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Ninth People’s Hospital, Shanghai, China. HUMSC isolation was 
performed as previously described.6 Umbilical cord Wharton’s jelly 
was cut into 2–3 mm3 pieces, which were then cultured in a 37°C 
incubator in 10 cm cell culture dishes (Corning Inc., Acton, MA, USA) 
containing growth medium prepared from Dulbecco’s modified Eagle’s 
medium‑low glucose medium  (DMEM‑LG; HyClone, Logan, UT, 
USA), supplemented with 10% (v/v) fetal bovine serum (FBS; HyClone, 
Logan, UT, USA), 2 mmol l−1 L‑glutamine, 100 U ml−1 penicillin, and 
100 mg ml−1 streptomycin. Cells were harvested using 0.25% trypsin 
and medium was changed every 2 days.

Identification of MSC marker expression by flow cytometry
Cell surface antigen phenotyping was performed on human umbilical 
cord MSCs. Cells were harvested using 0.25% trypsin, washed in 
phosphate‑buffered saline (PBS), and incubated for 30 min at room 
temperature in the dark using a Human MSC Analysis Kit  (BD 
Pharmingen, San Diego, CA, USA) that contained mouse anti‑human 
CD90 FITC, CD105 PerCP‑Cy5.5, CD73 APC, CD44 PE, CD34 PE, 
CD11b PE, CD19 PE, CD45 PE, and HLA‑DR PE; mIgG1, κ FITC, 
mIgG1, κ PerCP‑Cy5.5, mIgG1 κ APC mIgG1, κ PE , mIgG2a, and κ 
PE  were used as isotype controls. After washing in PBS, the fluorescence 
of 1 × 104 cells was analyzed using a FACS flow cytometer (BECTON 
DICKINSON, Newark, NJ, USA).

Donor cell preparation
When HUMSCs after the third passage reached 70%–80% confluency, 
they were incubated with 5 μg ml−1 CM‑Dil at 37°C for 30 min and 

INTRODUCTION
Androgen deficiency is a very common physical disorder that not only 
affects adults but can also jeopardize children’s health. It is estimated 
that about 0.5% of children worldwide suffer from androgen deficiency.1 
For children undergoing puberty who suffer from androgen deficiency, 
traditional androgen replacement therapy cannot mimic their 
natural testosterone fluctuations,2 and this may then lead to primary 
hypogonadism and altered sexual development.3 There may, however, 
be other treatments available, such as stem cell therapy.

As stem cells exhibit the potential to differentiate into multiple 
cell types, mesenchymal stem cells (MSCs) have been used widely in 
the treatment of organ dysfunction. Researchers have transplanted 
rat adipose‑derived MCSs into D‑galactose‑treated aging rats and 
found that some of the MSCs differentiated into 3‑β‑hydroxysteroid 
dehydrogenase (HSD3B1)‑positive Leydig‑like cells, and that testicular 
dysfunction was ameliorated.4 However, Ren et al.5 transplanted human 
bone marrow mesenchymal stem cells (BMSCs) into mice and found 
that none of the cells differentiated into Leydig‑like cells. We, therefore, 
used human umbilical mesenchymal stem cells  (HUMSCs) to treat 
ethane dimethanesulfonate (EDS)‑induced male rat hypogonadism to 
study the value of HUMSCs in treating androgen deficiency.

MATERIALS AND METHODS
Isolation and culture of HUMSCs
Umbilical cords were collected aseptically with patient consent 
from women at full term during Cesarean section, at the Shanghai 
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then washed with PBS 3 times. The efficiency of the CM‑Dil staining 
was detected with a fluorescence microscope  (Leica, Heidelberg, 
Deutschland).

Animal preparation and cell transplantation
Forty male Sprague‑Dawley rats were purchased at 8  weeks of age 
from the Shanghai Slack Experimental Animal Center. All rats were 
kept under conditions of controlled temperature (24 ± 1°C), relative 
humidity (50%–60%), and a light/dark cycle of 12 h light/12 h dark. 
Standard rodent diet and drinking water were available ad libitum. 
All surgical procedures and postoperative care were approved by the 
Research Ethics Committee of Shanghai Jiao Tong University Affiliated 
Shanghai Children’s Medical Center.

The forty rats were randomly divided into control group (twenty 
rats) and therapy group (twenty rats), and EDS was injected into the 
abdominal cavities of all forty rats at a dose of 75 mg kg−1 to destroy 
Leydig cell function. After 4  days of EDS injections, HUMSCs 
stained with CM‑Dil were washed twice with PBS and incubated 
with 0.25% trypsin‑EDTA for 1.5  min at 37°C. Cells were gently 
dissociated, resuspended manually, and collected in a 15 ml Corning 
tube. Cells were rinsed twice with PBS following centrifugation 
at 1000 rpm for 5 min, and finally, cells were resuspended in PBS 
and loaded into a 1 ml syringe for injection into the testes of adult 
rats. Approximately 1 × 106 cells in a 250 µl volume of PBS were 
injected into the mesenchyme of recipient testes of rats from the 
therapy group. The rats from the control group received 250 µl of 
PBS buffer. Twenty‑one days after transplantation, testes from the 
six rats of the therapy group were tested in a random fashion using 
immunohistochemistry, and the testes from the six rats of the therapy 
group were prepared for flow cytometric sorting, which was also 
done in a random fashion.

Immunohistochemistry
Immunohistochemistry was performed on modified Davidson’s 
fluid‑fixed and paraffin‑embedded testicular sections from grafted 
rats. Testicular sections were briefly deparaffinized, hydrated in a 
successive series of decreasing ethanol concentrations, and rinsed 
in distilled water. Sections were then placed in an EDTA buffer 
solution  using a pressure cooker for 3 min for heat antigen retrieval. 
After rinsing in PBS, sections were blocked with 5% normal horse 
serum for 2  h at 37°C to prevent nonspecific binding of IgG and 
were subsequently incubated with a 1:100 dilution of a monoclonal 
anti‑CYP11A1 antibody (Abcam, Cambridge, UK) at 4°C overnight. 
The secondary antibody was donkey anti‑rabbit IgG H&L  (Alexa 
Fluor® 488) in a 1:2000 dilution (Abcam, Cambridge, UK), and this 
was used to incubate the sections for 1 h at 37°C. Nuclei were stained 
with DAPI. Finally, slides were dehydrated and coverslipped with 
neutral balsam. All slides were photographed with a fluorescence 
microscope.

Transplanted HUMSCs sorted by flow cytometry
Cells in the interstitial tissues of testes were isolated from rats 21 days 
after transplantation as described previously.7 Briefly, rats were 
humanely killed by cervical dislocation, and the testes were extracted. 
The testes were then incubated in a centrifuge tube containing 0.03% 
collagenase NB4 and digested for 15  min at 37°C with shaking at 
1500  rpm. The supernatant was discarded, and a fresh collagenase 
NB4 solution was added for a second 15‑min digestion, during 
which time the rotational speed was lowered to 130 rpm. Cells in the 
supernatant were then centrifuged and resuspended in PBS. The cell 
suspension was then used to isolate CM‑Dil‑positive cells using a flow 

cytometry sorting instrument (MoFlo XDP, Beckman Coulter, Brea, 
CA, USA), and these CM‑Dil‑positive cells were cultured in DMEM 
for morphologic analysis.

Detection of HUMSC‑derived Leydig‑like cells after sorting
After 3  days of culture, the CM‑Dil‑positive cells were harvested 
using 0.25% trypsin, resuspended in 0.01% formaldehyde, and 
permeabilized with 0.5% Tween 20. Finally, cells were incubated with 
anti‑HSD3B1 antibody (1:1000; Abcam, Cambridge, UK) for 30 min 
and then incubated with donkey anti‑rabbit IgG H&L (1:2000; Alexa 
Fluor® 488; Abcam) for 30 min. Stained cells were examined with a 
flow cytometer.

Evaluation of testosterone concentrations
We collected blood from all forty rats at 7 days, 18 days, and 25 days after 
EDS injection (3 days, 14 days, and 21 days after cell transplantation), 
and measured the concentrations of testosterone in serum the same day 
that blood was collected, using a chemiluminescence assay (Shanghai 
Children’s Medical Center).

Statistical analyses
Data were expressed as  mean ± one standard deviation (s.d.) of the 
mean. Statistical analyses were performed using independent sample 
Student’s t‑tests to compare control and therapy groups.

RESULTS
Identification of MSC marker expression by flow cytometry
Isolated UCMSCs adhered to plastic surfaces and showed a typical 
spindle‑shaped appearance (data not shown).

Flow cytometric analysis showed that HUMSCs were positive for 
CD105, CD90, and CD73, which are considered typical MSC‑positive 
markers. Cells were negative for CD45, CD34, CD11b, CD19, and 
HLA‑DR, which are typical markers of non‑MSCs  (Figure  1). 
HUMSCs were examined for expression of MSC markers; the 
area surrounded by the red line represents the blank control for 
background fluorescence, and the area surrounded by the blue line 
indicates signals from antibodies to human MSC markers. Cells 
were stained with phycoerythrin  (PE), allophycocyanin  (APC), 
peridinin‑chlorophyll‑protein complex‑Cy5.5  (PerCP‑Cy5.5), or 
isothiocyanate (FITC)‑conjugated antibodies to indicate the following 
MSC markers: CD90‑FITC, CD105‑PerCP‑Cy5.5, CD73‑APC, 
CD34‑PE, CD11b‑PE, CD19‑PE, CD45‑PE, or HLA‑DR‑PE, 
respectively.

Morphologic assessment and immunohistochemistry of UCMSCs 
after transplantation
To evaluate the morphologic and histochemical changes in HUMSCs 
after transplantation, 21 days after transplantation, the testes of the 
therapy group were examined by immunohistochemistry using 
CYP11A1 antibody. HUMSCs, which were CM‑Dil‑positive cells 
under the fluorescence microscope, acquired a small and round 
Leydig cell‑like appearance, and CM‑Dil‑positive cells were also 
CYP11A1‑positive, indicating that they had differentiated into 
Leydig‑like cells (Figure 2).

Detection and sorting of transplanted HUMSCs by flow cytometry
To examine the differentiation status of CM‑Dil‑stained HUMSCs 
after transplantation, we digested testes from rats 21  days after 
transplantation to acquire the cells located in the interstitium and found 
that these CM‑Dil‑positive cells were still able to proliferate (Figure 3)
and showed HSD3B1‑antibody staining (Figure 4). This showed that 
these cells expressed HSD3B1, which indicated that UCMSCs acquired 
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properties of Leydig cells after they were transplanted to testes from 
EDS‑treated rats for 21 days.

Evaluation of testosterone in rat serum
Eighteen days after EDS injections, serum testosterone concentrations 
in the therapy group were only slightly higher (and not statistically 
different) compared to the control group (P = 0.643). However, after 
25 days of EDS injections, serum testosterone in the therapy group was 
greatly augmented relative to the control group (P = 0.037) (Figure 5).

DISCUSSION
It is estimated that about 1 child in 200 suffers from androgen 
deficiency.1 Trauma, infections, tumor growth, and radiation therapy 
can be the reasons for androgen deficiency in children.8 The current 
clinical treatment for androgen deficiency  –  that of androgen 
replacement therapy – can cause a number of adverse reactions.9 To 
avoid these side effects, pediatricians need to have at their disposal 

Figure 1: Surface marker analysis of cultured HUMSCs. CD90 (a)/CD105 (b)/CD73 (c) expression indicated the presence of HUMSCs; the negative control 
contained few non‑MSCs (d). MSCs: mesenchymal stem cells; HUMSCs: human umbilical mesenchymal stem cells.

dcba

Figure  2: Immunohistochemical fluorescence staining showed the distribution of HSD3B‑positive cells  (a and e), CM‑Dil‑stained cells  (b and f), and 
nuclei (c and g). CM‑Dil‑positive cells co‑expressing CYP11A1 are shown by white arrows (d and h) (scale bar = 100 µm).
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Figure 3: CM‑Dil‑positive HUMSCs sorted by flow cytometry. After 6 h of culture, 
cells adhered to the substratum and showed small rounded shapes (a). After 
3 days of culture, CM‑Dil‑positive cells were observed to be spindle‑shaped, 
and they proliferated and formed colonies  (b)  (scale bar  =  100  µm). 
HUMSCs: human umbilical mesenchymal stem cells.
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Figure  4: HSD3B staining for cultured CM‑Dil‑positive cells. Contrasted 
with the isotype control (a), after sorting, some of the cells may not have 
expressed red fluorescence because they lost CM‑Dil during mitotic divisions. 
Alternatively, cells incubated with the Q3 dose did not come from HUMSCs, 
but rather from rat Leydig cells (b). HUMSCs: human umbilical mesenchymal 
stem cells.

ba
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alternative therapeutic options that simulate natural developmental 
fluctuations.2 Therefore, we transplanted HUMSCs into testes of 
EDS‑treated rats to investigate their therapeutic potential, as HUMSCs 
have been widely used in tissue repair, and they can be induced into 
Leydig‑like cells in vitro.10

Our study showed that after transplantation, HUMSCs survived 
in an EDS‑treated male rat hypogonadism model without obvious 
immunologic rejection. Moreover, some of the CM‑Dil‑marked 
HUMSCs expressed the Leydig cell marker CYP11A1. We sorted 
and cultured CM‑Dil‑positive HUMSCs from rat testes 3 weeks after 
transplantation and found that these cells were still able to proliferate 
and that they expressed HSD3B1. Finally, we analyzed blood samples 
from the therapy and control groups, and the results showed that 
the therapy group’s serum testosterone levels were higher than in the 
control group (P = 0.037). Our results suggest that HUMSCs are able 
to differentiate into Leydig‑like cells with normal function.

EDS, as an alkylating agent, is able to specifically eliminate adult 
Leydig cells from rat testes. The elimination of adult Leydig cells is 
then normally followed by a Leydig cell regeneration process, which 
is similar to the Leydig cell differentiation process observed for human 
puberty.11 During the process of Leydig cell regeneration, and as a 
result of low testosterone, the levels of other hormones and cytokines 
may be upregulated.12 For example, luteinizing hormone has been 
used to induce HUMSCs into Leydig‑like cells in vitro,13 nerve growth 
factor can promote the regeneration and differentiation of Leydig 
cells,14 and protein kinase inhibitor β may interact with the catalytic 
subunit of cAMP‑dependent protein kinase and act as a competitive 
inhibitor, thus stimulating cell growth and androgen secretion.15 In 
addition, as a cell that is important in the construction of the testicular 
microenvironment, Sertoli cells can promote Leydig cell differentiation 
via the secretion of cellular factors such as epidermal growth factor,16 
insulin‑like growth factors‑1,17 and platelet‑derived growth factor.18 We 
hypothesize that the combined effects of the upregulation of cellular 
factors and the testicular microenvironment can induce HUMSCs 
into Leydig‑like cells.

Our study showed that transplanting HUMSCs into EDS‑treated 
rats promoted the recovery of blood testosterone levels back to normal. 
The flow cytometric analyses indicated that some of the HUMSCs 
also expressed HSD3B1, and these HSD3B1‑positive cells may be 
considered functional Leydig‑like cells involved in the accelerated 
recovery of serum testosterone. However, it should be noted that 
undifferentiated MSCs might also promote the regeneration of Leydig 
cells. It has been reported that MSCs are able to secrete various cellular 
factors and adhesive molecules, including vascular endothelial growth 
factor, basic fibroblast growth factor, hepatocyte growth factor, and 

insulin‑like growth factor‑I that exert beneficial paracrine effects on 
surrounding cells.19–21 These cellular factors can then promote the 
regeneration of Leydig cells and enhance their functions.17,18,22 In the 
present experiment, transplanted HUMSCs may have released or 
promoted the release of certain factors that guided the regeneration 
of Leydig cells. HUMSCs, compared with BMSCs, possess a higher 
proliferative potential, and HUMSCs are more capable of differentiating 
into Leydig cells.6 In our study, we transplanted MSCs from humans 
instead of rats because some researchers have claimed that human 
BMSCs do not differentiate into Leydig cells in mouse testes.5 This 
raised the question of whether MSCs are able to change into Leydig 
cells or differentiated MSCs. The matter has not yet been resolved 
because of technical problems that may cause a failure of differentiation. 
To answer this question, we used HUMSCs instead of rat MSCs, and 
we marked HUMSCs with CM‑Dil, which is a good cell tracer that 
is not only unaffected by cell proliferation and differentiation23 but 
is also able to keep cells stained for longer than 4  weeks in  vivo.24 
We also did not find any obvious immunologic rejection after the 
transplantation. As an immunologically privileged organ, the testis 
contains few immunocytes, and HUMSCs do not express the major 
histocompatibility complex (MHC) class II (HLA‑DR) antigens.25–27 
Previous studies have shown that umbilical mesenchymal stem 
cells are still viable and not rejected 4 months after transplantation 
as xenografts, without the need for immune suppression;28 this also 
proved the feasibility of heteroplastic transplantation using HUMSCs.

In our study, although we did not find cells with double nuclei, we 
were still not able to rule out the possibility of cellular fusion between 
HUMSCs and recipient testicular Leydig cells or their progenitor cells. 
In addition, as we did not determine the origin of the cells staining 
positive for HSD3B1 by double‑staining for human nuclear antigen, 
it is possible that not all of the CM‑Dil‑labeled cells were HSD3B1 
positive originated from human tissues. However, we believe that the 
elevation in serum testosterone still highlights the value of using MSCs 
in the treatment of androgen deficiency.

CONCLUSION
HUMSCs can promote recovery of serum testosterone levels in 
EDS‑treated rats via differentiation into normally functioning 
Leydig‑like cells. Based on our results, HUMSCs may constitute a 
promising therapy for the treatment of both young and old male 
hypogonadism patients.
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Figure  5: Twenty‑five days after EDS injection, serum testosterone 
concentrations in the therapy group were higher than that in the control 
group (P = 0.037). EDS: ethane dimethanesulfonate.
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