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The noninvasive estimation of neuronal receptive field (RF) properties
in vivo allows a detailed understanding of brain organization as well
as its plasticity by longitudinal following of potential changes. Visual
RFs measured invasively by electrophysiology in animal models have
traditionally provided a great extent of our current knowledge about
the visual brain and its disorders. Voxel-based estimates of popula-
tion RF (pRF) by functional magnetic resonance imaging (fMRI) in
humans revolutionized the field and have been used extensively in
numerous studies. However, current methods cannot estimate single-
neuron RF sizes as they reflect large populations of neurons with indi-
vidual RF scatter. Here, we introduce an approach to estimate RF size
using spatial frequency selectivity to checkerboard patterns. Thismethod
allowed us to obtain noninvasive, average single-neuron RF estimates
over a large portion of human early visual cortex. These estimates were
significantly smaller compared with prior pRF methods. Furthermore,
fMRI and electrophysiology experiments in nonhuman primates dem-
onstrated an exceptionally good match, validating the approach.

visual cortex | population receptive fields | fMRI | electrophysiology |
computational modeling

An important contribution of functional magnetic resonance
imaging (fMRI) in human neuroscience is the noninvasive

in vivo estimation of the voxel-by-voxel organization of several
cortical areas (1). Recent studies substantially advanced this field
of research by using novel neurocomputational methods that can
uncover neuronal properties previously only accessible by in-
vasive electrophysiological techniques (2, 3). Estimating neuro-
nal properties in vivo by fMRI is of great significance for
understanding the functional organization of the cortex as well as
cortical reorganization and plasticity in patients with diseases
afflicting the brain (4).
A prime example of such methods is the estimation of pop-

ulation receptive fields (pRFs) in retinotopically organized visual
areas (5–7). However, pRFs are only estimates of aggregate
voxel-based averages of ten to hundreds of thousands of neurons
within fMRI voxels and are a function of (i) the receptive field
(RF) sizes of single units belonging to a voxel, (ii) the local
scatter in the positions of RF centers, and (iii) the interactions
[such as center-surround (8, 9)] between nearby connected units.
Here, we present an approach that eliminates local scatter to
estimate the average single-neuron RF sizes over a large portion
of human early visual cortex. To achieve this, we exploited the
spatial frequency (SF)-dependent fMRI responses of visual RFs
modeled as Gabor functions and estimated single-unit RF
(suRF) sizes from the properties (the SD of the Gaussian en-
velope) of the best-fitting Gabors. Thus, our estimates are not
sensitive to RF scatter. Furthermore, we validated this approach
by comparing noninvasive RF size estimates obtained using the
same fMRI method in nonhuman primates with RF sizes obtained
directly via intracranial electrophysiological recordings.
The relationship between RF scatter and the retinotopic or-

ganization of visual cortex has first been studied in primates by

Hubel and Wiesel (10). These authors indicated that the random
scatter of RF positions recorded from a vertical electrode pen-
etration in the cortex is comparable to the RF size at a given
eccentricity. However, following studies in cats that used better
quantification indicated that random scatter may be smaller than
previously believed (11). More recently, precise mapping of
primate visual cortex with two-photon calcium imaging has in-
vestigated this further and found that random RF scatter is al-
most negligible (12). Instead, they observed that the positions of
the RF centers of neurons within a small patch of cortex were
smoothly changing depending on the local cortical magnification
factor (10, 13, 14). This suggests that RF position is quaside-
terministic and can be potentially estimated directly by analytical
formulations that have been developed to describe the global
mapping from the visual field (retina) to the cortical space (15–
17). Since typically the spatial sampling of fMRI voxels happens
uniformly in cortical space (Fig. 1A), the relationship of RFs
within a voxel and the pRF can also be estimated if we know the
RF sizes. To demonstrate that, we used the inverse of the simple
model described by Schwartz (15), relating visual field to cortical
location, to back-transform the coordinates of square pixels from
cortical to visual space (Fig. 1 A and B). In addition, we used the
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linear relationship between single-neuron RF size and eccentricity
(RFsize = 0.072 ·RFeccentricity + 0.017) as reflected in the measure-
ments of Hubel andWiesel (10) to roughly estimate the expected RF
sizes of neurons whose RF centers lie along the edges of the trans-
formed fMRI-like pixels (Fig. 1B, red circles). To this end, we as-
sumed no additional random scatter given the recent findings by
Nauhaus et al. (12). Dashed circles were then plotted encircling this
group of RFs to represent each voxel’s expected pRF size. Note that
expected pRF size strongly depends on the nonlinear inverse-
Schwartz model transformation ½z= eðw=kÞ − a� from cortical to vi-
sual space, clearly overestimating individual neuron RF size. Note-
worthy, a similar relationship would also be present if we used other
more recently suggested transformations that take into account more
details of the known local magnification factor asymmetries (16, 17).
RFs of neurons in striate and early extrastriate visual cortex

can be approximated by 2D Gabor functions (18, 19) whose SF
selectivity can be analytically estimated (SI Appendix, Fig. S1).
We hypothesized that the amplitudes of the evoked blood oxygen
level-dependent (BOLD) responses in voxels containing such
neurons would thus depend on the SF content of the presented
visual stimuli and that the recorded fMRI responses could be
used to decode the average Gabor filter parameters of this

population of cells including the SD σ of the Gabor envelope
that is proportional to the RF size. To simplify this estimation,
we took advantage of the fact that usual fMRI-voxel sizes are at
least an order of magnitude larger than orientation columns, and
assumed a homogeneous distribution of orientation selectivity
within a voxel (Fig. 1C and SI Appendix, Fig. S1D). Given this
assumption, the Gabor SF selectivity becomes circularly sym-
metric and independent of orientation greatly reducing the
Gabor parameters space to a single σ (approximately RF size)
parameter (Fig. 1C and SI Appendix, Fig. S1D). As stimuli, we
chose to use binary white-noise checkerboard patterns and
modulated their SF content by changing the checker size across
visual stimulation blocks (Fig. 1D). We then modeled the fMRI
responses to these blocks using generalized linear modeling
(GLM) to estimate the β-amplitudes for each condition and then
used these β-values in voxel RF models to decode the average
Gabor σ. We note that our Gabor-based modeling approach
would also be valid if we used other stimuli with manipulated or
selected SF content like sinewave gratings or filtered natural
images. Here, we used checkerboard patterns since their fre-
quency content could be estimated analytically, allowing easier
computational modeling (SI Appendix, Fig. S2).
To estimate the average suRF size in a voxel, we used the

expected neuronal responses R for each checker size λchk. These
were calculated based on the integral of the product of the 2D
SF content of the stimuli Sðωx,ωy, λchkÞ and the 2D SF sensitivity
of the Gabor filter ΣGðωx,ωy, σÞ and given by the following:

Rðλchk, σÞ=
Z Z
ωxωy

dωxdωy · S
�
ωx,ωy, λchk

�
·ΣG

�
ωx,ωy, σ

�
. [1]

Furthermore, to fit the fMRI responses for each checker size
βBOLDðλchkÞ, we added a compressive power-law static nonlinearity:

βBOLDðλchkÞ= ðγ ·Rðλchk, σÞÞn, [2]

where the exponent n < 1 acts as the compressive nonlinearity
and γ is a single gain parameter across all conditions. We refer to
this as the power-law compressive (PLC) model. This model has
a single parameter σ that is proportional to RF size. In all RF
estimations in this manuscript, we considered RF size to be equal
to 2σ←←, as this is closer to the classical way of mapping RFs by
detecting the first response to moving stimuli across the RF
edges. SI Appendix, Fig. S3 demonstrates the effect of the com-
pressive nonlinearity for different values of parameter σ.
Several studies have postulated that neural responses at a

particular location are normalized by the responses of the sur-
rounding neurons and that this normalization is a canonical
neural computation (for a review, see ref. 20). In an attempt to
also take into account responses of the surround we have used
extended models that included additional gain and RF-size pa-
rameters for the surround. To this end, we either used a divisive
normalization PLC model (dPLC) given by the following:

βBOLDðλchkÞ= γ ·
�

γc ·Rðλchk, σcÞ
1+ γs ·Rðλchk, σsÞ

�n

, [3]

or a subtractive normalization PLC model (sPLC) given by the
following:

βBOLDðλchkÞ= ðγc ·Rðλchk, σcÞÞn − ðγs ·Rðλchk, σsÞÞn, [4]

where γc, σc, and γs, σs are gain and RF-size parameters for
center and surround respectively. Since these models had more
parameters than the simple PLC, we have set the exponent n =
0.325 based on previous research (21) to avoid overfitting. We

A B

C

E F

D

Fig. 1. Visual field backprojection of fMRI voxels, RF modeling approach,
and example of GLM fit of stimulus predictors. (A and B) Transformation of
the fMRI voxels (squares) from the cortical space (A) to the visual field (B) by
using the inverse-Schwartz model (15). In B, we plot estimated RF sizes along
voxel borders at different eccentricities (red circles). Population RF size (pRF)
depends not only on RF size but also on the nonlinear transformation from
cortical to visual field. (C) We modeled suRFs as 2D-Gabor functions as-
suming that voxels contain an approximately homogenous representation of
all orientations. Thus, voxel SF selectivity becomes independent of orienta-
tion and can be estimated according to the σ of the Gabor envelope. (D) Full-
field checkerboard patterns were presented in blocks of 10-s ON and 20-s
OFF. Blocks were pseudorandomly interleaved across six different SF condi-
tions. (E) Raw BOLD-signal time course from a sample region of interest in
area V1 of one subject (black) overlaid by the GLM fit of the six predictors
(checker sizes) in different colors. (F) The GLM β-weights corresponding to
each checker size predictor.
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note that, on average, this value was also very similar to the
exponents fitted in the simple PLC model of Eq. 2. Simulations
of the dPLC and sPLC for different values of σ and γ are pre-
sented in SI Appendix, Figs. S4–S6.

Results
Responses in human primary visual cortex were nicely modu-
lated by our stimuli (Fig. 2). On average, V1 responded more
strongly to blocks with smaller checkers (Fig. 2 B and C). More
specifically, as expected from our hypothesis, voxels selected
from anatomical and functionally defined areas close to the fo-
vea were biased to the smallest checker sizes while gradually
more peripheral voxels showed stronger responses to larger sizes
(Fig. 2 D and E). Note that the amplitude of the response to each
condition is reflected in the fitted GLM β-values that were then
used for suRF modeling (Fig. 2 F and G).
Examples of the PLC–suRF model fit for each subject H1–

H4 are presented in Fig. 3 A–D, respectively. On the top row,

voxels with eccentricity closer to the fovea were selected based on
the classical pRF model fit (ref. 5 and Materials and Methods);
gradually higher eccentricities were selected in the middle and
bottom rows. As expected from model simulations (SI Appendix,
Fig. S3), the shape of the model fit (solid lines) predicts small RF
sizes for foveal voxels and gradually larger for more peripherally
located ones. To better demonstrate the relationship between es-
timated voxel-based RF sizes and eccentricity, we performed linear
regression for each subject (Fig. 3 E–H, black lines). For compari-
son, linear regression was also performed for the pRF model across
the same subjects (Fig. 3 E–H, gray lines). The results demonstrated
a significant linear relationship of suRF as well as pRF size with
eccentricity for all individual subjects and across the population (SI
Appendix, Fig. S14 and Table S1). To test whether the suRF-
estimated RF sizes were smaller than the pRF, as we hypothe-
sized (Fig. 1), we performed analysis of covariance (ANCOVA) and
second-level comparisons (Tukey–Kramer) of the intercepts [suRF,B
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Fig. 2. Example of paradigm and V1 responses. (A) An example of the fMRI
response in V1 of a subject is shown on top of a cartoon of the stimulus
presentation with different conditions in colored blocks (10 s) and the in-
terstimulus interval (20 s) in gray. (B and C) The event-related time courses
for each condition are shown for left (B) and right V1 (C). (D and E) Similarly,
the event-related time courses of selected single voxels in foveal (D) and
peripheral (E) V1 are shown. (F and G) The GLM β-weights corresponding to
each checker size predictor in D and E, respectively.
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Fig. 3. Comparison of suRF with pRF. (A–D) Examples of suRF voxel fits for
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Solid lines represent PLC–suRF model fits. (E–H) suRF size (black) and pRF size
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resent linear regression fits. For parameter estimates and statistics, see SI
Appendix, Table S1.
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0.69 ± 0.07 (95% CI); pRF, 0.94 ± 0.19] and slopes (suRF, 0.05 ±
0.01; pRF, 0.33 ± 0.02) of the two models across the population
(H1–H4). We observed a significant difference of the intercepts
(P = 0.01) as well as the slopes (P = 1.06 × 10−10), being smaller for
the suRF model as expected.
Having established that the simple PLC model provides RF-

size estimates that follow the linear relationship with eccentricity
and these estimates are significantly smaller in comparison with
the pRF model, we proceeded to fit the same data using the
models dPLC and sPLC, which include RF-size estimates for the
center (σc) as well as the surround (σs). Both models demon-
strated exceptionally good fits as reflected in very high median
coefficients of determination (CoDs) across all subjects, which
were similar to the simple PLC model (Table 1). To select which
of the three models was more supported by the data, we calcu-
lated Akaike’s information criterion (AIC), which takes into
account the number of parameters included in each model
(NPLC = 3, NdPLC = 5, NsPLC = 4) and penalizes models with
higher number of parameters (22). Based on AIC, we also cal-
culated the relative likelihoods of each model per voxel and
plotted their distributions (SI Appendix, Fig. S7). As the PLC
model outnumbered the two normalization models in voxels with
higher relative likelihoods and also demonstrated lower (i.e.,
better) mean AIC values, we chose to use this model for further
reporting our results in the remaining sections of the manuscript.
This is also supported by analysis of the CoD as a function of ec-
centricity for all voxels as subjects (SI Appendix, Fig. S8). It is im-
portant to note, however, that there were some voxels, that is, in
particular ones that demonstrated clear suppressive effects for in-
termediate checker-size conditions, for which the surround models
clearly outperformed the PLC (center only) model. A comparison
of the PLC and sPLC model for some selected example voxels is
presented in Fig. 4. As expected and evident from these plots, PLC
cannot capture the suppression effects (BOLD reduction at in-
termediate checker sizes), while sPLC performs very well at these
voxels. However, it is important to note that the addition of a
surround normalization in the model by and large did not affect the
estimate of the size of the RF center, which remained similar to the
estimate derived by the PLC model (SI Appendix, Fig. S9).
To better understand the relationship between our proposed

PLC–suRF model and electrophysiological measurements of RF
sizes, we performed additional experiments in rhesus macaques.
During anesthetized fMRI experiments, monkeys were pre-
sented with identical stimuli as human subjects. PRF and suRF
models were then estimated with the same methodology as in
humans (Materials and Methods). As shown in the example voxels
in Fig. 5 A–D, the responses and suRF-model fits for monkeys
were very similar to humans with lower eccentricity voxels
demonstrating smaller RF sizes in comparison with voxels lo-
cated at more peripheral locations. Linear regression analysis of
the eccentricity vs. suRF and pRF sizes demonstrated identical
results as those in humans (Fig. 5 E and F and SI Appendix, Fig.

S10) with all subjects showing significant linear relationships for
both models (SI Appendix, Table S2). Furthermore, we per-
formed ANCOVA followed by the comparison (Tukey–Kramer
test) of intercepts (suRF, 0.42 ± 0.05; pRF, 1.39 ± 0.15) and
slopes (suRF, 0.06 ± 0.01; pRF, 0.19 ± 0.02). As in humans, we
observed significant differences in both the intercepts (P =
9.56 × 10−10) and slopes (P = 9.56 × 10−10) of pRF vs. suRF sizes
as a function of eccentricity. Importantly, the estimated suRF
sizes approximated previously reported electrophysiological
measurements of suRFs (10, 23, 24).
To more directly investigate how suRF–fMRI estimates compare

with single-neuron electrophysiological RF sizes, we performed
electrophysiological RF measurements in two other monkeys
(M3 and M4). To this end, we used the method of reverse corre-
lation that has been extensively used in previous RF-mapping ex-
periments in visual cortex (25–29). In addition, we also used a
moving bar method that closely resembles the pRF mapping we
used in fMRI (Materials and Methods). An example of a recorded
RF is presented in Fig. 5H (for additional examples, see SI Ap-
pendix, Fig. S11). Since the electrophysiology data from both
monkeys and methods were consistent, we have collapsed them and
performed linear regression for RF size vs. eccentricity like we did
for the fMRI measurements, which are presented in the same figure
(Fig. 5G). Comparison of the suRF intercept and slope with elec-
trophysiology (intercept, 0.16 ± 0.05; slope, 0.08 ± 0.02) showed no
significant difference (intercepts, P = 0.47; slopes, P = 0.98; Fig. 5G
and SI Appendix, Table S2).
To absolutely settle the correspondence between the suRF

model and electrophysiology, we performed fMRI pRF and
suRF experiments in monkey M3 that had MRI compatible
implants (Fig. 6). To be able to coregister the physiology and
MRI estimates, we have inserted an MRI-compatible guide (Fig.
6B) on top of the grid in the chamber and filled it with an MRI
contrast agent (MION). In this way, a reference frame was
reconstructed, and we could use it to estimate the voxel corre-
sponding to our recording electrode. In Fig. 6 C–E, we show
estimates of the RF size of a recording location based on all
three methods (pRF, suRF, and electrophysiology). It is clear
that this example demonstrates a close correspondence between

Table 1. Evaluation of different models in the human subjects
H1–H4

Model Nparams Score H1 H2 H3 H4

PLC 3 CoD 98.9% 98.8% 98.5% 99.1%
AIC −3.9078 −3.7378 −3.4641 −3.9815

dPLC 5 CoD 99.1% 99.1% 98.6% 99.1%
AIC −3.4779 −3.3309 −2.8225 −3.3747

sPLC 4 CoD 98.5% 98.0% 98.0% 98.1%
AIC −3.1736 −2.8642 −2.8409 −2.9591

For each model, the coefficient of determination (CoD) and Akaike’s in-
formation criterion (AIC) are shown. The PLC model (bold) outperformed the
other models based on the AIC and was selected for further analysis.
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Fig. 4. Comparison of PLC and sPLC. Selected example voxels for which the
subtractive normalization model (sPLC) outperforms the no-normalization
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the electrophysiology and suRF RF center estimates, and that they are
both much smaller compared with the pRF (Fig. 6F). This relationship
between pRF, suRF, and electrophysiology was also present across
the population (Fig. 6 G and H). Overall, our fMRI and electro-
physiology results demonstrated that the suRF method can estimate
reliably average single-neuron RF sizes in primary visual cortex.
One interesting question is whether this method can general-

ize beyond V1, to higher visual areas. To this end, we used the
PLC–suRF model to fit the V2 voxels of both human and
monkey subjects. In general, the model demonstrated excep-
tionally good fits (Fig. 7A) with very high median coefficients of
determination (H1, 98.7%; H2, 97.6%; H3, 98.7%; H4, 98.7%;
M1, 90.8%; M2, 97.2%). Similar to area V1, the results dem-
onstrated a significant linear relationship of suRF as well as pRF
size with eccentricity (Fig. 7 B–G) for all individual subjects and
across populations (SI Appendix, Table S3). We again tested
whether the suRF-estimated RF sizes in V2 were smaller than
the pRF by performing ANCOVA and second-level comparisons
(Tukey–Kramer). In humans, the intercepts [suRF, 0.8 ± 0.09
(95% CI); pRF, 1.4 ± 0.15] and slopes (suRF, 0.10 ± 0.01; pRF,
0.33 ± 0.02) of the two models across the population (H1–H4)
were significantly different both for the intercepts (P = 1.1 × 10−10)
as well as the slopes (P = 1.06 × 10−10). Similar results were
obtained in monkeys, with both intercepts [suRF, 0.48 ± 0.15
(95% CI); pRF, 2.07 ± 0.26; P = 9.56 × 10−10] and slopes (suRF,
0.11 ± 0.02; pRF, 0.25 ± 0.03; P = 9.61 × 10−10) found again to
be significantly different. Furthermore, we compared the in-

tercept and slope estimates in areas V1 and V2 using a t test. We
found that, across the human population, the slope for V2 was
significantly larger than V1 (T = 6.68; P = 3.03 × 10−10) and there
was also a trend for a larger intercept in V2 (T = 1.95; P = 0.051).
Similar results were obtained across the monkeys with significant
differences in the slope (T = 5.81; P = 7.64 × 10−9). SI Appendix,
Table S4 lists the results per human and monkey subject.
Last, to understand whether the suRF model is robust to po-

tential inaccuracies in the model assumptions, we performed fur-
ther modeling and modulated the model parameters. First, we
wanted to know whether the compressive nonlinearity is necessary
or whether a simplified linear filter model could perform similarly
well. To this end, we have set the exponent n = 1 (i.e., no non-
linearity) and refitted the model. We found that this model per-
formed very poorly with a median coefficient of determination
78.7% in comparison with the PLC model (98.8% for this subject).
To directly observe the goodness of fit of the linear model, we then
plotted the fits of the 16 best-fitting voxels (SI Appendix, Fig. S12).
Given these fits, we concluded that a compressive nonlinearity is
necessary; otherwise, the model cannot follow the structure of the
data. Second, we investigated how the results are affected by the
choice of the bandwidth we used for the Gabor filters. To this end,
we fitted the PLC model for a range of bandwidths within the
physiological range [nx = (0.15, 0.35); SI Appendix, Fig. S1]. We
found that, although the slopes of the linear eccentricity vs. RF-
size relationship changed slightly (increased with nx), the effect was
minimal in comparison with the differences between suRF and
pRF (SI Appendix, Fig. S13A). Moreover, since an fMRI voxel
would probably contain cells with more than a single bandwidth,
we wanted to test how this could affect the suRF model. To do so,
we created a multibandwidth model that simply uses the average
response of arbitrary distributions of Gabor bandwidths entered by
the user. For example, we used this model with a homogeneous
distribution of bandwidths simulating 10,000 cells within the range
[0.15, 0.35]. The result is shown in SI Appendix, Fig. S13B and
demonstrated that this multiband model was strikingly similar to
our original model using a bandwidth nx = 0.25 that is approxi-
mately in the center of the physiological range.

Discussion
To date, only two studies have attempted to report measure-
ments of RF sizes in human primary visual cortex either with
invasive intracranial electrophysiology (potentially one to two
cells) (30) or surface electrocorticography in patients (31).
Moreover, RF-size estimation from two intracranial electrodes
in areas V2/V3 was also recently performed in a human subject
(32) and indicated consistent results to previous electrophysiol-
ogy in macaques. Here, we developed a method to estimate
suRF sizes across human early visual cortex (areas V1 and V2)
using in vivo fMRI and validated our approach by dual fMRI and
electrophysiology measurements in rhesus macaques.
To achieve this, we took advantage of the well-known property

that visual cortical neurons can be approximated by Gabor
functions, which act like SF filters. We combined this property
with a very simple stimulus design using checkerboard patterns
whose checker size was modulated across different presentation
blocks, resulting in stimulus conditions with substantially different
SF content. These stimuli contain a broad range of frequencies, but
importantly the average SF content can be estimated analytically (SI
Appendix, Fig. S2). This allowed straightforward computational
modeling that predicts BOLD responses based on the Gabor pa-
rameters, and specifically on the SD σ of the Gabor envelope that is
proportional to RF size.
Previous work has demonstrated the utility of encoding mod-

els either for extracting voxel-based neuronal properties from
population-recording data such as fMRI, or for decoding brain
activity (5, 33–38). The pRF (5) is an example of such a model
that uses the very simple binary presence or absence of a stimulus
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on a particular location and the corresponding responses to build
the aggregate RF for each voxel, assuming it is a Gaussian
function over visual field space. Another example is the Gabor
wavelet pyramid model (34), which was used to decode natural
images in the human brain while at the same time it returns the
location, size, SF, and orientation preference of each voxel based
on the weights of the different Gabor functions in the underlying
battery. An important difference of all of these models to the
suRF model we introduce here, however, is that they work in the
spatial visual field domain and thus estimate voxel-based RFs
that include the scatter of neuronal RFs within a voxel. The
suRF model, on the contrary, sacrifices the estimation of the
spatial positions of the RFs and works directly in SF domain to
estimate the RF sizes. This is advantageous as it makes it the
only model that is not sensitive to RF scatter (neither random
nor organized) and, as we showed, results in exceptionally good
estimates of V1 RF sizes closely matching invasive electrophys-
iological measurements. It is important to note that the differ-
ence in RF sizes estimated by pRF, or other spatial domain
methods, compared with suRF, do not reflect a discrepancy
between the methods but rather a difference in the quantities
estimated: that is, the aggregate RF of all neurons together vs.
the average single-neuron RF. In future studies, it will be in-
teresting to study the relationship of these estimates and evalu-
ate whether one can be predicted reliably by the other.
In this work, we also attempted to go beyond estimating a

single RF size per voxel by fitting two slightly more complex
models that included surround normalization, which has been
proposed to be a canonical computation in the brain (20). To this
end, we created models for both a divisive (dPLC) as well as
subtractive (sPLC) normalization by a second pool of neurons

with different average RF sizes (σs). In general, similarly to the
simple PLC model, both of these models resulted in exception-
ally good fits with very high median coefficient of determination
(Table 1). Importantly, adding the additional parameters by and
large did not affect the estimation of the size of the RF center
(SI Appendix, Fig. S9). When we examined voxels in which the
normalization models performed substantially better in com-
parison with the PLC, we observed that such voxels typically
demonstrated suppressive effects at intermediate checker size
stimulus conditions. In particular, the sPLC model seemed to
perform slightly better especially at voxels that showed strong
suppressive effects eliciting very low or even negative activity in
comparison with the blank baseline (Fig. 4). However, the pro-
portion of voxels in which these models demonstrated higher
likelihoods in comparison with the PLC model was quite low,
and thus we further reported only the results of the PLC. Given
that these surround models had more parameters than the PLC
and we only measured six stimulus conditions to fit the param-
eters with, it is hard to provide strong evidence for those models.
Future studies could tackle this problem by using a wider range
of stimulus conditions.
An interesting result of our modeling approach was that the

structure of the data supported using a compressive static non-
linearity (SI Appendix, Fig. S12). In the simple PLC model, we
allowed this parameter to be estimated and found that its value
approximated previous V1 modeling studies that used the non-
linearity in a different context and specifically compressive spa-
tial summation within the RF (21). Even if this may at first
appear puzzling, we conjecture that the compressive nonlinearity
we find likely reflects a homologous phenomenon seen from the
perspective of the SF domain. Perhaps, partially activating the
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RF of neurons in space produces a similar effect as produced by
the partial overlap between the SF content of the stimuli and the
SF sensitivity of the Gabor functions. Another potential expla-
nation of the nonlinearity is the estimation of neural activity R. A
usual model of estimating neural activity is the complex energy
model (39). Many studies have used the square root of the
complex energy model to predict neural activity assuming line-
arity. Our model is using a similar approach in the frequency
domain by using the spectral amplitude. The single PLC non-
linearity we use is applied after this stage and can thus reflect
compression at the neural or hemodynamic level (i.e., conversion
of neural response to BOLD signal) or even a combination of
both. A recent study using an intelligent design in an achiasmic
human and metaanalysis of a number of previous studies in
humans as well as one in macaques claimed that compressive
nonlinearity with approximate power of 0.5 can account for all
results in early visual cortex (40). Since the power best fitting the
results in our study was smaller (i.e., more compressive), it could
indicate that our nonlinearity reflects a combination of neural as

well as hemodynamic effects. However, identifying the exact
relationship was beyond the scope of this work.
To understand whether the suRF modeling approach can

generalize to other visual areas, we used our method in human
and monkey area V2. We found that the model performed very
well and returned RF sizes that demonstrated the linear re-
lationship with eccentricity as expected. In addition, the slopes
and sizes of RFs in V2 were larger than V1, further demon-
strating the validity of the approach. Moreover, the estimates of
RF sizes in macaque V2 are consistent with previous electro-
physiology studies (24, 41). We should note, however, that no
direct electrophysiological validation was performed in V2. We
have not yet tried this approach in higher visual areas. We expect
that, for higher visual areas, more complex models reflecting the
local electrophysiological signatures would be necessary to re-
trieve accurate estimates of neuronal properties.
RFs of neurons in the visual cortex of experimental animal

models have been studied extensively using a wide variety of
invasive techniques. However, since invasive studies are not
possible in healthy humans, much less is known about human
single-neuron RFs. Our study provides comprehensive human
suRF measurements over the whole primary visual cortex using a
simple noninvasive fMRI technique that can be easily adapted to
the general population. Visual RF sizes have been reported to
reorganize after injury (42–49), and studies suggest that visual
stimulation could induce further reorganization and plasticity
(50, 51). Human studies using the pRF as a readout have also
demonstrated changes; however, it is not yet known whether
these are a result of single-neuron RF-size changes vs. changes in
the spatial distribution of RFs within a voxel. The suRF meth-
odology we propose here can be useful for further dissecting the
mechanisms of neural plasticity in human subjects with lesions of
the visual pathways.

Materials and Methods
Human Experiments.
Subjects. Four healthy human subjects (H1–H4; 24–44; two females) with
normal or corrected-to-normal visual acuity participated in the fMRI exper-
iments. Before each session, subjects provided written informed consent.
The local ethics committee of the University Hospital Tübingen approved
the study.
MRI data acquisition and preprocessing.MRI experiments were performed at the
Max Planck Institute for Biological Cybernetics (Tübingen, Germany). Func-
tional and anatomical images were acquired in a 3.0-T Tim Trio Scanner
(Siemens) using a 12-channel coil. At least two T1-weighted anatomical
volumes were acquired for each subject with a 3D magnetization-prepared
rapid acquisition gradient echo (T1 MPRAGE scan) and averaged following
alignment to increase signal-to-noise ratio [matrix size, 256 × 256; voxel size,
1 × 1 × 1 mm3; 176 partitions; flip angle, 9°; repetition time (TR), 1,900 ms;
echo time (TE), 2.26 ms; inversion time, 900 ms]. BOLD image volumes were
acquired using gradient echo sequences of 28 contiguous 3-mm-thick slices
covering the entire brain (TR, 2,000 ms; TE, 40 ms; matrix size, 64 × 64; voxel
size, 3 × 3 × 3 mm3; flip angle, 90°).

At least five functional scans were acquired for each subject, consisting of
195 image volumes, the first three of which were discarded. The functional
images were corrected for motion between and within scans (52) and were
aligned to the high-resolution anatomical volume using a mutual in-
formation method (53). The high-resolution anatomical data were used to
segment the white/gray-matter boundary in itkGray software, and 3D cor-
tical surface and flat mesh models were created and realigned with the
functional data. The functional time series were spatially resampled in the
volume space using nearest neighbor interpolation. This preserves the
original signals but up-samples them in space leading to some voxels with
the same time courses. Analysis was accelerated by analyzing a single voxel
corresponding to the original fMRI resolution and assigning the results to
the corresponding anatomical voxels. All subsequent analysis was performed
in the segmented volume space restricted in the gray-matter voxels. The
above preprocessing steps were performed in MATLAB using the mrVista
software package that can be found at https://github.com/vistalab/vistasoft.
pRF mapping. For retinotopic mapping, we used the pRF method (5). Briefly,
the pRF model estimates the region of the visual field that effectively elicits
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a response in a small region of visual cortex (voxel). The implementation of
the pRF model is a circularly symmetric Gaussian RF in visual space, whose
center and radius are estimated by fitting actual BOLD signal responses to
estimated responses elicited by convolving the model with the moving bar
stimuli. We retained only those voxels in the visual area for which the pRF
model explained more than 15% of the variance. This threshold was set after
measuring the mean explained variance (EV) in a nonvisually responsive area
and setting the threshold at 6 SDs above the mean. This method derived re-
liable and reproducible retinotopic and pRF size maps.
Stimuli.

Stimulus presentation. Subjects were presented with visual stimuli in the
scanner by using MRI-compatible digital goggles [VisuaStim; Resonance
Technology Company; 30° horizontal and 22.5° vertical field of view (FOV);
800 × 600 resolution; minimum luminance, 0.3 cd/m2, and maximum
luminance, 12.2 cd/m2].

pRF mapping. Moving square-checkerboard bars (100% contrast) were
presented within a circular aperture with a radius of 11.25° (full vertical
extent of screen) around the fixation point. The bar width was 1.875° and
traveled sequentially in eight different directions, moving by a step half of
its size (0.9375°) every image volume acquisition (TR, 2 s). Stimuli were
generated using Psychtoolbox-3 (54) and an open toolbox (VISTADISP) in
MATLAB (The Mathworks). The subjects’ task was to fixate a small dot in the
center of the screen (radius, 0.0375°; 2 pixels) and respond to the color
change by pressing a button. The color was changing randomly with average
frequency of one every 6.25 s. An infrared eye tracker was used to record
eye movements inside the scanner (iView XTM; SensoMotoric Instruments).

suRF mapping. Binary full-field checkerboards (black/white; 100% contrast)
with a frame rate of 30 Hz (new random configuration was presented in each
frame) were presented in a block design (10 s ON, 20 s OFF). For each block,
the size (side) of the checkers was chosen to be one of six possible conditions
[0.25°, 1°, 2°, 3.75°, 7.5°, 22.5°].

Monkey Experiments.
Subjects. Four healthy adult rhesus monkeys (Macaca mulatta; M1–M4, 5–
11 kg, one female) were used in MRI (n = 3; M1–M3) and electrophysiology
experiments (n = 2; M3 and M4). The experimental and surgical procedures
were performed with great care and in full compliance with the German
Law for the Protection of Animals, the European Community guidelines for
the care and use of laboratory animals (EUVS 86/609/EEC), and the recom-
mendations of the Weatherall report for the use of nonhuman primates in
research. The regional authorities approved our experimental protocols, and
the institutional representatives for animal protection supervised all proce-
dures. Animals were kept in large cages located adjacent to the training and
experimental facilities. Space in these cages allows swinging and jumping, and
enrichment equipment such as toys was changed frequently. Group housing was
maintained to increase the quality of life by rich visual, olfactory, auditory, and
social interaction and stimulation for play. Balanced nutrition and regular vet-
erinary care and monitoring were provided. Recording chamber implantations
were performed in two animals while the animals were under general anes-
thesia and aseptic conditions. To alleviate postsurgical pain, we administered
analgesics for a week after the surgery (see Surgical procedures below). MRI
experiments were also performed under anesthesia (see Anesthesia below).
Animals were not killed after the experiments.
Anesthesia.Details on the anesthesia protocol have been given previously (55).
Briefly, the animals were premedicated with glycopyrolate [0.01 mg/kg, in-
tramuscular (i.m.)] and ketamine (15 mg/kg, i.m.), and then deep anesthesia
was induced by fentanyl (3 μg/kg), thiopental (5 mg/kg), and succinyl chloride
(3 mg/kg). Anesthesia was maintained with remifentanyl (0.5–2 μg·kg−1·min−1)
under paralysis with mivacurium chloride (3–6 mg·kg−1·h−1) to ensure the
suppression of eye movements. Heart rate and blood oxygen saturation
were monitored continuously with a pulse oximeter. Body temperature was
kept constant at 37–38 °C.
Surgical procedures. Recording chambers were positioned over the operculum
in area V1 according to stereotaxic coordinates. This was aided by high-
resolution magnetic resonance anatomical imaging. The anatomical scan
and recording chamber implantation were done while the animals were
under general anesthesia. Details of the procedure can be found in our
previous work (55).
MRI data acquisition and preprocessing. fMRI experiments were performed in a
4.7- or 7.0-T vertical scanner (Bruker Biospec; Bruker Biospin). Multislice fMRI
was performed using eight-segmented gradient-recalled echo-planar imag-
ing (EPI). Volumes of 17 slices of 0.756 × 0.756 × 2 mm3 were collected, each
with a FOV of 96 × 96 mm on a 128 × 128 matrix and 2-mm slice thickness,
flip angle of 40° for 4.7 T and 47.6° for 7 T, a TE of 20 ms, and a TR of 750 ms
per segment resulting in a volume acquisition time of 6 s. For anatomical

measurements, we used a FLASH sequence with the same FOV, 96 × 96 mm2;
matrix, 256 × 256; slice thickness, 2 mm; flip angle, 70°; TE, 10 ms; and TR,
2,000 ms. A high-resolution 3D modified driven equilibrium Fourier trans-
form (MDEFT) anatomical scan with an isotropic resolution of 0.5 mm3 was
acquired for coregistration with the FLASH and EPI images. For more details
on the fMRI acquisition methods, see previously published papers (55, 56).
Then, fMRI data were reconstructed and imported into a MATLAB-based
toolbox (mrVista). The high-resolution 3D-MDEFT anatomical data were
used to manually segment the white/gray-matter boundary in itkGray soft-
ware, and 3D cortical surface and flat mesh models were created and real-
igned with the functional data by using mrVista. The functional images were
corrected for motion in between and within scans (52).
pRF mapping. For retinotopic mapping, we used the pRF method. The
threshold of the EV was set to 15%, the same with our human experiments
and in agreement with previous studies (46, 57).
MRI stimuli.

Stimulus presentation. Visual stimuli were displayed using a custom-made
fiber-optic projection system at a resolution of 800 × 600 pixels (30° ×
22.5°) with a 60-Hz frame rate and mean luminance of ∼50 cd/m2. Stimuli
were centered on the approximate location of the fovea by using a modified
fundus camera (Zeiss; RC250). Animal eyes were fitted with appropriate
contact lenses to ensure the stimulus remained in focus. At the beginning of
each experiment, a polar pattern with radius 5° was presented monocularly
to the left and right eyes in a block design (40 s ON–40 s OFF), and the results
were analyzed on-line to select the eye with best alignment and the
strongest responses. Further stimulus presentation was restricted to this eye.

pRF mapping.Moving square-checkerboard bars (100% contrast) with width 1°
were moving in 0.5° steps every volume acquisition on the full screen extent
sequentially in four different directions (left–right, up–down, right–left, down–
up). Outside the bar aperture, an isoluminant gray background was presented.
Stimuli were generated using custom-made stimulus generation and pre-
sentation software (MRIstim). Each direction was presented twice for each
scanning acquisition of 204 images. This was repeated two to three times.

suRF mapping. The suRF mapping binary checkerboard stimuli were generated
with the same program creating the stimuli for the human subjects using
Psychtoolbox-3 (54) in MATLAB (The Mathworks). The only difference was that
the block design ON–OFF periods were 24 and 36 s, respectively, and we used
eight possible checker size conditions [0.25°, 0.5°, 1°, 2°, 4°, 6.5°, 13.0°, and
22.5°]. Since the animals were under anesthesia, no fixation spot was presented.
Electrophysiology data acquisition and preprocessing. Electrophysiological re-
cordings were acquired from area V1 in twomonkeys (M3 andM4). Recording
chambers were positioned stereotactically over the operculumwith the aid of
T1-weighted high-resolution 3D-MDEFT anatomical MRI images (0.5 mm
isotropic). These images were used for targeting the region of interest, 3D-
skull reconstruction, and design of the implants to accurately fit the contours
of the skull. A five-axis CNC machine (Willemin-Macodel; W428) was used to
build these form-specific implants that resulted in an excellent fit between
the implants and the underlying skull surface. In one animal (M4), the implant
was constructed from medical-grade titanium, which precluded MRI mea-
surements. In the second animal (M3), the chamber was constructed from
polyether ether ketone plastic (TECAPEEK; Ensinger), which is MRI compat-
ible, and we could thus also acquire pRF and suRF measurements.

In M3, recordings were conducted primarily using custom-made tetrodes
[see previous work for details (58); n = 42 experiments], and in some (n = 4), a
custom-made multichannel linear probe with 10 platinum/iridium channels
with interdistance ∼150 μm was used in parallel. After eliminating noisy
channels with no or very little spiking activity and channels recorded from
area V2, this resulted in n = 35 datasets from area V1. In M4, recordings were
conducted using either single-channel tungsten electrodes (FHC; n = 8 ex-
periments) or custom-made multichannel probes made with platinum/irid-
ium wire (nine linearly arranged recording locations with interdistances of
∼150 μm; the eighth location was consisting of three nearby channels; n =
10 experiments). After eliminating noisy channels with no or very little
spiking activity and channels recorded from areas V2 and V4, this resulted in
n = 38 datasets that were classified as recordings from V1.

The electrodes were guided into the brain manually by custom-designed
adjustable microdrives. Electrophysiological activity was sampled at 32 kHz,
digitized (16 bits), and stored using the Digital Lynx data acquisition system
(Neuralynx). Multiunit activity was defined as the events that exceeded a
predefined threshold (25 V) of the filtered, digitized signal (digital bandpass,
600 Hz to 6 kHz). One animal (M4) was implanted with a scleral search coil (59,
60), and its eye movements were monitored on-line. In the second animal
(M3), eye movements were monitored by an infrared eye tracker (IView XTM Hi-
Speed Primate; SMI). The behavioral aspects of the experiment were controlled
using the QNX real-time operating system (QNX Software Systems).
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Electrophysiology stimuli.
Stimulus presentation. Visual stimuli were displayed using a dedicated

graphics workstation (TDZ 2000; Intergraph Systems) running an OpenGL-
based stimulation program (STIM). Stimuli were presented on a LCD moni-
tor positioned at 1-m distance from the animals’ eyes (width, 60 cm; height,
34 cm) with a resolution of 1,920 × 1,080 and a refresh rate set to 100 Hz.
The monitor was gamma corrected with a mean luminance of 22.2 cd/m2.

Reverse correlation RF mapping. To map the multiunit neuronal RFs, we used
the reverse-correlation technique (25–29). Stimuli were small square dots (black
or white) presented on a gray background while the monkey fixated a small red
spot with 0.2° diameter at the center of the monitor. The dots were positioned
inside a rectangular 5 × 5 grid with side dimensions of 0.5°–2.5° (i.e., 25 possible
dot locations with dot sizes one-fifth the rectangle side) and location depending
on a preliminary manual mapping of the RF location that was placed approxi-
mately in the center of the grid. Each dot was presented for 20 ms at pseu-
dorandomized locations to have approximately equal number of presentations
in each position inside the grid for each luminance (black and white).

Moving-bar RF mapping. In one of the animals (M3), in parallel to the reverse-
correlation mapping, we also performed RF mapping with moving bars; this
was similar to the pRFmapping performed in humans with the bars moving in
eight different directions across the monitor in steps of 45°. The bar width
was 0.5° and was moving by steps of 0.25° every 10 ms.
Electrophysiology analysis.

Eye movement analysis. First, we calculated the time series of eye velocities by
differentiation of the position signals. Then, the horizontal and vertical angular
velocities were independently thresholded at seven times their median-based
SD to detect putative microsaccadic events. An event was classified as a
microsaccade if the following additional criteria were satisfied: (i) it had a
minimum duration of 8 ms, (ii) it had an amplitude between 1 and 60 min of a
degree, and (iii) it had a maximum peak-velocity of 110° per second (61). These
parameters provided accurate detection of the microsaccades. In addition, the
extracted microsaccades satisfied the main-sequence criterion and showed
high correlation of amplitude and velocities. Fixation locations were extracted
as the mean positions between saccades.

Reverse-correlation RF mapping. The multiunit RFs at each recording location
were reconstructed by iterative construction of spike histograms for each stimulus
position. Each bin had a time span of 10 ms, and in total we considered 12 bins
(120ms) post stimulus presentation. For each presentation of a dot (separately for
black-and-white dots), the spikes following were binned according to the eye
movement-corrected position of the dot. Eye movement correction improved
substantially the estimation of RFs in M4 that had an eye coil. In contrast, in M3
(infrared eye tracker), this procedure did not demonstrate improvements or even
worsened RF reconstruction, and thus it was not applied. RF sizes with or without
the correction inM3were very similarwith some changes in RFposition that could
reflect drifts of the infrared eye tracker. From the visual field position histograms,
we then created spatial maps for each time bin. Separate maps for the dark and
bright dots as well as the average of the two were created. These maps were
converted to z scores by subtracting the mean and dividing with the SD of the
first three time-bin maps (i.e., <30 ms where no substantial response is expected
or was observed). Then, the bin with maximal responses was identified and used
for fitting a 2D-isometric Gaussian with its parameters reflecting RF position (x, y)
and size (2σ). This procedure was performed for each map type (i.e., dark, bright,
mean), and we selected the parameters of the model providing the best fit
based on the coefficient of determination (R2). Examples of RF data and fits are
presented in SI Appendix, Fig. S11.

Moving-bar RFmapping. For the analysis of themoving-bar RFmapping,we have
used a procedure similar to the pRF topographicmapping approachwe proposed
earlier for fMRI data (7). For the analysis of the electrophysiological data, an
additional step was required before estimation of the RF. Specifically, a time
delay reflecting the neuronal response latency was estimated so that the peaks
of the responses when the bar was running in opposite directions were aligned.
Also, in contrast to the fMRI analysis pipeline, no hemodynamic deconvolution
was necessary. All other steps of analysis were identical to the fMRI.

Modeling and Analysis. To estimate the suRF size, the amplitudes of the re-
sponses (βBOLD) to the block design of checkerboard stimuli with different
checker sizes λchk presented in each block were estimated using a GLM. Only
voxels that demonstrated GLM EV greater than 15% were further consid-
ered. The β’s for all conditions were then used to fit models (Eqs. 2–4) by
using nonlinear least squares (lsqcurvefit function in MATLAB; range of suRF
size between 0° and 10°). These models use a static nonlinearity to transform
estimated neural responses to BOLD signal.

For the purpose ofmodeling the RFs, we assume that neurons in primary visual
cortex (V1) can be modeled as linear combinations of even (ge) and odd (go) 2D-
Gabor functions, described with the following two equations, respectively:
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with x and y as the Cartesian coordinates in the visual field, σx and σy de-
fining the ellipsoid 2D Gaussian envelope, and ωx0, ωy0 defining the center
frequency and orientation. The SF sensitivities ωx, ωy of these Gabor filters
can then be described by the respective Fourier transforms:
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Furthermore, we assume that the distribution of orientation selective cells
within an fMRI voxel is homogeneous; thus, the SF sensitivity of voxels can be
described relative to a single center frequency ω0 independent of orientation
as follows:
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Thus, the SF sensitivity of the population of cells within a voxel can be es-
timated according to a linear combination of the Eqs. 3.1 and 3.2. For sim-
plicity, we take the average of the even and odd parts as follows:
ΣGðωx ,ωy , σÞ= ðΣGe +ΣGoÞ=2 (SI Appendix, Fig. S1).

Then, for estimating the neural responses R (Eq. 1), we integrated the
product of ΣG with an analytical form of the stimulus frequency content S (SI
Appendix, Fig. S2):

S
�
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�
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ϕ

sincðλchk ·ωxÞ · sinc
�
λchk ·ωy

�
Νð0, σλÞ . [4.1]

Data Deposition. The data reported in this paper have been deposited in the
MEGA database, https://mega.nz/#F!rjxGTYRb!6c_XFeslILmSlt_QMfulpQ (62).
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