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Abstract

The virion proteins of Pseudoalteromonas phage φRIO-1 were identified and quantitated by mass 

spectrometry and gel densitometry. Bioinformatic methods customized to deal with extreme 

divergence defined a φRIO-1 tail structure homology group of phages, which was further related 

to T7 tail and internal virion proteins (IVPs). Similarly, homologs of tubular tail components and 

internal virion proteins were identified in essentially all completely sequenced podoviruses other 

than those in the subfamily Picovirinae. The podoviruses were subdivided into several tail 

structure homology groups, in addition to the RIO-1 and T7 groups. Molecular phylogeny 

indicated that these groups all arose about the same ancient time as the φRIO-1/T7 split. Hence, 

the T7-like infection mechanism involving the IVPs was an ancestral property of most 

podoviruses. The IVPs were found to variably host both tail lysozyme domains and domains 

destined for the cytoplasm, including the N4 virion RNA polymerase embedded within an IVP-D 

homolog.
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Introduction

Pseudoalteromonas phage φRIO-1 was isolated from the East Sea off the coast of South 

Korea and characterized as to genomic sequence and to have a podoviral morphology 

(Hardies et al., 2013). Its genome exhibits a large scale mosaicism. It shares a novel operon 

of genes involved in metabolizing γ-glutamyl amide linkages or unusual peptide bonds with 

a small number of other podoviruses typified by Pseudomonas phage LUZ24 (Ceyssens et 

al., 2008). However, the replicative functions, although generally related to other 

podoviruses, are not closely related to the LUZ24-like phages, and a small module 

apparently horizontally derived from φKMV-like phages (Lavigne et al., 2006) was noted. 

Structure and morphogenesis genes of φRIO-1 that could be identified, encoding large 

terminase, major capsid protein, portal (connector), and tubular tail B, were in a separate 

arm of the genome from the early and replicative genes.

Sequence similarities throughout the φRIO-1 structure and morphogenesis operon were 

noted to a collection of other podoviruses including Pseudomonas phage PA11 (Kwan et al., 

2006), Salinivibrio phage CW02 (Shen et al., 2012), Roseophage SIO1 (Rohwer et al., 

2000), and Vibrio parahaemolyticus phage VpV262 (Hardies et al., 2003). Of these, SIO1, 

VpV262, and CW02 have been described as members of a T7 supergroup. Rohwer et al. 

(2000) emphasized the distant relationship of the replicative functions of SIO1 to T7 to 

define a T7 supergroup. Hardies et al. (2003) emphasized an ancestral relationship in 

structure and morphogenesis proteins among SIO1, VpV262, and T7, however noting that 

VpV262 did not have T7-related replicative functions. It is now recognized that VpV262 has 

replicative functions closer to those of the φKMV-like podoviruses than to T7 (Hardies et al., 

2013). Shen et al. (2012) applied the T7 supergroup terminology in describing similarity in 

the head structure at the level of cryoelectron microscopy (cryoEM) between CW02 and T7, 

but did not resolve the tail structures. CryoEM examination of φRIO-1 (Steven AC, personal 

communication) indicates a structural resemblance of φRIO-1 in the tail to a range of 

characterized podoviruses including T7 (Cuervo et al., 2013), Prochlorococcus (cyano) 

phage P-SSP7 (Liu et al., 2010), and enterobacteria phages K1E and K1-5 (Leiman et al., 

2007), epsilon15 (Jiang et al., 2006; Chang et al., 2010) and P22 (Chang et al., 2006; Lander 

et al., 2009; Tang et al., 2011).

The concept of an overall T7 supergroup appears unable to accommodate the confusion 

caused by horizontal exchanges and mosaicism. However, we were interested in whether 

homology in the ensembles of proteins making up the tail structures could tie together some 

subset of the podoviruses. Our concept is similar to the “core genes” approach that Comeau 

et al. (2007) applied to T4-related phages, except that the members of an ensemble are 

defined by knowledge of which proteins interact to perform a function with gene synteny 

utilized when present, but not mandated. One such ensemble is the external tail structure, 

formed in T7 by tubular tail proteins A and B. Tubular tail A (also called the gatekeeper 

protein) forms the attachment for the side fibers (also called tail spikes) and is thought to 

mediate the initiation of infection through sensing the deflection of the side fibers upon cell 

wall binding. Tubular tail A was proposed to have structural homology between T7 and P22 

(Cuervo et al., 2013) and also between podoviruses and siphoviruses (Olia et al., 2011). 

Tubular tail B (also called the nozzle) was recently found to be detectable in a wide range of 
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podoviruses by a simple PSI-BLAST search (Hardies et al., 2013). In T7 there are 6 side 

fibers each composed of trimers of a single polypeptide; but the side fiber arrangement is 

expected to be intensively variable, and mosaic due to its content of the cell adhesin. A 

second tail ensemble consists of the internal virion proteins (IVPs), which in T7 extends 

upon infection to form a transient tail tube penetrating through the cell wall to the cellular 

membrane (Kemp et al., 2005; Hu et al., 2013, Guo et al., 2013). The IVP operon in T7 

includes one small (IVP-B) and two very large (IVP-C and -D) proteins, plus an associated 

nonstructural IVP assembly protein known as IVP-A. The two ensembles might be 

considered separately or as a joint tail structure ensemble, depending on whether they 

descend coordinately or reassort independently in a given range of phages. Within the 

φRIO-1 genome there are candidates for genes encoding a similar set of proteins based on 

size alone, but sequence similarity has not been detectable by standard methods.

To complete the description of the structural proteins of φRIO-1 and related phages, we used 

several strategies to focus the study on structural proteins only and deal with extreme 

divergence between distant homologs. First, the full complement of φRIO-1 structural 

proteins was identified and quantitated using mass spectrometry, SDS-PAGE, and gel 

densitometry. This allowed a comprehensive approach to the structural proteome while 

ignoring mosaicism affecting other functions. It also allowed restricting candidates for 

divergent T7 homologs to only those proteins with appropriate virion copy numbers. 

Secondly, that collection of phages found to be cladistically related to φRIO-1 in the more 

conserved proteins was explored as a reduced database in which to search for homologs of 

the faster diverging proteins together with a positionally biased search approach (Hardies et 

al., 2003) to triage marginal similarities. This set of phages is designated as the φRIO-1 tail 

structure homology group. The φRIO-1 structural protein alignments were converted to 

hidden Markov models (HMMs) suitable for sensitive HMM–HMM comparisons to the 

structural protein families of T7 and other podoviral groups.

It became apparent both through the initial HMM–HMM comparisons, and the review of 

apparent structural homology found by cryoEM in the podoviruses P22 (Olia et al., 2011), 

and N4 (Choi et al., 2008), that there are additional podoviral tail structural homology 

groups distantly related to φRIO-1 and T7. It further became apparent that adding these 

other groups strengthened the φRIO-1/T7 comparisons. Hence the plan of the study evolved 

from ascertainment of φRIO-1/T7 homology to ascertainment of homology across several 

structural homology groups, which in the aggregate are referred to as the transient tail 

homology group. Besides φRIO-1, Autographivirinae (T7), P22, N4, and epsilon15 groups, 

this includes an additional structurally uncharacterized group for which we arbitrarily chose 

Pseudomonas phages F116 (Byrne and Kropinski, 2005) and H66 (GenBank: KC262634) to 

act as prototypes. The only major division of Podoviridae that does not appear to have tail 

structures related to T7 is Picovirinae, which has tail structures related to φ29.

Results

Proteomics

φRIO-1 virion proteins were separated by SDS-PAGE and analyzed by mass spectrometry as 

described in methods. The number of spectra assigned for suspected structural proteins 
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ranged from 1884 for the major capsid protein down to 32 for gp44. There were three 

spectra observed that corresponded to a clearly nonstructural protein (gp8), and one peptide 

attributable to the scaffold protein (gp49), which is expected to be mostly removed from the 

virion during maturation. There was a relatively clear distinction in the total number of 

spectra observed between virion proteins found in a stoichiometric proportion, and 

nonstructural proteins found in trace amounts. Hence, the results provide a complete census 

of φRIO-1 structural proteins. Sequence coverage of the φRIO-1 structural proteins is given 

in Table 1. There was no clear indication of proteolytic processing, consistent with the lack 

of any identifiable protease encoded in the φRIO-1 genome.

Each structural protein was clearly assignable to a particular gel slice according to the 

greatest abundance of its spectrum counts, and this further allowed identification of each 

structural protein with a peak in the Coomassie-stained SDS PAGE profile (Fig. 1) with the 

exceptions that gp44 and gp42 comigrated, gp43 and gp47 comigrated, and gp38 appeared 

to have diffused broadly within its slice. The relative abundance of each virion protein 

derived from integration of the Coomassie profile is shown in Table 1 (copy number) with a 

confidence interval as described in methods.

Bioinformatic analysis

Some of the φRIO-1 structural proteins are easily related to T7 structural proteins through 

profile searches, while others are not. Of those strategies that might improve the sensitivity 

of matching up the more difficult proteins, the reduced database strategy requires a prior 

hypothesis about where the putative homologs are to be found. Hence we did a formal 

molecular phylogenetic analysis on the more strongly conserved proteins [gp52, large 

terminase subunit (Fig. 2A); gp51 portal protein (Fig. 2B); and gp48, major capsid protein 

(not shown)] to establish expectations for the others. In each case a preliminary neighbor 

joining tree analysis identified the φRIO-1 protein as a member of a clade containing PA11, 

CW02, ICP2 (Seed et al., 2011), SIO1 [and its sister phage PL12053L (Kang et al., 2012)], 

and VpV262. The cyanophage Pf-WMP3 (Liu et al., 2008) was found at or near the base of 

the φRIO-1-like clade for each protein tested. The maximum likelihood trees for all three of 

these proteins evaluated by MrBayes were roughly congruent in the following properties. 

Only the pairs (CW02, PA11) and (SIO1, P12053L) are within the range of divergence 

typically classified as a genus (40% of encoded proteins with E=0.05 by BLASTP; Lavigne 

et al., 2008), and operationally expected to match up nearly all structural proteins in a 

BLASTP search. φRIO-1, VpV262, and SIO1 exhibit divergence comparable to different 

genera within the subfamily Autographivirinae. Matching individual sequences at that 

distance given the characteristic divergence rates of podoviral tail proteins would be 

expected to be problematical. However, a profile based approach starting with CW02 and 

PA11 and employing a reduced database might have a chance of aligning tail genes 

throughout the φRIO-1-related phages, assuming some level of congruence between the tail 

and head genes. Such an approach (see methods) was fundamental to converting each of the 

φRIO-1 structural proteins to an alignment, and an HMM which could then be matched 

further to T7 and other podoviral structural proteins.
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PSI-BLAST searches started from most (but not all) φRIO-1 structural proteins either only 

find matches in the same φRIO-1 homology group described above, or find matches in that 

group before extending to find more distant matches outside the group. PSI-BLAST 

searches from structural proteins of P22, N4, epsilon15, numbers of members of 

Autographivirinae, and φ29 behave similarly (data not shown, but this behavior is strongly 

implied by the structure of phage protein families in Pfam, for example). Hence, Podoviridae 
can be conceptualized as divided into a few core structural homology groups corresponding 

to those PSI-BLAST groups. Those proteins apparently don’t often engage in horizontal 

exchanges between phages from different homology groups.

Besides placing φRIO-1 within a homology group, these trees also contain some information 

about how that group might relate to other phage groups. The relationship between φRIO-1 

and T7 is relatively deep, about 3/4 the distance to the diversification of the three tailed 

phage families. Three proteins from podoviruses not in Autographivirinae or the φRIO-1 

homology group were included in the trees in Fig. 2. These were Sf6 (representing P22-like 

phages), N4, and epsilon15. These show one of two patterns. Either they map at a similar 

level of divergence as the φRIO-1/T7 split, or they map with the siphoviruses (terminase of 

P22 or epsilon15, not shown). The latter pattern is consistent with the cladistic association of 

terminases with kinds of ends produced (Casjens et al., 2005) and marks an interfamily 

horizontal transfer. The capsid proteins mapped in the same pattern as terminase (not 

shown). Those tail proteins that are responsible for the podoviral tail morphology by 

definition cannot engage in interfamily transfers. This creates an expectation that to the 

extent that proteins in structural groups defined by PSI-BLAST are homologous from one 

group to another, they probably form clades joining at the same level of depth as the 

φRIO-1/T7 split in Fig. 2.

Anticipating that the φRIO-1/T7 splits in Fig. 2 could be a useful reference point in the tree 

for the initial appearance and diversification of the podoviral morphology, we were 

interested in when that split might have occurred in absolute time. The terminase tree is 

special among trees made of phage proteins, because the underlying alignment includes all 

tailed phages (Serwer et al., 2004). Therefore, if an assertion is made about when tailed 

phages arose, that can be used to scale the tree and all of the nodes within it. Two possible 

time scales are illustrated on Fig. 2. One (a) is based on the assertion that the tailed phages 

arose at the earliest time of cellular life on earth. This calibration yields the most ancient 

possible age for each node on the tree. The second scale (b) is based on the realization that 

the podoviruses other than picoviruses are heavily concentrated in Gram negative hosts. The 

major exception is a cluster of cyanobacterial podoviruses (P-SSP7-SCBP2; Fig. 2). The 

split between the cyanobacterial podoviruses and T7 is long after 3.2 Gya when the hosts 

would have split (Battistuzzi et al., 2004). The entrance of podoviruses into cyanobacteria 

must therefore be attributed to horizontal transfer in the form of host range changes. So, 

scale “b” places the origin of the global T7 homology group of podoviruses in early 

proteobacteria, and attributes the minor incidence of them in cyanobacteria and Gram 

positive hosts to horizontal transfer. Placing these two scales on Fig. 2 is meant to convey a 

plausible range for the ages of each point on the tree that includes both the intrinsic 

uncertainty in node height and a plausible range of uncertainty in how to calibrate the tree in 

absolute time.
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Tubular tail protein B

The easiest of T7 tail structure proteins to relate to φRIO-1 is tubular tail B. As previously 

reported (Hardies et al., 2013), the φRIO-1 tubular tail B homolog is split to two 

polypeptides, gp44 and 40. If these two protein sequences are fused in silico, they match by 

PSI-BLAST to a similar protein in the immediate φRIO-1 homology group, and then in 

further iterations to many phage proteins including T7 tubular tail B. The segment 

interrupting gp40 and gp44 was not a mobile intron, and the two polypeptides migrated 

separately and as expected according to their size in the SDS-PAGE analysis. The 

interrupting segment encodes two structural proteins not implicated in tail structure. Other 

instances of a split of tubular tail B protein were not common in any of the extensive tubular 

tail B alignments that we constructed. However, VpV262 tubular tail B had an unusual 

arrangement also indicating some level of plasticity. Its C-terminus was substituted by a 

sequence that was either non-homologous or diverged beyond recognition, while the 

sequence homologous to the C-terminus of φRIO-1 tubular tail B was encoded two genes 

downstream (gp52; Fig. 3).

We explored how widely tubular tail B homologs were distributed in Podoviridae. PSI-

BLAST is able to draw the φRIO-1 homology group together with the T7 homology group 

and the epsilon15 homology group. P22 is known to have its gp10 protein in a similar 

structural position (Lander et al., 2009). HHPRED-style hidden Markov models were 

constructed for the three above mentioned homology groups and for the P22 gp10 homology 

group. The HMM–HMM matching scores exhibited a relationship which anticipated the tree 

joining these groups. Among the individual homology group HMM’s, only epsilon15 and T7 

exhibited strong matching (operationally set at E < 10−10 for this experiment). But when a 

joint alignment and HMM for epsilon15 and T7 was constructed, it strongly matched the 

other homology groups. However, the HHPRED HMM–HMM matching indicated 

significant similarity among the homology groups only in a central ~200 residue domain, as 

indicated in Fig. 4.

Whether the N- and C-terminal domains are homologous among these homology groups is 

unclear. Secondary structure prediction indicates that all domains of tubular tail B are 

predominantly based on beta structure. However, there is significant length variation in the 

N- and C- terminal domains, and we have no convincing indicator of sequence similarity 

between the homology groups other than indicated in Fig. 4. Hence the likelihood tree was 

confined to the central domain. Comparing one family to another within that domain, 63% 

of residues predicted to be components of a β strand aligned with a β strand residues in the 

other family. Since Psipred at best correctly predicts 72% of β strand residues (Rost and 

Eyrich, 2001) and the total density of β strand residues is 34%, 63% correspondence 

between families would suggest that 76% of residues were correctly aligned in this domain. 

This agreed with the observation that HHpred aligned the domain when set to reject 

alignment at less than a 60% posterior alignment threshold and identified a contiguous 

section of about 100 residues with high posterior alignment probabilities.

The resulting tree (Fig. 5) shares many features in common with the terminase and portal 

trees (Fig. 2). Specifically, the external tail structure appears to have been generated at a very 

early time, sorted out into one of several homology groups, and then descended in a 

Hardies et al. Page 6

Virology. Author manuscript; available in PMC 2016 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relatively uncomplicated fashion thereafter. Given this consistency, we transferred the 

minimum and maximum absolute time scales from the terminase tree under the assumption 

that the φRIO-1/T7 split occurred at the same time for both proteins. This result gave rise to 

two hypotheses: (1) Is there an even greater subrange of the podoviruses that has a homolog 

to tubular tail B, and (2) do all such podoviruses use a transient tail apparatus?

To facilitate asking what subrange of podoviruses have a tubular tail B homolog, first a 

customized BLAST formatted library was constructed consisting only of proteins encoded 

by completely sequenced podoviruses named as such in GenBank. The genome accession 

numbers were inserted in the protein definition lines. This made it simple to obtain a list of 

phages matched, and subtract it from the list of total podoviruses to generate the list of 

podoviruses not yet matched. The phages not yet matched were broken into structural 

homology groups allowing HMM–HMM comparisons to identify additional tubular tail B 

homologs. In the end, only two major homology groups were identified that did not have 

identifiable homologs of tubular tail B. Those were the N4-like podoviruses, and the 

picoviruses.

Further investigation suggested that the lack of similarity to tubular tail B in N4-like phages 

or picoviruses is unlikely to be overcome by any more sensitive kind of search. In both 

cases, this conclusion is supported by cryoEM data. The picoviruses do not appear to have 

internal virion proteins, and their external tail proteins at least superficially seem to be 

structurally distinct from T7 (Xiang et al., 2006). Hence picoviruses were not considered 

further in this study. N4 has a sheath protein surrounding a central tube in the analogous 

position to tubular tail B (Choi et al., 2008). Neither appeared structurally similar or 

matched in our most advanced HMM searches; the N4-like tube has alpha helical secondary 

structure instead of the beta sheet-based structure that dominates tubular tail B, and the N4-

like sheath is not a conserved component of N4-like phages. Therefore, there seems to be no 

likelihood that N4 has a diverged version of tubular tail B, even though other N4 

components were found to be divergently similar to T7 structural proteins (below).

Table 2 lists the tubular tail B homolog for a representative of various homology groups 

encountered in this study. Searching further through the full nr and env_nr databases 

produced a large collection of 898 tubular tail B homologs, which were divided into clades 

using PAUP. There were essentially three clades that did not fall into one of the four 

previously discussed homology groups. One had many named phages, and is represented as 

the F116 homology subgroup in Table 2. One had only a single named phage (HMO-2011) 

and many marine metagenome sequences. The third had only marine metagenome sequences 

(not shown). This suggests that sequence analysis of tubular tail B provides a comprehensive 

system for subdividing the podoviruses based on tail structure.

Tubular tail protein A

The φRIO-1 tubular tail A homolog was not found by standard PSI-BLAST searches. It was 

established to be φRIO-1 gp46. Homologs of φRIO-1 gp46 were easily found within the 

φRIO-1 homology group by PSI-BLAST, although a positionally biased approach was 

required to add the Pf-WMP3 homolog. With a gp46 alignment and HMM in hand, an 

HHPRED match at E=0.012 was found in a 1:1 HMM–HMM comparison to T7 tubular tail 
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A (gp11). This would not be strong enough to find these as homologs in a general family 

database search, because there are > 105 total protein families in the library that would 

typically be searched (for example at the HHPRED web site). However, gp46 is the only 

candidate structural protein in φRIO-1 with the right size and virion copy number to be a 

tubular tail A homolog. Under the reduced database concept it is fair to calculate the E value 

with a database of one if there is only one candidate based on independent criteria. Even 

with that assertion, E=0.012 is somewhat marginal, so we looked for further support. 

φRIO-1 gp46 is in syntenous position to T7 tubular tail A. Following on the report that T7 

tubular tail A and P22 have structural homology but not sequence similarity (Olia et al., 

2011; Cuervo et al., 2013), we applied the same procedure resulting in an E-value of 0.087 

relating those two sequences. The HHPRED alignment, when annotated with secondary 

structure (Fig. 6) is informative. The most conserved elements are the leading and trailing 

helixes which in the P22 structure are known to form the contacts that stabilize the ring. The 

middle segment which forms the circumferential face of the structure appears somewhat 

more plastic. An N4 homolog to tubular tail A has not been previously identified, although 

proteomics of the virion (Choi et al., 2008) leaves few candidates of which only one (gp67) 

has the appropriate predicted secondary structure. HMM–HMM matching of T7 or φRIO-1 

models to N4 gp46 was unconvincing, however a joint φRIO-1/T7 HMM matched to N4 

gp67 with an E value of 0.0076, establishing that protein as the N4 homolog of tubular tail 

A.

In the φRIO-1 family, the tubular tail A and B genes maintain close linkage just downstream 

of the head structure gene module (Fig. 3). In most cases, the gene for tubular tail A 

precedes the gene for tubular tail B separated by short conserved non-structural gene. In the 

case of VpV262, the tubular tail A homolog is displaced downstream, and the homolog of 

the nonstructural gene is displaced with it. This may suggest that the homologs of 

nonstructural φRIO-1 gp45 play some role in tail morphogenesis, possibly specifically 

related to assembly involving tubular tail A.

Internal virion proteins

We sought to clarify the presence of homologs of the T7 IVPs in the φRIO-1 structural 

homology group through sequence analysis. The prototypical T7 IVP operon is a block of 

four genes, A, B, C, D, immediately downstream of the gene for tubular tail B protein. 

Internal virion A protein in T7 is a misnomer, in that this protein, although required for 

morphogenesis, is not retained in the virion (Kemp et al., 2005). In φRIO-1, a conserved 

block of structural genes of similar size to the T7 IVP set of T7 appears downstream of the 

gene for tubular tail B (Fig. 7). The relationships among the candidates for homologs to T7 

IVP-A through -D are summarized in Fig. 7. The simplest of the IVP candidates of φRIO-1 

to establish is IVP-B (φRIO-1 gp38), which was found by HHPRED to match T7 IVP-B 

with an E value of 5.4 × 10−4. Within the φRIO-1 homology group, there is consistently a 

small nonstructural gene between the tubular tail B and IVP-B genes. However, rather than 

this sequence being conserved across the set of φRIO-1-related phages, there are two 

different sequence families represented. φRIO-1 has a novel sequence which forms a family 

whose only known members are found at the syntenous positions in PA11 and CW02. The 

other φRIO-1-like phages have a nonstructural gene in that position that matches as a family 
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at the HHPRED web server as an acetyltransferase. The T7 IVP-A protein also matches as 

an acetyltransferase. Hence the beginning of the IVP module in the φRIO-1 homology group 

is like the T7 module, except φRIO-1 itself along with PA11 and CW02 appear to have 

substituted an alternative protein for IVP-A.

The strategy of searching for homologs by HMM–HMM comparisons among structural 

homology groups was then applied to IVP-A and IVP-B. Epsilon15 and P22 have very 

standard IVP-A and IVP-B homologs in syntenous position between tubular tail B and the 

genes that will subsequently be considered as IVP-C and -D homologs. The P22 IVP-B 

protein is known as the product of gene 7, and is an established pilot/DNA injection protein. 

The F116 subgroup (represented by H66 in Fig. 7) does not have identifiable candidates, and 

N4 encodes gp52 in the syntenous position for IVP-B that oddly has a C-terminal domain 

matching the N-terminal half of IVP-B, but has an N-terminal domain predicted to not have 

helical or beta structure. That portion of N4 gp52 is the only segment of a prospective IVP 

not predicted to have extensively helical structure.

Homologs of the two large T7 IVP-C and IVP-D proteins are notoriously difficult to identify 

in divergent podoviruses by sequence similarity. Even in P-SSP7, which is less than half as 

diverged in other proteins from T7 than is φRIO-1, these genes were assigned based on 

overall size and synteny rather than sequence similarity (Sullivan et al., 2005). In order to 

apply the HMM–HMM matching strategy, we found it essential to conduct searches and 

build HMMs for these proteins in a library of podoviral sequences only. Otherwise, the 

searches to gather homologs became embroiled in matches to plectin and myosin and other 

unrelated coiled-coil proteins. All of the candidates for IVP-C or IVP-D homologs are 

extensively alpha helical by secondary structure prediction, with numerous segments scoring 

well at the COILS coiled-coil server. Avoiding the problem of being overtaken by 

extraneous coiled coil matches by limiting the library still leaves the concern that any weak 

similarity detected may reflect the product of convergent evolution rather than descent from 

a common ancestor. However, we were able to develop HMMs that matched only one 

candidate per genome in the divergent homology groups indicating that there was not cross-

matching between IVP-D and IVP-C candidates, or cross-matching to other podoviral 

proteins that are clearly not IVP-C or IVP-D. This provides some confidence that the 

matches detected are true homologies. Fig. 7 summarizes the state of those matches in a 

number of different homology subgroups.

IVP-D

Fig. 7 indicates separately the similarity detected starting from either φRIO-1 gp37 (blue), or 

T7 IVP-D (cyan). In each case, PSI-BLAST in the reduced podovirus-only database was the 

main tool to define the extent of similarity, and we constructed HMMs of divergent 

subgroups and did HMM–HMM matching with HHPRED to confirm significance of the 

match. For example, the first indication that the φRIO-1 gp37 set (Fig. 7, blue) was a 

divergent version of the T7 IVP-D set (Fig. 7, cyan) was that they both extended into an 

overlapping region of the F116 homology group represented in Fig. 7 by H66 gp60. As with 

tubular tail A, confirmation with HMM–HMM matching required first joining some subsets. 

In this case, separate sets for T7-like phages, φKMV-like phages, and epsilon15-like phages 
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were successively tested for valid similarity and then joined, while the φRIO-1 and F116 

homology groups were tested for valid similarity and then joined. These two sets matched in 

HMM–HMM scoring with E=8×10−19. Besides these sequence similarity results, φRIO-1 

gp37 has the appropriate size, alpha helical propensity, and virion copy number to be a 

homolog of T7 IVP-D. We consider the union of both sets (Fig. 7 blue and cyan) to be an 

extended T7 IVP-D family.

These searches further clarified IVP-D homologs in most of the other podoviral structural 

homology groups. In the N4 group, it was the C-terminal domain of gp50, which also carries 

a virion RNA polymerase. In epsilon15, it was gp17. Epsilon15 is known to form a transient 

tail tube (Jiang et al., 2006), although the proteins involved are not clearly identified. Gp17, 

however, is one of the candidates. In H66 (a member of the F116 homology group), it is the 

very large gp60. This protein contains a small domain in the middle which matches well to 

the S-adenosyl methionine binding site of DNA methylases, hence it is most commonly 

annotated as a methylase or SAM-binding protein in GenBank. Indeed, we had taken the 

expansion of the φRIO-1 gp37 family into this collection of methylases as an indication that 

PSI-BLAST had lost specificity until the appearance of the GenBank entry clarifying that 

H66 gp60 is, in fact, a phage structural protein. Hence, H66 gp60 is reminiscent of N4 gp50, 

being composed of a protein with IVP-D homology attached to a domain that must certainly 

function intracellularly. Pseudomonas phage H66 gp60 is quite closely related to Podovirus 

F116 in its structural protein sequences, although the F116 homolog of H66 gp60 is broken 

into two large genes, more reminiscent of the organization of T7 IVP-C and IVP-D.

There was no IVP-D homolog identified in the P22 group by sequence similarity. P22 has 

three core proteins thought to be involved in DNA injection (reviewed, Black and Thomas, 

2012) encoded in syntenous positions to the T7 IVPs. The first of these was identified as a 

homolog of IVP-B, and is preceded in the genome by a homolog of IVP-A. The remaining 

two DNA injection proteins encoded in syntenous positions to IVP-C and -D are predicted to 

be extensively alpha helical in their structure. They would therefore seem to be homologs of 

IVP-C and -D that have diverged beyond recognition, or at least alternative proteins with 

similar structure and function. The selection of phages in Table 2 was searched for homologs 

of T7 IVP-D or P22 gp16. In each phage one or the other was found, but never both in the 

same phage. Interestingly, there was some intermixing in the homology groups. 

Edwardsiella phage KF-1, which is otherwise in the F116 homology group, has the P22-like 

protein, whereas Thalassomonas phage BA3, which is otherwise in the P22 homology 

group, has a homolog of IVP-D. So the T7 IVPs and the P22 injection proteins have been 

able to interchange and segregate as alternative solutions to the DNA injection problem. This 

is the only interchange we have thus far noticed of non side-fiber tail structure genes 

between homology groups.

IVP-C

We were generally less successful in demonstrating sequence similarity among prospective 

IVP-C homologs. Within the T7 homology group, HMM–HMM matching was found 

between T7 IVP-C and φKMV gp37, confirming the homology suggested by Lavigne et al. 

(2006) based on size and synteny. However, we were unable to detect sequence similarity of 
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that fused HMM as far away as P-SSP7, even though the P-SSP7 IVP-C candidate closely 

matches in size and is sandwiched between IVP-B and IVP-D homologs. Similarly, none of 

the methods that were successful in matching the other structural proteins were able to 

confirm an IVP-C homolog in the epsilon15 family. We suggest that this difficulty 

corresponds to an especially rapid divergence within IVP-C. In Table 3, the percent 

identities are tabulated for a variety of structural proteins between T7 and Pseudomonas 
phage gh-1, the most divergent of the formally classified T7-like phages in the other 

structural proteins. If the IVP-C tree is like the trees of the other structural proteins, then 

IVP-C has diverged to 34% identity in a mere 0.4 Gyr. At this rate, a failure by any method 

to detect sequence similarity at 2 Gya would hardly be surprising.

Given the lack of sequence conservation in IVP-C, there are some other criteria to help 

identify it. The traditional size and synteny argument is stronger if the candidate is flanked 

by verified IVP-D and IVP-B homologs. Secondary structure prediction should indicate an 

extensively alpha helical protein. The case is strengthened if the protein has been shown to 

be a virion protein with a copy number of about 8. As illustrated by the φKMV family 

(Lavigne et al., 2006), IVP-C homologs are sometimes associated with tail lysozyme 

domains. Finally, the finding of rapid divergence within the local homology group could be 

considered as an additional identifying factor.

In φRIO-1, there is a candidate for IVP-C (gp36) that is downstream of IVP-D instead of 

between IVP-B and IVP-D. It has an appropriate size, and virion copy number (Table 1). Its 

secondary structure is extensively alpha helical. The gp36 family was assembled within the 

φRIO-1 structure homology group mainly with PSI-BLAST, but HMM methods were 

required to identify a homolog in Pf-WMP3. The gp36 divergence rate was highest among 

the structural proteins of the φRIO-1 homology group (Table 3), assuming that Pf-WMP3 

can be used to establish a comparable time point on each tree. The Pf-WMP3 φRIO-1 gp36 

homolog is in the T7 syntenic gene order, although complicated by insertion of Pf-WMP3 

gp26. Pf-WMP3 gp26 has an extensively collagen-like sequence, and is presumably yet 

another non-syntenous tail fiber gene (see discussion of tail fibers in the φRIO-1 homology 

group below). Finally, the Pf-WMP3 φRIO-1 gp36 homolog has acquired a muralytic 

domain (a murein D,D endopeptidase) on its C-terminus, reminiscent of the situation in 

φKMV. Through all of these observations, we believe that φRIO-1 gp36 is an IVP-C 

homolog that has diverged beyond recognition at the sequence level. Finally, we note that 

similar observations implicate IVP-C homologs in the other structure homology subgroups: 

gp 15 and 16 in epsilon15, gp20 in P22, and gp51 in N4.

Tail side fiber

Of the remaining structural proteins of φRIO-1 gp55 has the best match in expected virion 

copy number to the expectation of 18 for the side fiber. Finding a sequence criterion to 

confirm this assignment is difficult because of the extensive mosaicism of side fibers. For 

example, the prototypical side fiber (T7 gp17) is a trimeric protein (Steven et al., 1988) with 

an extensively coiled-coil structure. However, the cryoEM structure of φRIO-1 (Steven AC, 

personal communication), shows side fiber structures that do not have the thin tubular 

appearance of a coiled coil. Hence looking for extensive coiled-coil sequence won’t be 
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helpful, and indeed φRIO-1 gp55 is predicted to be mostly based on beta strand structure by 

secondary structure prediction. There is a useful trend found in many T7-related phages in 

that the first 161 residues of T7 gp17 composing the tail tube attachment domain are 

conserved prior to the onset of mosaic substitutions (Pfam phage_T7_tail, see architectures 

tab). The only segment of φRIO-1 gp55 with sequence similarity through most of the 

φRIO-1-related phages is the first 60 residues of the N-terminus (Fig. 8, red). By analogy to 

T7 gp17, this was evaluated as a putative tail tube attachment domain. There is a weak 

match to the Pfam phage_fiber_2 domain adjacent to the attachment domain. This domain is 

found in a variety of phage fibers with trimeric structure. This establishes the gp55 N-

terminal domain is a component of trimeric fibers, but doesn’t discriminate between head, 

side, collar, or central tail fibers. The polypeptides joined to the putative tail tube attachment 

domains in the other phages of the φRIO-1 homology group are highly mosaic, which is 

itself encouraging for assignment as the side fiber. The putative φRIO-1 attachment domain 

does not have sequence similarity to the T7 attachment domain. Hence, the mosaic part of 

the proteins was examined for evidence that at least some of them are more obvious tail side 

fibers. It follows that if any of the domains attached through the putative attachment domain 

are tail side fibers, then all proteins with this putative attachment domain, including φRIO-1 

gp55 itself, are tail side fibers.

A summary of the various side fiber candidates in the φRIO-1 homology group is given in 

Fig. 8. The strongest patterns that implicate the gp55-like putative attachment domain as part 

of a tail fiber are in ICP2 and SIO1. In each case, the putative tail tube attachment domain is 

followed by a variety of tail fiber domains that are spread out through three adjacently 

encoded polypeptides. The organization is reminiscent of the long tail fibers of the T-even 

myoviruses (Cerritelli et al., 1996) including similarity to T4 gp36, and a T-even gp38 

homolog in the position of the adhesin (Trojet et al., 2011). There is a second protein 

encoded in ICP2 (gp14) that also has the putative tail tube attachment domain. This is also 

reminiscent of the T4 arrangement with multiple adhesins in a complex branching structure 

(Kostyuchenko et al., 2003). Although most T-even phages have the T-even adhesin in the 

position of gp38, T4 itself has a different gp38 protein encoded in that position which is 

nonstructural but required as a chaperonin for the assembly of the fiber (Trojet et al., 2011). 

In SIO1, a homolog of the T4 gp38 chaperonin (gp5.2) is encoded downstream of two 

polypeptides, both of which contain domains found in other tail fibers, and the first of which 

starts with the φRIO-1 gp55-like putative tail tube attachment domain.

An analogy to the branched structure in K1-5 (Leiman et al., 2007) might appear in CW02. 

Instead of the putative tail tube attachment domain being in a large polypeptide, the small 

CW02 gp55 in which it appears may be analogous to the adapter in K1-5. If the analogy 

holds, there are two polypeptides encoded in CW02 (gp54 and gp35) that would bind to the 

adapter to create a branched fiber with two alternative binding specificities. This 

arrangement is thought to reflect a host range change in progress. In our tree analysis, 

Salinivibrio phage CW02 appears much more closely related to Pseudomonas phage PA11, 

than the host Salinivibrio would be related to Pseudomonas. This requires a relatively recent 

host range change to have occurred.
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The remaining structural proteins (gp42, gp43, and gp47) do not have a proposed role in the 

φRIO-1 tail.

Discussion

Through a constellation of proteomic and bioinformatic methods, we conclude that a 

homologous tail and transient tail tube apparatus exists in essentially all of Podoviridae with 

the exception of the Picoviruses (relatives of φ29). A recent review (Casjens and Molineux, 

2012) similarly explored relationships across this wide range of podoviruses, but suffered 

from the assumption that sequence similarity could not establish relationships among the 

diverse members of this group and that ascertainment of homology would have to wait for 

3D structural determinations. The essence of our study is that specially constructed sequence 

comparisons can establish sequence similarity among most of the structural components, 

even addressing homology among some of the transient tail proteins for which structural 

studies have failed to establish the identities of the constituent proteins. Because of the wide 

distribution of tail protein homologs within Podoviridae we propose that their implied 

common ancestor invented a transient tail tube that functioned much like the tail of T7 

functions today. We call this group the transient tail structural homology group of 

Podoviruses, and delineate the major homology subgroups underneath that category as the 

T7 homology subgroup, the epsilon15 subgroup, the φRIO-1 subgroup, the P22 subgroup, 

the N4 subgroup, and a new group represented by Pseudomonas phage F116. Essentially all 

of the podoviruses other than the picoviruses are included. This is a variation of the “T7 

supergroup” concept, but dodges the issue of mosaicism by focusing on only the 

ensemble(s) of proteins reflecting the descent of the ancestral tail function into diverse 

extant descendants. In the case of the T7 homology subgroup, it is larger than the formally 

defined T7-like phage genus, and so far corresponds to the subfamily Autographivirinae. 

However, the designation Autographivirinae is based on content of an RNA polymerase gene 

(Lavigne et al., 2008), which could potentially reassort differently than the tail structure 

genes in some phages. Similarly, the P22, N4 and epsilon15 tail structure homology groups 

are larger than the genera formally named after each of these phages. The tail ensembles 

include a core structural ensemble derived by relatively vertical descent from the common 

ancestor, plus some auxiliary components frequently switched out by horizontal transfer to 

adapt the tail function to specific host bacterial species.

We specifically propose a commonality of the following functions throughout the transient 

tail structural homology group. (1) The transient tail is formed from IVPs each characterized 

by highly alpha helical secondary structure, which though highly divergent are related by 

descent from an ancestral IVP operon. (2) Release and assembly of the tail is triggered by 

interaction of the adhesin-bearing auxiliary side fibers with homologs of T7 tubular tail A. 

(3) The tail lysozymes are sometimes integrated into the tail tubes as auxiliary domains. And 

(4) the tube penetrates the cell membrane and can deliver auxiliary enzymatic domains into 

the cytoplasm as integrated passengers. Hence, descent from an ancient common ancestor of 

a stable ensemble of tail and IVPs is proposed wherein the major plasticity is in hosting a 

highly mosaic tail fiber, and in hosting a variable set of tail lysozyme domains and passenger 

domains for intracellular function.
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Tubular tail A forms a ring just below the portal, interacts with the side fibers, and 

apparently constitutes the conformational switch by which side fiber engagement causes 

release of capsid contents. Its functions are of such fundamental necessity to the initiation of 

infection that it makes great evolutionary sense that it would be present in the ancestor to the 

family and remain conserved throughout its descendants. Tubular tail B forms a nozzle-like 

structure mounted below tubular tail A, and is thought to extend the tube through which the 

DNA will travel. In contrast to tubular tail A, tubular tail B seems more like an adapter for 

mounting additional functions than an essential component of the virion in its own right. It is 

the likely point of attachment of the transient tail formed by internal virion proteins (Hu et 

al., 2013), and this function may have stabilized its presence through most of the 

podoviruses. It also mounts auxiliary host recognition proteins in P22-like phages, and 

possibly plays this role in others of the podoviruses. It may also collaborate with tubular tail 

A in forming a socket for the side fibers. These functions would tend to cause 

hypervariability in tubular tail B structure.

A puzzle is, if attachment of the transient tail tube stabilizes the presence of tubular tail B, 

how did N4 substitute a completely different tubular protein below tubular tail A (Choi et al., 

2008) even though it apparently also deploys a transient tail tube. There is no information 

about the consistency of the structure or mode of assembly of the transient tail tubes across 

the podoviruses. There is also no information about what the phage ancestor preceding the 

invention of the transient tail tube looked like. It will be of interest as information on these 

topics comes to light as to how they might clarify the origin of the alternative tail structure 

of the N4 phages.

Many authors have noted similarities in gene size and order of diverged phages and implied 

ancient homology that has diverged beyond an ability to confirm with sequence similarity. 

The reduced database search strategy has converted many such situations into a confirmed 

sequence similarity, complete with an alignment, a statistical test, a tree to provide some 

evolutionary context, and a hidden Markov model with which to seek even more distant 

relationships. This method provides a convenient control against the inadvertent inclusions 

of false homologs based on weak sequence similarity. If that has happened, the unrelated 

sequences will appear to be connected by a divergent link on the tree. Any suspect divergent 

link can be tested by realigning subsets of sequences on each side of the link and conducting 

a powerful statistical test of whether the two subsets are indeed similar by HMM–HMM 

comparison using the HHPRED system. The end result of our efforts is that there is a lot of 

confirmed synteny in the structure and morphogenesis operons of the podoviruses, even 

more than immediately meets the eye. Although the trees of the different proteins have a 

crude congruence, there are lots of cases of well supported topology switches. So the 

synteny is maintained not because of a lack of horizontal exchange and recombination, but 

in spite of it. Presumably, synteny is maintained because these are essential genes and viable 

recombinants are going to need one each of them.

On that background, we reflect on how completely differently the side fiber genes behave. It 

seems that every phage in the φRIO-1 homology group has its side fiber gene(s) in a 

different location, and there are often two of them in widely different places. It strikes us that 

the work of Leiman et al. (2007) may be explanatory of this. If it is generally true that 
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phages switch side fibers by passing through an intermediate with dual specificity, then 

newly acquired side fiber genes will necessarily be forced to new genomic locations. If the 

framework of syntenous genes is adequately developed, then the property of being a synteny 

breaker might become an informative characteristic for gene identification.

Materials and methods

Phage purification

φRIO-1 virions were purified as described (Thomas et al., 2007), with the following 

modifications. A single plaque of bacteriophage φRIO-1 was used to inoculate overlays of 

marine agar containing the host bacterium Pseudoalteromonas marina. After overnight 

incubation at 30 °C the overlays were harvested and treated with chloroform (1:50 volume) 

at room temperature for 30 mins. This mixture was centrifuged at 4300g for 10 min and then 

39,000g for 30 min at 4 °C. The phage pellet was suspended in 100 mM NaCl, 10 mM 

MgSO4, 50 mM Tris–HCl (pH 7.5), 0.01% gelatin, and further purified by CsCl step 

gradient ultra-centrifugation. φRIO-1 banded at a bouyant density of 1.49 g/ml and was 

harvested by tube puncture and dialysed against 50 mM Tris–HCl (pH 7.5), 200 mM NaCl 

and 10 mM MgCl2. The titer of the purified stock was 9.4 × 10−11 pfu/ml.

Proteomics

CsCl purified ϕRIO-1 was subjected to SDS-PAGE on a 12% reducing gel until the proteins 

were spread over 2 cm. The gel was stained with Coomassie Blue and imaged for 

densitometric estimation of the relative area and relative copy numbers of the individual 

bands. The gel was divided into ten slices, each of which was trypsinized and subjected to 

HPLC-electrospray ionization tandem mass spectrometry according to Thomas et al. (2012). 

During database searching to assign spectra to φRIO-1 peptides, “semi-trypsin” was 

specified allowing detection of peptides with non-trypsin ends, such as might be found at the 

N- or C-termini of the polypeptides, or at posttranslattionally cleaved sites. Additional SDS-

PAGE analysis was conducted to refine the quantification as follows: A series of lanes with 

different loads was quantified; it was found that only the most intense peaks containing gp48 

and gp47 plus gp43 were intensely enough stained that a saturation effect was observed. 

Quantitation of gp47 and gp43 was analyzed separately by comparing the areas of their peak 

to the gp48 peak in the linear zone of the saturation curve and taking gp48 as the standard at 

415 copies per virion as per the canonical T=7 podoviral structure. For other bands, 

saturation was not an issue, and quantification of replicate gels as well as the agreement 

between two twelve copy standards gp51 and gp46 were used to estimate the reliability. In 

general, we concluded that a confidence interval corresponding to750% of each estimate 

would be enough to encompass the degree of variability observed.

Secondary structure prediction

Secondary structure was predicted with a locally installed version of the PSIPRED server 

(McGuffin et al., 2000). The underlying PSI-BLAST searches were conducted in small 

libraries corresponding only to prospective homologs of the respective homology group. 

Coiled coil prediction was done at the COILs server (Lupas et al., 1991)
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Construction of φRIO-1 group profiles

After an initial PSI-BLAST search in the NCBI nr library conducted with a locally 

implemented version of the BLAST+ package (Camacho et al., 2008), φRIO-1 structural 

proteins for which a homolog had not yet been found in each of the φRIO-1-related phages 

were given special treatment as follows. Among the proteins encoded in the syntenous 

position by φRIO-1-related phages, two or more were found that could be significantly 

matched and extensively aligned by BLASTP. Finding at least a pair of such sequences was 

aided by the observation that throughout these operons, SIO1 and P12050L were generally 

very close in sequence, and PA11 and CW02 were generally moderately close in sequence. 

Those matching sequences were aligned and converted to a hidden Markov matrix (HMM) 

by the Sequence Alignment and Modeling system (SAM; Hughey and Krogh, 1996; Karplus 

et al., 1998). SAM was used instead of some other commonly used alignment systems 

because it has the capability to reject poorly matching sequences or segments of sequence 

from the alignment. Then the SAM HMM was used to search the other φRIO-1-related 

proteomes in the positionally biased search mode of Hardies et al. (2003). In this process, 

the database is reduced to just the proteins of one phage at a time, and a homolog is 

considered found if the protein encoded by the syntenous gene scores better (by at least a 

couple of orders magnitude) than any other protein encoded by the phage. The statistic 

associated with the biased search mode is that the probability of scoring the syntenic gene 

highest by chance is 1/n, were n is the number of genes in the viral genome. For these 

phages, that means that homology can be confirmed at syntenic loci with P<0.05, providing 

protection against any vulnerabilities of the search algorithm to exaggerate chance matches. 

The new set of sequences was similarly aligned and converted to an HMM, and the process 

was iterated if necessary to fill out the alignment of φRIO-1-related proteins.

Profiles of structural proteins from other phage groups

Although profiles for structural proteins of numbers of the prototypical podoviruses are 

found in Pfam, we were usually more successful at profile–profile matching across phage 

genera when we made more robust profiles by the following method. The output of a PSI-

BLAST search of a joint version of the NCBI nr and env_nr libraries was aligned and 

converted to an HMM using SAM. The HMM was scored in a reduced database of all 

proteins encoded by named podoviruses retrieved from GenBank to retrieve a larger 

collection of sequences which were similarly aligned. If profile–profile matching using a 

locally installed version of HHPRED (Söding, 2005) indicated a significant match to yet a 

more diverged phage clade, SAM was used to incorporate the two groups into a single 

alignment. In a few cases where SAM (which doesn’t have a profile–profile matching mode) 

refused to incorporate the diverged sequences, a guide alignment derived from the HHPRED 

match was provided and SAM was constrained not to adjust the guide. Those special cases 

are referred to as “joint” HMMs in the text. The two large IVP’s and candidates for their 

homologs required an exception to this process, because for these sequences PSI-BLAST in 

the nr database was confounded by divergent matches to a variety of unrelated coiled-coil 

proteins. For these proteins, the initial PSI-BLAST search was limited to a database of only 

proteins encoded by named podoviruses in GenBank. HHpred HMMs were calibrated 

against the SCOP database as provided by the software package, but then checked by 

screening all of the combined databases from the hhpred web site to detect if there was any 
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tendency to assign E valueso1 to families that were not resident in phage genomes (and 

presumed false positives). Tree construction was also used to be sure that the alignments 

underlying any two HMMs to be compared did not contain sequences that would more 

appropriately belong to the other HMM.

Profile–profile matching

Those φRIO-1 structural proteins that were identifiable at a standard web server, including 

the HHPRED web site, were previously listed (Hardies et al., 2013). The others were 

subjected to a customized version of HHPRED searching against prototypical podoviruses 

including an element of database reduction as follows: Based on general size, secondary 

structure prediction, and association with neighboring genes, one or two plausible candidates 

for divergent homologs in the target podovirus were proposed. The target protein families 

were expanded as indicated above. HHPRED-style HMMs were constructed for both 

φRIO-1 and target families and searched against each other with a database size of 1. 

Alternative protein families in the target virus were also searched, establishing that the 

HMM calibration procedure had correctly produced E values around 1 for nonhomologous 

proteins. The E-value for the proposed homolog, if « 1 was taken as the probability that the 

proposed homology was a chance association. These searches were done without annotation 

by predicted secondary structure. The alignment reported by HHPRED was annotated with 

secondary structure reported by PSIPRED to ask if there was conservation of secondary 

structure as might be expected from a homologous relationship.

Searching in named podoviruses

The statement “all podoviruses in GenBank” refers to a collection of 423 fully sequenced 

phages deposited in GenBank and either classified or otherwise identified as podoviruses as 

of July 28, 2014.

Trees

Trees were calculated using amino acid sequence aligned by SAM as indicated above. 

Preliminary neighbor joining trees with bootstrap support were calculated with PAUP 

(Swofford, 2001), and final trees were calculated by Bayesian inference using MrBayes 

(Ronquist et al., 2012). Gamma distributed rates in four categories were specified. Eight 

Monte Carlo chains of 300,000 generations each were used with Metropolis coupling, and 

the results in each case were found to be convergent by replicating the entire process. 

Among the available substitution matrixes, the blossum matrix was found to produce the 

maximum model probability. For relaxed clock calculations, the default independent gamma 

rate parameter was used. Credibility intervals quoted are highest posterior density intervals, 

computed and displayed using Treeannotator and FigTree from the BEAST 2 package 

(Bouckaert et al., 2014).

Materials available on request

Alignments and HMMs generated in this study may be acquired by request to S.C.H.
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Fig. 1. 
SDS-PAGE of φRIO-1 virions indicating gel position of specific φRIO-1 proteins detected 

by mass spectrometry. (A) Molecular weight markers. (B) φRIO-1 virions. The slice where 

maximum number of spectra assigned for each gene product is indicated.
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Fig. 2. 
Maximum likelihood tree by Bayesian inference using a relaxed clock. (A) Large terminase 

subunit. (B) Portal protein. In the T7 clade, gh-1 is among the most divergent phages 

considered close enough to classify in the same genus as T7, whereas the cyanophages (e.g. 

Syn5) exemplify more divergent phages considered in the same subfamily as T7, 

Autographivirinae. Two time scales are proposed with the three major Caudoviral families 

radiating (a) near the beginning of cellular life; or (b) in early proteobacteria during 

development of the outer cell envelope. The 95% credibility intervals for node heights are 

indicated. Posterior probabilities for branch order are given on the face of the tree.
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Fig. 3. 
Organization of the genes for tubular tail A and B homologs in the φRIO-1-related genomes. 

Green—tubular tail A homolog; yellow—tubular tail B homolog; cyan—homolog of RIO-1 

gp45 nonstructural gene; blue—inserted three gene module peculiar to φRIO-1; and white—

no discernible sequence similarity.
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Fig. 4. 
Segments of φRIO-1, T7, epsilon15, and P22 proteins exhibiting significant sequence 

similarity in the homologs of tubular tail B. The proteins φRIO-1 gp40 plus gp44, T7 gp12, 

epsilon15 gp12, and P22 gp10 are shown with predicted secondary structural elements as 

follows: blue—predicted beta strand; red—predicted alpha helix. A vertical line shows the 

point of fusion of gp44 and gp40 in φRIO-1. The central box encompassing all four 

sequences is the region of significant alignment as reported by HHPRED’s local alignment 

option. The coordinates in T7 gp12 are 354–556. Some additional regions of significant 

similarity between T7 and epsilon15 gp12 are also indicated.
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Fig. 5. 
Maximum likelihood tree of the central domain of tubular tail B.
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Fig. 6. 
Alignment of putative tubular tail A homologs by HHPRED. Sequence alignments were 

produced with the HHPRED global alignment option. Predicted secondary structure 

elements were then graphed in accordance with the sequence alignments. The N-terminal 

segment dominated the alignment in local alignment mode. Blue—predicted beta strand; 

Red—predicted alpha helix. The P22 gp4 secondary structure is from X-ray crystallography 

(Olia et al., 2011).
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Fig. 7. 
Organization of putative IVP genes in diverse podoviruses. Yellow—gene for tubular tail B, 

or tubular tail B homology in VpV262 gp52. As discussed in the text, this may reflect reuse 

of the end of the tubular tail B protein as an adhesin for the tail fiber, which may be 

composed of gp53 and gp54 in VpV262. SIO1 gp26.2 is an unannotated frame in the SIO1 

GenBank entry. Brown—a gene belonging to an acetyltransferase family, including T7 IVP-

A. Gray—a homolog of φRIO-1 gp39, which appears to be an alternative to IVP-A. Dark 

green—homolog of T7 IVP-B. Dark blue—homolog of φRIO-1 gp37. Cyan—homolog of 

T7 IVP-D. Black—a muralytic domain (murein D,D endopeptidase in the case of Pf-WMP3, 

and a murein β1,4 hydrolase or transglycosylase in the other cases). Light green—a homolog 

of epsilon15 gp16. Red—a homolog of φRIO-1 gp36. Rose-T7 IVP-C, and presumptive 

distant homolog of φRIO-1 gp36. m. (in H66)-a SAM-dependent methylase site. h. (in Pf-

WMP3)-homing endonuclease. a.-displayed tubular tail A module in VpV262 consisting of 

a homolog of φRIO-1 gp45 and the gene for tubular tail A. b.-prospective tail fiber module 

in VpV262 consisting of a repeated C-terminal domain of the tubular tail B protein and an 

adjacent frame with similarity to polysaccharide lyase, f. – central fiber.
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Fig. 8. 
Candidates for tail side fiber assemblies in the φRIO-1 structure homology group of phages. 

Open segments have no discernible sequence similarity to any other sequence. Most of the 

other labeled domains are easily recognizable by PSI-BLAST, with the following two 

exceptions. The red domain clearly matches between φRIO-1 and SIO1, but recognition of it 

throughout the homology group required the progressive HMM building procedure 

described in methods. The blue block indicating a similarity between φRIO-1 gp55 and 

CW02 gp54 when formed to a two sequence profile only weakly matches to the Pfam: 

phage_fiber_2 family. Pfam: PF12789 is a Pfam protein domain family. CD: PHA00439 

refers to an NCBI protein family. SIO1 gp5.2 refers to an unannotated gene between 

annotated genes for gp5.1 and gp6.
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Table 3

Percent identity of selected podoviral structural proteins after a moderate time of evolution.

Approximate time of ancestral node
T7 × gh-1
0.4 Gya

CW02 × ICP2
0.6 Gya

φRIO-1 gp36 homolog 34 20

IVP-D 41 25

Tubular tail B 56 27

Portal 69 53

Large terminase 62 58
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