11.

We also studied the possibility of generating alcohol 7 from
terminal epoxide 11 using an organolithium instead of a
hindered lithium amide as the base (Scheme 5). Organolithiums,
in particular secondary and tertiary organolithiums, are known
to react with terminal epoxides by a-lithiation, although this is
typically followed by trapping of the a-lithiated epoxide with a
second equivalent of the organolithium and elimination of Li,O
to give an E-alkene (e.g., 12): a process referred to as reductive
alkylation [41]. Also, while PPhj is itself capable of being lithi-
ated—carboxylated (at a meta-position, 6% yield) by using BuLi
in EtyO [42], this requires significantly higher temperatures
(reflux, 46 h) than those applied here. In the event, the use of
either s-BuLi or #-BuLi with epoxide 11 in the presence of Ph3P
in a variety of solvents (THF, Et,O, -BuOMe, toluene) fol-
lowed by the addition of benzaldehyde was found to give allylic
alcohol 7, albeit in low yields with reductive alkylation always
being the dominant reaction pathway, and typically ~30% of
epoxide 11 and ~60% Ph3P being recovered. The highest yield

s-BuLi (1 equiv)
PPh3 (1 equiv)
o THF,-78°C,24h

Cus/w

12 25%

CgH17 then OAPh

1" -78°C

(18%,
E >99%)

Scheme 5: E-allylic alcohol 7 and alkene 12 from epoxide 11 by using
s-BulLi.
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of allylic alcohol 7 (18%) was obtained by using s-BuLi in Et,0
at =78 °C with a 24 h lithiation time (Scheme 5); lithiation by
using other organolithiums (#~-BuLi, PhLi, BuLi, MeLi), or at
higher or lower temperatures (—90 °C or —40 °C), for a longer
period (48 h) or in the presence of increased Ph3P (2 equiv), or
TMEDA (1 equiv) or LiBr (2 equiv) as additives were all less
effective.

The use of a proton (deuterium) source as the electrophile to
trap an epoxide-derived ylide prepared by using LTMP was
next examined. This was anticipated to provide a base-induced
method to deoxygenate epoxides [43], which in the case of
deuteration would provide a regiospecific and potentially
stereoselective entry to 1-deuterated terminal alkenes [44,45].
Use of a slightly higher molecular weight epoxide, 1,2-epoxy-
dodecane (13) to facilitate product isolation, gave dodecene
(14) (41%, 50% D [46]) after reaction with CD30D (Scheme 6),
where the deuterium incorporation was nonstereoselective [44].
Modest deuterium incorporation suggests partial collapse of the
intermediate B-lithiooxy ylide occurs under the conditions of its
generation, by elimination of Ph3PO after or before protonation
(e.g., from solvent) and before electrophile addition. Dodecene
was also observed as a byproduct in the corresponding reaction
of epoxide 13 with benzaldehyde, supporting this hypothesis.

LTMP (1 equiv)
PPhg, LiBr (2 equiv each)
o) THF,0°C, 24 h

C10H2/<l

1 then CD30D
13 -78°C

D

CroHa? X"
14 41%, 50% D

Scheme 6: Terminal alkene 14 from epoxide 13.

Conclusion

Among phosphoranes, B-lithiooxyphosphonium ylides occupy a
special place, because of their utility in Wittig—Schlosser and
SCOOPY-type stereoselective olefination reactions [1-19]. Here
we have shown a new and concise method to such valuable
intermediates, directly from readily available terminal epoxides.
Significantly, the work validates the compatibility of lithium
amide and phosphine to generate such ylides, whose interme-
diacy is demonstrated by representative alkene-forming reac-
tions with chloromethyl pivalate, benzaldehyde and CD3;0D,
giving a Z-allylic pivalate, a conjugated E-allylic alcohol and a
partially deuterated terminal alkene, respectively. High stereo-
chemical control is retained in the Z-allylic pivalate and
E-allylic alcohol syntheses. While the overall yields for the
transformations are modest, they stand up to comparison with
the earlier methods, given the experimental simplicity and

brevity of the current approach.
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Supporting Information

Supporting Information File 1

Preparative details of 6, 7, 12 and 14 are reported, together
with their spectroscopic data.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-219-S1.pdf]
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