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Deep learning suggests that gene expression is
encoded in all parts of a co-evolving interacting
gene regulatory structure
Jan Zrimec 1, Christoph S. Börlin1,2, Filip Buric 1, Azam Sheikh Muhammad 3, Rhongzen Chen3,

Verena Siewers 1,2, Vilhelm Verendel3, Jens Nielsen 1,2, Mats Töpel 4,5 & Aleksej Zelezniak 1,6✉

Understanding the genetic regulatory code governing gene expression is an important

challenge in molecular biology. However, how individual coding and non-coding regions of the

gene regulatory structure interact and contribute to mRNA expression levels remains unclear.

Here we apply deep learning on over 20,000 mRNA datasets to examine the genetic reg-

ulatory code controlling mRNA abundance in 7 model organisms ranging from bacteria to

Human. In all organisms, we can predict mRNA abundance directly from DNA sequence, with

up to 82% of the variation of transcript levels encoded in the gene regulatory structure. By

searching for DNA regulatory motifs across the gene regulatory structure, we discover that

motif interactions could explain the whole dynamic range of mRNA levels. Co-evolution

across coding and non-coding regions suggests that it is not single motifs or regions, but the

entire gene regulatory structure and specific combination of regulatory elements that define

gene expression levels.
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Gene expression governs the development, adaptation,
growth, and reproduction of all living matter. Under-
standing its regulatory code would provide us with the

means to cure diseases, including heterogeneous tumours1, and to
control protein production for biotechnology purposes2,3.
Although transcriptional regulation has been a central area of
research in the past decades, with advances that enable accurate
measurement of mRNA levels ranging from just a few copies to
several thousand per cell4–7, we still cannot quantify to what
extent the DNA code determines mRNA abundance, nor
understand how this information is encoded in the DNA. Lack of
such quantitative understanding hinders the potential of accu-
rately controlling mRNA and protein levels by simply manip-
ulating the sequence of the four DNA nucleotides.

A strong agreement between protein and mRNA levels in
multiple organisms suggests that transcription is a major deter-
minant of protein abundance4,5,7,8. mRNA transcription is con-
trolled via the gene regulatory structure, comprised of coding and
cis-regulatory regions that include promoters, untranslated
regions (UTRs) and terminators, each encoding a significant
amount of information related to mRNA levels9. For instance, in
Saccharomyces cerevisiae, sequence properties of individual cis-
regulatory regions can explain up to half of the variation in
mRNA levels10–15. Considering that each part of the gene reg-
ulatory structure is involved in specific processes related to
mRNA synthesis, decay9,16,17, and the overall transcription effi-
ciency18, all gene parts must cooperate in perfectly timed con-
certed action in order to regulate expression. However, despite
the apparent importance of the non-coding regions in mRNA
control, it remains unclear how they cooperatively regulate gene
expression levels.

Much of the current knowledge on quantitative regulation of
gene expression is based on high-throughput screens of thou-
sands of synthetic sequences studied in isolation from their native
gene regulatory structures19–22. Although a de facto standard for
expression tuning in synthetic biology, these techniques are
(i) laborious and require expensive and highly-sophisticated
equipment23, (ii) are biased towards specificities of mutagenesis24,
and (iii) are generally restricted to particular experimental con-
ditions. The major problem, however, is that the biological
sequence space is so large that it cannot be explored experi-
mentally or computationally25. For instance, to analyze all the
possible combinations of the four nucleotides in a 20 bp promoter
would require iterating over a trillion (420) synthetic sequences.
This limits the experimental studies to individual regulatory gene
parts in the context of single reporter genes. Similarly, with
natural systems, the majority of studies on mRNA transcription
in the context of transcription factor (TF) binding26, chromatin
accessibility27,28 and ChIP-seq or DNase-Seq data29,30, focus
solely on promoter regions22,31. Therefore, both the current
natural and synthetic approaches are fundamentally limited in
their ability to study the holistic relationship between the differ-
ent parts of the gene regulatory structure and their joint regula-
tion of expression.

Here, we consider that DNA sequences of all living systems,
through evolution, have been fine-tuned to control gene expres-
sion levels. To learn from the natural systems, we analyse over
100,000 native gene sequences in over 20,000 RNA-Seq experi-
ments from seven model organisms, including Homo sapiens and
Saccharomyces cerevisiae. In the yeast S. cerevisiae, the variation
of gene expression per gene across the entire repertoire of dif-
ferent experimental conditions is 340 times lower than the var-
iation of expression levels across all genes. Consequently, the deep
neural networks learn to predict gene expression levels directly
from the native DNA sequences, without the need for screening
experiments using synthetic DNA. Prediction of gene expression

levels is highly accurate in all model organisms, and in S. cere-
visiae (R2test= 0.82) shows strong agreement with fluorescence
measurements from independent published experiments. This
demonstrates that, in both eukaryotes and prokaryotes, mRNA
levels are determined not by separate individual coding and cis-
regulatory regions but rather collectively by the entire gene reg-
ulatory structure. In S. cerevisiae, as the coding and cis-regulatory
regions contain both orthogonal as well as overlapping infor-
mation on expression levels, the entire gene codon distribution
can be predicted merely from the adjacent cis-regulatory regions
(R2test= 0.58). Indeed, mutational analysis of orthologous genes
in 14 yeast species provides evidence that each gene is a co-
evolving unit. Next, we reconstruct the regulatory grammar of S.
cerevisiae by measuring the co-occurrence of sequence motifs
extracted from the deep models and present across the cis-reg-
ulatory regions. These motif co-occurrences are found to be
highly predictive of expression levels and can differentiate the
expression levels of single motifs in a range of over 3 orders of
magnitude. Finally, by quantifying the variation present in all
36 million promoter-terminator combinations we observe that
gene expression levels change, on average, over 10-fold in either
direction of the native levels. Thus with each gene, merely
exchanging one side of its regulatory regions with other natural
variants unlocks enormous potential for future gene expression
engineering. The potential of our models to guide gene expression
engineering with any desired gene in S. cerevisiae is demonstrated
experimentally using GFP fluorescence measurements.

Results
The dynamic range of gene expression levels is encoded in the
DNA sequence. To explore the relationship between DNA
sequence and gene expression levels, we compiled a dataset of
3025 high-quality Saccharomyces cerevisiae RNA-Seq experi-
ments32 covering the majority of available experimental condi-
tions from 2365 unique studies. By sorting 4975 protein-coding
genes (“Methods”, Supplementary Table 1) according to their
median expression levels across the RNA-Seq experiments
(expressed as TPM values, i.e. Transcripts Per Million), we
observed a striking trend: expression levels varied within one-fold
of values for 79% of the yeast protein-coding genes (Fig. 1a) and
within 1 relative standard deviation (RSD= σ/μ) for 85% of the
genes (Fig. 1a, b and Supplementary Table 2). Conversely, the
dynamic range of average TPM values across all the genes
spanned over 4 orders of magnitude and the variance of
expression levels within the whole genome was on average 340
times higher than the variance per gene across the experiments
(Fig. 1c). The most variable genes across the entire range of
biological conditions (Fig. 1b: RSD > 1) were significantly
(Hypergeometric test BH adj. p-value < 0.05) enriched in meta-
bolic processes, transport and stress response (Supplementary
Fig. 2, “Methods”), while the most stable genes (RSD < 1) were
significantly (Fisher’s exact test p-value < 1e-16) enriched in
TFIID-type constitutive promoters27.

To test if the observed dynamic range of gene expression levels
is encoded in the DNA, we extracted the DNA sequences of the
regulatory and coding regions of all the genes with a relative
standard deviation of expression variation less than 1 (Fig. 1a, b:
4238 genes with RSD < 1). A total of 2150 bp of regulatory
sequences9,11,14,15,33–37, 64 codon frequencies from coding
regions38 and additional 8 mRNA stability variables13, all known
to be important for expression regulation, were used for
prediction of mRNA levels (Fig. 1d and Supplementary Fig. 1,
“Methods”). Using the DNA sequence information as input, we
built a regression model based on deep convolutional neural
networks (CNNs), capable of identifying functional DNA motifs
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across the sequence39–42, and trained the model to predict the
median gene expression levels (Fig. 1e, “Methods”). The median
value was a good estimator of the expression differences between
the genes, as it was strongly correlated with the first principal
component of the entire expression matrix (Pearson’s r= 0.990,
p-value < 2e-16, Supplementary Fig. 3). To avoid potential
technical biases related to read-based sequencing43, mRNA levels
were corrected for gene length bias (Supplementary Fig. 4,
“Methods”). Overall, a total of 3433 gene sequences were used for
training the model, 381 for tuning the model hyperparameters
and 424 for testing. After optimizing the model (“Methods”), its
predictive performance on the held out test set (R2test= 0.822, p-
value < 1e-16, Fig. 1f and Supplementary Table 3) demonstrated
that the DNA encodes the majority of the information about
mRNA expression levels.

To validate the trained model on independent data, we used
two published experimental datasets, where the effects of either
promoter44 or terminator45 sequences were measured in yeast
synthetic constructs combined with fluorescence reporters. For
both studies, we only inferred expression levels based on the deep
neural network trained on natural genomic sequences (Fig. 1e, f,
“Methods”), meaning that the model was not exposed to the data
from these studies in its training phase. The first dataset
comprised measured activities of ~900 native yeast promoters
recorded in synthetic constructs with a single strong terminator
(ADH1) and a YFP fluorescence reporter in 10 different
conditions44. In all 10 conditions, the predictions of mRNA

levels inferred based on the DNA sequences of the synthetic
constructs and YFP codon frequencies were in strong agreement
(Pearson’s r from 0.570 up to 0.718, p-value < 1e-16) with the
experimental YFP readouts (Fig. 1g: median YFP readout shown,
Pearson’s r= 0.667, p-value < 1e-16, Supplementary Fig. 5a).
Similarly, the second experimental dataset45 contained expression
measurements of over 5,000 terminators with a fixed strong
promoter (TDH3) and a GFP fluorescence reporter. Despite the
fact that predictions based on these synthetic constructs were only
moderately correlated (Pearson’s r= 0.310, p < 1e-16) with the
measured protein fluorescence intensities (Supplementary
Fig. 5b), this result was in fact stronger than the correlation
between reporter fluorescence and measured mRNA abundances
reported in the original study (Pearson’s r= 0.241)45.

To investigate if mRNA abundance can be predicted from the
DNA sequence also in other model organisms, we processed an
additional 18,098 RNA-Seq experiments from 1 prokaryotic and
5 eukaryotic model organisms equally as with yeast (Supplemen-
tary Tables 1 and 2, “Methods”). The organisms were selected to
cover the whole known range of genome regulatory complexity,
from 892 genes/Mbp (Escherichia coli) to 6 genes/Mbp (Homo
sapiens), which is known to affect the gene structure and
regulation46. After training the models for each organism, the
predictive power on test data (R2test) varied from 0.394 for Mus
musculus to 0.725 for Drosophila melanogaster (p-value < 1e-16,
Fig. 1h, Supplementary Table 3). Overall, the predictions were less
accurate for higher eukaryotes, which could be attributed to the
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increase in transcriptional complexity, e.g. due to alternative
splicing47, expression differences across tissues48, and distant
enhancer interactions49–52, which were not accounted for in the
present models. The prediction performance was thus correlated
(Pearson’s r= 0.616, p-value < 3e-3) with the genomic complexity
of the model organisms (Supplementary Fig. 6). Nevertheless, the
average performance across model organisms (R2test) of 0.6
(Fig. 1h) corroborated that the majority of mRNA expression
differences in all organisms can be predicted directly from
the DNA.

Coding and cis-regulatory regions jointly contribute to gene
expression prediction. To evaluate the importance of each part
of the gene regulatory structure (Fig. 1d) for the prediction of
expression levels, we measured the amount of relevant informa-
tion in each regulatory region. Similarly to the complete model
(Fig. 1e, f), we trained multiple CNN models independently on
promoter, 5′-UTR, 3′-UTR, and terminator regions as well as
their combinations. To justify the use of deep convolutional
networks, as a baseline we performed shallow modeling using a
variety of regression algorithms, including multiple linear
regression, elastic net, random forest, and support vector
machines with nested cross-validation (Fig. 2a, “Methods”). We
observed that, although a single regulatory region alone could
explain less than 28% of the variation in mRNA abundance levels,
when using combinations of regulatory regions, each region
contributed to the prediction of mRNA levels and increased
model performance (Fig. 2b, Supplementary Fig. 11). The model
trained on all four regulatory regions thus accounted for
approximately 50% of the mRNA abundance variation (R2test=
0.492, p-value < 1e-16, Fig. 2a, b and Supplementary Table 8),
suggesting that the entire gene regulatory structure is important
for controlling gene expression levels. In contrast, none of the
shallow models could predict gene expression levels from the
regulatory sequences (R2test < 0.031, Fig. 2a and Supplementary
Table 9), likely since they cannot decode the information in a
DNA sequence directly53,54 and thus rely on human-engineered
features, such as k-mer frequencies, as a representation of the
sequence properties55–58. Despite the observation that the sole
mRNA stability variables were also somewhat informative about
gene expression levels (R2test= 0.378, p-value < 1e-16, Fig. 2a),
they did not improve the overall model performance next to the
codon frequencies and regulatory sequences, likely due to their
information redundancy with these variables (Supplementary
Fig. 12: R2test was 0.779 when predicting mRNA stability variables
using regulatory sequences).

On the other hand, the codon frequencies alone explained well
over 50% of mRNA level variation both with the shallow and deep
models (R2test was 0.681 and 0.690, respectively, p-value < 1e-16,
Fig. 2a, Supplementary Table 9). Considering that the amount of
information was comparable to, or greater than that of the
regulatory sequences, we attempted to measure the amount of
information overlap in these regions. We thus trained a CNN to
predict the entire codon frequency vector for each gene using only
its regulatory regions (Fig. 2c, Methods), which showed that over
58% of the gene’s codon frequency variation was determined by its
adjacent regulatory regions (Fig. 2d: R2test= 0.582, p-value < 1e-16).
This result suggested that the coding and noncoding regulatory
regions might have co-evolved under common evolutionary
pressure59,60. To test this hypothesis, we composed a dataset of
cis-regulatory regions of orthologous genes from a diverse set of 14
yeast species61 (Supplementary Table 10) and compared the
mutation rates between the different regions of the yeast gene
structure (Methods). The mutation rates of the promoter and
terminator regions displayed a moderate positive correlation

(Pearson’s r= 0.423 and 0.471, p-value < 1e-16, respectively) with
the mutation rates of the yeast coding regions (Fig. 2e, f) as well
as among themselves (Supplementary Fig. 13), supporting
the hypothesis that elements of the gene regulatory structure
co-evolve59,60,62,63.

Deep learning identifies specific DNA positions controlling
gene expression levels. To explore the information learned by the
deep neural network (Fig. 1e, f) and identify the specific parts of
the DNA sequences that were most predictive of gene expression
levels, we developed a pipeline for evaluating the relevance of each
specific nucleotide position in relation to the predicted gene
expression levels (Supplementary Fig. 14, “Methods”). Briefly, for
each gene we removed sliding windows of 10 base pairs along its
regulatory DNA sequence (Supplementary Fig. 15) and compared
the predictions of the occluded sequences with those of the ori-
ginal unoccluded sequences39,64. The occluded parts of the input
DNA sequences that significantly deviated (exceeding ±2 stan-
dard deviations) from the original data were regarded as the most
relevant for gene expression changes (Fig. 3a). The largest density
of relevant regions was obtained in the direct vicinity of the
boundary sites defining regulatory and coding sequences (see
Fig. 1d). On average, 214 base pairs (bp) in promoters, 74 bp in
5′-UTRs, 94 bp in 3′-UTRs, and 127 bp in terminator regions of
each gene significantly affected the prediction of its expression
levels (Fig. 3a). Relevance profiles of promoter regions were also
strongly correlated (Pearson’s r=−0.7, p-value < 1e-16) with
experimentally measured nucleosome occupancy scores28 (Sup-
plementary Fig. 16), which suggested that the deep learning
algorithms uncovered the intrinsic molecular information enco-
ded in the nucleotide composition.

Clustering the gene regulatory regions according to their
expression relevance profiles (Methods) identified 4 stable clusters
that significantly (Wilcoxon rank-sum test p-value < 1e-4)
differed in the positional information (Fig. 3b) and were
significantly (Wilcoxon rank-sum test p-value < 1e-16) informa-
tive about gene expression levels (Fig. 3d). Cluster 4, which
contained highly expressed genes, was significantly (Hypergeo-
metric test p-value < 1e-10) enriched in the occupied proximal-
nucleosome (OPN) regulation strategy as opposed to the depleted
proximal-nucleosome (DPN) strategy65, which was likely related
to the concurrent enrichment (Fisher’s exact test p-value < 1e-12)
of inducible SAGA promoters in the cluster. Cluster 4 also
comprised genes with higher transcriptional plasticity spanning
an over 4-fold higher variability of expression levels compared to
the other clusters (Levene’s test p-value < 1e-16). As is typical for
highly abundant proteins, such as metabolic enzymes, that are
linked to less defined nucleosome positions and higher depen-
dence on nucleosome remodelling65,66, the cluster was signifi-
cantly enriched (Hypergeometric test BH adj. p-value < 0.01)
mostly in metabolic processes (Supplementary Fig. 17). In
contrast, Cluster 1, with lowly expressed genes, was related
(Hypergeometric test BH adj. p-value < 0.01) to cell cycle
regulation and DNA repair (Supplementary Fig. 17). The largest
differences in positional expression relevance were identified in
promoter and terminator sequences (Fig. 3b). For instance, in
promoters of lowly and highly expressed genes (Clusters 1 and 4,
respectively), occluding the original sequences yielded opposite
effects. These positional differences were independent of the
overall nucleotide composition (Supplementary Fig. 18), which
indicated that specific regulatory DNA motifs were likely
responsible for defining the expression levels.

We next identified the specific regulatory DNA motifs
important for predicting expression levels from the set of all
significantly relevant DNA sequences (Supplementary Fig. 19)
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using clustering and alignment (“Methods”). The highest quality
motifs were obtained with the 80% sequence identity cutoff,
according to the following criteria: (i) genome coverage, (ii) the
amount of retained relevant sequences in motifs (seq. coverage)
and (iii) % overlap with known motifs in databases (Supplemen-
tary Table 11). Over 2200 expression related regulatory DNA
motifs were uncovered across all 4 regulatory regions (Fig. 3e).
The majority of motifs were unique to each specific region, as
analysis of motif similarity across the adjacent regulatory regions
(Methods) showed that, on average, <16% of the motifs
significantly (Tomtom67 BH adj. p-value < 0.05) overlapped
between the regions (Fig. 3e and Supplementary Table 11). This
further supported our observation that every regulatory region
contains unique information related to the gene expression levels
(see Fig. 2a). Further comparison to JASPAR68 and Yeastract69

databases (“Methods”) showed that on average, 13% of the

identified motifs (Fig. 3e) were significantly (Tomtom67 BH adj.
p-value < 0.05) similar to the known transcription factor binding
sites (TFBS) recorded in these databases (Supplementary Fig. 20),
recovering 38% and 63%, respectively. The majority of
these motifs were identified not only in the promoter, but also
in the terminator region (Supplementary Fig. 20), due to the
overlap between neighbouring genes70. A significant (Wilcoxon
rank-sum test p-value < 1e-8) decrease in GC content in the UTR
regions (Fig. 3c) indicated that the identified motifs were likely to
contain the regulatory DNA signals from UTR regions and
terminators (Fig. 3f and Supplementary Fig. 1). This included the
5′-UTR Kozak sequences and 3′-UTR processing DNA elements
that are enriched in the thermodynamically less stable A/T
nucleotides11,14,71,72. The deep models therefore successfully
identified known regulatory signals (Fig. 3f), as well as uncovered
new regulatory signals across all the gene regulatory regions73,74.
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Motif co-occurrence uncovers the regulatory rules of gene
expression. To determine the functional meaning of the DNA
motifs reconstructed from the deep learning relevance profiles
(Fig. 3f), we analysed the informative power of the DNA motifs
for predicting the specific gene expression levels. For this, we
calculated the signal-to-noise ratio (SNR= μ/σ) of expression
levels across genes that carried the identified motifs (Fig. 4a and
Supplementary Fig. 23). The spread of expression levels of motif-
associated genes was over 2.5-fold larger than its expected
(median) expression level (Supplementary Fig. 24), resulting in a
low median SNR of under 0.4 (Fig. 4a). Of the full 4 order-of-
magnitude range of gene expression levels observed in the data
(Fig. 1a), only 57% could be recovered with the motifs, as indi-
cated by the average expression level of genes per associated motif
(Fig. 4b and Supplementary Fig. 23b). The range of gene
expression levels for the identified motifs were thus too dispersed
and overlapped, indicating that the predictions made by the
model (Figs. 1f and 3b) were likely not based on single motif
occurrences.

On the other hand, the observed interactions across the
regulatory regions (Fig. 2a, b) and positional differences in
expression levels (Fig. 3b) suggested that certain combinations of
motifs found in different regulatory regions might carry a greater
indication of expression levels than single motifs (Fig. 3f). We,
therefore, searched for patterns of co-occurring motifs, i.e.
combinations of motifs that are statistically more likely to be
present together in genes than alone, and termed these patterns
‘regulatory rules’. For this we used Market basket analysis—a
technique that is commonly used for identifying frequently
bought items in market research75 (“Methods”). The number of
identified rules corresponded to the quality of identified motifs
and was largest at the 80% sequence identity cutoff, decreasing
markedly when increasing the identity cutoff (Supplementary
Table 11). A total of 9,962 rules were significantly over-
represented (Chi-squared test76 BH adj. p-value < 0.05) in at
least 3 genes and across 93% of the analysed protein coding
genome (Fig. 4c), and comprised 62% of all unique motifs that
represented 86% of all motif occurrences (Supplementary Fig. 25).
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Importantly, the rules were frequently found in smaller groups of
genes (at most 10 genes) and were crucial for discriminating
genes with low and high expression levels, as the dynamic range
of expression values decreased by 2-fold in rules present in more
than 10 genes (Fig. 4c). Similarly, rules comprised of a larger
number of motifs (Fig. 4c: rules of up to 6 motifs found) were also
sparser and occurred in smaller groups of genes (Supplementary
Fig. 26). In total, 88% of the significant rules (Chi-squared test76

BH adj. p-value < 0.05) occurred across the regulatory regions
compared to the rest that were present within single regions
(Fig. 4d). This resulted in over 8-fold more co-occurring motifs
spread across multiple regulatory regions than within any single
region.

We next compared the genes carrying the single motifs to those
carrying the co-occurring motifs in rules. We observed that the
range of average expression levels of genes spanned by the rules
exceeded those of single motifs by over 11-fold (Levene’s test p-
value < 1e-16) (Supplementary Fig. 24) and recovered, in total,
84% of the whole range of gene expression levels (Figs. 4b and
1a). Furthermore, a significantly (Wilcoxon rank-sum test p-
value < 1e-16) narrower window of expression levels was
observed with rule-associated genes compared to single motifs,
as the variance of expression levels was over 16-fold lower
(Supplementary Fig. 24). This showed that the genes containing
co-occurring motifs fall under the precise control of the specific
co-occurrence rule. The signal-to-noise ratio, which exceeded 1
for over 60% of rules, in contrast to single motifs, of which 78%
were below 1 (Fig. 4a and Supplementary Fig. 23b), demonstrated
that the precision of expression control of the rule-associated

genes was on average 3-fold higher (Wilcoxon rank-sum test p-
value < 1e-16) than of single motifs (Supplementary Fig. 23). This
again shows the presence of statistically measurable interactions
across the entire gene regulatory structure, but this time at the
level of motifs, thus supporting the existence of a coevolved
interacting regulatory grammar.

To analyse how differences in the motif co-occurrence context
across the regulatory regions affect the expression levels of genes,
we grouped the motif co-occurrence rules, such that one motif
was left unchanged and was common to all the rules, while the
other motifs differed across the genes (Fig. 4e, rules with at least 3
motifs were used). We found that the motif co-occurrence
context across the regulatory regions could repurpose a common
motif in genes that exhibited a range of up to 1484-fold change of
expression levels. Of the 1079 such rule sets that repurposed a
given motif, 55% changed by at least one order of magnitude of
expression levels (Fig. 4e). The repurposed motifs included
significant (Tomtom67 BH adj. p-value < 0.05) hits to a range of
Jaspar TFBS in promoter regions, and co-occurred with as well as
were repurposed by motifs across all the cis-regulatory regions
(Supplementary Table 12). For example, one of the largest ranges
of expression levels was observed with a group of NHP6B-like
motifs (SGD:S000002157, 648-fold change), a TF that binds to
and remodels nucleosomes. The NHP6B-like motifs co-occurred
with motifs from the adjacent regulatory regions that govern the
expression levels of many essential yeast genes (Fig. 4f), including
those involved in DNA replication (CDC6), ribosomal RNA
processing (RIO2), and coding for nuclear (NSP1) and cell
membrane (EXG1) proteins. Furthermore, a similar trend was
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observed by an alternative grouping of the motif co-occurrence
rules, such that only one motif differed across the genes. Even a
single motif substitution could achieve up to a 605-fold change of
expression levels, where 24% of such rulesets were carried by
genes that exhibited at least an order of magnitude change of
expression levels (Fig. 4g). Finally, an analysis of gene sets
containing the most widespread motif co-occurrence rules (that
covered 20 or more genes) did not show any significant
enrichment of specific cellular functions, which suggested that
the uncovered gene expression grammar is shared across genes of
all functions and is an integral part of the basic gene regulatory
structure (Fig. 1d).

Since the regulatory regions were found to be coevolved with
the coding region (Fig. 2e, f) and highly predictive of the codon
frequencies (Fig. 2d), we analysed the properties of codon
frequencies across the motifs and rules similarly as with the
expression levels. The range of median Euclidean distances
between codon frequencies, defined by the co-occurring motifs in
rules, exceeded that of the single motifs by 6.5-fold (Levene’s test
p-value < 1e-16), whereas the average variance decreased almost
5-fold (Wilcoxon rank-sum test p-value < 1e-16, Supplementary
Fig. 27). This shows that, compared to single motifs, co-
occurrence rules define more conserved ranges of codon
frequencies, and that the regulatory grammar learned by the
deep models (and highly predictive of gene expression levels,
Fig. 1f) is based on the combined properties of regulatory as well
as coding regions.

Regulatory properties learned from native genome guide
expression engineering. The common practice to manipulate
gene expression levels is to use specific strong promoter (or ter-
minator) sequences without much regard to which terminators
(or promoters) they are combined with44,45,77,78. Considering
that our findings point to a strong dependence of gene expression
on the interaction between all regions of the gene regulatory
structure (Figs. 2a, b, d and 4e, f, g), we used the deep neural
networks (Fig. 1e, f) to explore how much the expression level of
each gene can be altered with all the possible promoter-
terminator combinations, a task that is challenging to perform
experimentally. To rationally simplify this analysis and retain just
two global halves of the gene regulatory structure, here 5’-UTRs
were combined with promoters and 3′-UTRs with terminators
(Fig. 5a). For each half, 17,960,644 combinations of the native
yeast promoters or terminators with their corresponding variable
counterparts were tested using the same dataset as for training the
models (Fig. 1a: RSD < 1). We observed that, on average, varying
the terminator region introduced a significant (Wilcoxon rank-
sum test p-value < 1e-16) 3-fold change in either direction of
expression levels, compared to the native gene structure (Fig. 5b).
The terminator constructs achieved up to a 130-fold increase
(Fig. 5b: YOL097W-A promoter with TDH3 terminator) and 14-
fold decrease (Fig. 5b: TIM10 promoter with TOP3 terminator) of
expression levels compared to the native counterparts. This
showed that with a given gene, a range of over two orders of
magnitude of expression levels (Fig. 5b: 130-fold range with
YOL097W-A) could be unlocked merely by exchanging the ter-
minator region. This held true for both strong as well as weak
promoters (Fig. 5c). For instance, with the commonly used strong
yeast promoter YEF377,78 we identified a regulatory combination
where the expression levels decreased 3.2-fold (Wilcoxon rank-
sum test p-value < 1e-16) compared to the native counterpart.
Conversely, with the natively weak promoter POP6, a terminator
context with a significant (Wilcoxon rank-sum test p-value < 1e-
16) increase of over 7-fold was identified (Fig. 5c). A further
comparison of natively weak and strong promoters (100 top and

bottom sorted constructs) confirmed that weak ones were
expressed overall 2-fold more highly (Wilcoxon rank-sum test p-
value < 1e-16), and strong ones overall 1.3-fold more lowly
(Wilcoxon rank-sum test p-value < 1e-16) than the native
sequences (Supplementary Fig. 28). The computed degree of
regulatory freedom was supported also by published experimental
results with the TDH3 promoter45 (Fig. 5d). Here, despite the
specific experimental conditions leading to an offset in the
measurements, we observed a moderate correlation (Pearson’s
r= 0.310, p-value < 1e-16) to the variability of the fluorescence
intensities with 4005 different terminators45 as well as a com-
parable overall dynamic range (Fig. 5d).

When performing an analogous analysis using terminator
regions and instead varying the promoters, expression levels
changed on average over 20-fold (Wilcoxon rank-sum test p-
value < 1e-16) in either direction and spanned a dynamic range of
over 3 orders of magnitude (Fig. 5e: 2120-fold range with
YNL146W). For all terminators, promoters could be identified
that exerted a strong positive stabilizing effect, as the most
pronounced variation was observed in the direction of increasing
expression levels up to 1847-fold (Fig. 5e: YOL097W-A
terminator with TDH3 promoter), compared with up to 32-fold
decrease (Fig. 5e: MMF1 terminator with AMF1 promoter).
Similarly as with promoters, strong and weak terminators (100
top and bottom sorted constructs) displayed stronger changes in
the opposite directions of expression. Weak terminators were
expressed overall 2.3-fold more highly (Wilcoxon rank-sum test
p-value < 1e-16), and strong ones overall 2.4-fold more lowly
(Wilcoxon rank-sum test p-value < 1e-16) than the native
sequences (Supplementary Fig. 28), thus presenting many
possibilities for gene expression engineering (Fig. 5f). Analysis
of independent yeast experimental data44 confirmed the compu-
tationally predicted variability with the ADH1 terminator, as we
measured a strong correlation (Pearson’s r= 0.625, p-value < 1e-
16) to the variability of fluorescence intensities with the 625 tested
promoters (Fig. 5g).

We considered that changing the promoters and terminators
could have affected gene expression predictions based either on
(i) the specific regulatory signals present in the DNA (Figs. 3f and
4h) or (ii) the general sequence properties, such as GC content
and di-nucleotide composition79,80. We therefore evaluated the
effect of removing high-order sequence information (ie. regula-
tory grammar) by randomly shuffling the regulatory DNA whilst
preserving dinucleotide frequencies81. On average, the native
DNA regions demonstrated a significant (Levene’s test p-value <
1e-16) 88% larger effect on expression variation and a 13.5-fold
higher dynamic range compared to randomly shuffled sequences
with the same nucleotide composition (Supplementary Fig. 29).
Accordingly, random sequences could only increase the expres-
sion level up to 4.9-fold (Supplementary Fig. 29: YIL102C-A
promoter with a shuffled variant of its terminator) and decrease it
up to 3.2-fold (Supplementary Fig. 29: NCE102 promoter with a
shuffled variant of its terminator) compared to the native
expression level. The observed increase of expression signal by
combining native regions with their adjacent counterparts
indicated that the correct progression of gene expression requires
the presence of a specific regulatory grammar, similar to the one
detected above (see Fig. 4h), which can be lost when artificially
manipulating or carelessly combining the sequences.

The computational results suggest that the model-based
predictions could improve experimental design of gene expres-
sion systems and potentially decrease a part of the observed
variability of gene expression levels (Fig. 5b, e). Therefore, using
deep models to guide the development of experimental
constructs, we set out to experimentally verify that a weak
promoter can be driven to higher expression levels and vice versa,
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based on substituting its terminator with another natural variant
(Fig. 6a, “Methods”). Since here the experimental design required
models with limited 500 bp regions on either side of the CDS, we
constructed a new model based on constricted input data that
contained only the most relevant parts of the regulatory regions,
as determined from the relevance profiles (Fig. 3a: 400 bp, 100 bp,
250 bp and 250 bp, respectively, Supplementary Fig. 30a). This
model achieved similar performance (R2test= 0.797, Supplemen-
tary Fig. 30b and 31) as the previous one, despite requiring
regulatory sequences that were approximately half the length.
Compared to the above computational analysis, where only one
side of the regulatory regions was perturbed (Fig. 5a), develop-
ment of experimental constructs for the fluorescence measure-
ments additionally required the substitution of all coding
sequences (codon frequencies) with a GFP variant (Methods),
which represented approximately half of the model input
response (Supplementary Fig. 31). In order to retain the
predictive power of the model despite these large perturbations,

we selected 6 promoter variants from the set of constitutive genes.
The data was subset to the 10th percentile, based on the similarity
between native and GFP coding sequences, as well as the model
predictive accuracy (Supplementary Fig. 32). These GFP-
substituted genes covered a 16-fold range of predicted expression
levels from 26 to 420 TPM (Supplementary Table 13). Similarly, a
weak and a strong terminator were selected according to the
strength of their effects on increasing or decreasing the GFP-
substituted gene expression levels compared to the native
terminators (Supplementary Table 13). Experimental measure-
ments with the resulting 18 constructs (Fig. 6a: 6 each with native
terminator, weak terminator, strong terminator, respectively,
Methods) achieved good correlation to the predicted levels
(Pearson’s r= 0.647, p-value < 1.8e-3, Fig. 6b). We observed, on
average, a corresponding 20% change in GFP fluorescence levels
with all constructs, in accordance with the predicted expression
level changes (Supplementary Table 13), with the exception of the
YBL036C promoter with the strong terminator and the HIS1
promoter with the weak terminator (Fig. 6c). We identified a
strong promoter with HIS1 that consistently (duplicate tests)
achieved a 3440% increase in GFP intensity (Supplementary
Fig. 33) and, conversely, a weak promoter with RPC40 leading to
a 61% decrease in GFP intensity (Fig. 6c). In addition, we tested
the well known weak POP6 and strong RPL3 promoters77,78,
which showed considerable divergence of properties and model
predictions between the native and GFP coding sequence
(Supplementary Table 13 and Supplementary Fig. 34). Despite
this, we were able to obtain a weak terminator variant with the
RPL3 promoter leading to strong decrease in gene expression
(Fig. 6d: 75% decrease in GFP intensity), whereas the POP6
promoter achieved a smaller 30% increase and 13% decrease,
respectively. To conclude, even in the highly perturbed state with
multiple substitutions to the gene regulatory structure, our
models enabled computational pre-screening of optimized
candidates from millions of combinations and thus demonstrated
the feasibility of model guided fine-tuning of gene expression
levels.

Discussion
In the present study we asked the question: to what extent are
gene expression levels encoded in the coding and cis-regulatory
DNA regions of the gene regulatory structure? This question
followed our observation that with all known biological variation
of gene expression, based on a collection of RNA-Seq experiments
across the majority of presently tested conditions, 79% of protein
coding genes were merely within a ±1-fold change of their
median expression levels in 2/3 of the conducted experiments
(Fig. 1a). By training deep neural networks on the sequences from
the entire gene regulatory structure (Fig. 1d), we demonstrated
that most gene expression levels in S. cerevisiae are predictable
using only DNA encoded information (Fig. 1f: R2test= 0.822).
Therefore, 4 orders of magnitude of the transcriptional repertoire
can be directly determined from the DNA sequence, irrespective
of the experimental condition. Of course, this statement does not
object to the reality that regulation of gene expression can be
highly dynamic between different conditions9,44. However, for the
majority of genes, this biological variation across conditions is
much smaller than the magnitude of expression levels between
the genes (Fig. 1a), meaning that genes which are highly
expressed in the majority of conditions will likely always (79% of
protein coding genes) be highly expressed and vice-versa. These
differences in gene expression levels are encoded in the DNA and
can be read using machine learning. Accordingly, similar results
were obtained in 6 other model organisms spanning multiple
kingdoms of life (including bacteria and eukaryotes such as fruit
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Fig. 6 Experimental analysis demonstrates the potential of using the
models to fine-tune gene expression. a Conceptual diagram of experiment
and constructs. b Correlation analysis between model predictions and
measured GFP fluorescence levels for constructs with 6 promoters in
combination with native (grey) as well as strong (red) and weak (blue)
terminators (n= 18). Black line denotes least squares fit. c Relative change
in measured GFP fluorescence levels of the constructs, where native
terminators were replaced with either strong (red bars) or weak (blue bars)
variants with n= 2 technical replicates indicated as grey points (see text
and Supplementary Table 13). On average, the GFP fluorescence levels
shifted by 20% in the directions of the predicted levels. Red and blue lines
denote median values with strong and weak promoters, respectively.
d Additional tests with the weak POP6 and strong RPL3 promoters, whose
CDS were more dissimilar to GFP. Native terminators were replaced with
either strong (red bars) or weak (blue bars) variants with n= 2 technical
replicates indicated as grey points. Source data are provided as a Source
data file.
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fly, zebrafish, mouse and human), that covered the complete
range of genetic regulatory complexity46, as measured by coding
gene density (Supplementary Table 1).

The models in the present study mapped the relations of input
DNA sequence variables to the continuous target mRNA levels,
where model performance was assessed with the coefficient of
determination R2 on the test data. This is an intuitive
measure12,31,34 signifying the proportion of the variance in the
dependent variable (mRNA levels) that can be predicted from the
independent DNA sequence variables (Fig. 1d and Supplementary
Fig. 1c)—i.e. how much could be learned from the sequence data
using our machine learning approach82,83. We emphasize that for
the actual model selection during training, the mean squared
error (MSE) was used, as this is a robust goodness-of-fit measure
that makes no assumptions about the data distributions84,85. For
each model: (i) the model was trained on the training set using
minimization of MSE criteria, (ii) Hyperparameter tuning was
performed on the validation set, (iii) a model with minimal MSE
on the validation set was chosen and (iv) for final testing eva-
luation the model with the minimal MSE criteria was accessed
again to ensure that it did not overfit the data (Supplementary
Tables 3 and 8). As an alternative statistical approach and a
measure of goodness of fit, we also performed the F-test with all
models (Supplementary Tables 3 and 8). Although not informa-
tive about a model’s predictive performance, this tested whether
the model in question fits the data significantly better than the
null model based only on the intercept (i.e. average over data) to
make predictions85. Moreover, to clearly differentiate between
reporting model performance with R2 and the strength of a linear
relation between independent variables (such as predicted
expression levels and measured GFP fluorescence in Fig. 1g), for
the latter the Pearson’s correlation coefficient r was used.

Since individual coding and non-coding parts of the gene
regulatory structure (Fig. 1d) all play a crucial role in the reg-
ulation of gene expression9, we inquired which particular regions
contained the highest amounts of information on gene expression
levels. While codon frequencies were highly informative about
mRNA levels (Fig. 2b), we observed that a similar amount of
information was encoded in the flanking regions (Fig. 2a). Indeed,
this was further supported by the result that deep neural networks
could predict the codon usage of a gene merely based on that
gene’s regulatory sequence (Fig. 2c, d). Although the effect of
codon usage on overall transcription has been widely studied and
debated86–88, their surprisingly strong effects on transcription,
also supported by our results (Fig. 2b), have only recently started
coming to light. The hypothesized mechanisms through
which codons affect transcription are: (i) effects on nucleosome
positioning38, (ii) premature termination of transcription, usually
by mimicking poly-A signals89, or (iii) mRNA toxicity90. Gen-
erally, the differences in codon usage between bacterial species
can be explained from the dinucleotide content in their
non-coding regions91 and it is widely assumed that most inter-
species variation in codon usage is attributed to mutational
mechanisms86,92. Within a genome, however, given that codon
usage can be predicted from non-coding regions (Fig. 2d), and
both coding and regulatory regions are similarly predictive of
gene expression levels (Fig. 2b), it is likely that the entire gene
regulatory structure undergoes a common selection pressure.
Multiple lines of evidence support this both in higher
eukaryotes62,63,93–97 and yeast59,98–100, as (i) approximately half
of all functional variation is found in non-coding regions62, with
cis-regulatory regions undergoing not only purifying negative97

but also positive selection63,93,94,98,101, (ii) findings indicate a
similar selective pressure on gene expression and protein
evolution95,96,99, and (iii) instances of coupled protein and reg-
ulatory evolution were observed59,60,95. Accordingly, mutation

rates in orthologs from 14 yeast species supported the notion of
coevolution between the coding and regulatory regions (Fig. 2e,
f), indicating that the gene regulatory structure is a co-evolving
unit. However, despite the ensuing information overlap among
the different regions (Fig. 2b, d: up to 58%), each region con-
tributed to mRNA level prediction (Fig. 2a, b) and the entire gene
regulatory structure was required to define over 82% of the gene
expression variability (Fig. 1f).

The multiple regulatory elements of the gene regulatory
structure individually or jointly control the different DNA pro-
cessing phases required for mRNA transcription, including
nucleosome positioning, mRNA synthesis, and mRNA matura-
tion and decay9 (Supplementary Fig. 1a). To control enzyme
interactions, DNA, therefore, contains a plethora of statistically
identifiable DNA motifs68,69. The question remains though,
which of those motifs are relevant signals for regulating mRNA
levels? For instance, based on currently identified JASPAR
motifs68, a significant enrichment of known promoter TF binding
sites was found particularly in highly expressed genes (Supple-
mentary Fig. 21). However, such an analysis does not uncover
which motifs or combinations of motifs is found to be important
by a predictive model of mRNA abundance (Fig. 1e). To resolve
this, we opened the neural network “black box” (Fig. 1e and
Supplementary Fig. 14) and determined which DNA sequences
were causing significant neural network responses (Fig. 3a).
Although thousands of DNA motifs were uncovered across all
regulatory regions (Fig. 3d, f), individual motifs could not explain
the entire dynamic range of gene expression, i.e. the same motifs
were found in both lowly and highly expressed genes (Fig. 4a,
Supplementary Fig. 23). However, by statistically analysing the
interactions between motifs, we could retrieve a much more
accurate (Fig. 4a) and comprehensive (Fig. 4b) indication of
expression levels than with single motifs, where an almost 3-fold
higher amount of co-occurrence rules surpassed a SNR of 1
(Fig. 4a) and recovered almost the whole (84%) dynamic range of
expression levels as opposed to 57% with motifs (Fig. 4b). 9,962
combinations of 2 to 6 motifs were found to co-occur more
frequently together than alone across the gene regions (Fig. 4c)
and were informative of almost the entire dynamic range of
expression (Fig. 4a, b, f). Moreover, the motif co-occurrence rules
also defined more specific ranges of codon usage than single
motifs (Supplementary Fig. 27), further supporting our results
that the entire gene regulatory structure (Fig. 1d), including both
coding and non-coding regions, is a single co-evolved interacting
unit (Fig. 2d, e, f).

Finally, we demonstrated that deep neural networks can learn
the complex regulatory grammar of gene expression directly from
an organism’s genome (Fig. 1f, h), without any prior knowledge
of genetic regulation or the need to perform laborious high-
throughput screening experiments with synthetic constructs.
Despite the fact that the machine learning model had never seen
the synthetic DNA data, it was able to successfully recapitulate
fluorescence readouts from published experimental studies44,45

and demonstrate a strong agreement between model predictions
and experimental measurements (Fig. 1g and Supplementary
Fig. 5), even on constructs containing de novo generated
sequences22 (Supplementary Fig. 5c). Furthermore, since the
trained models encapsulate the whole interacting regulatory
grammar that must be present to correctly drive expression, they
can be used to enhance experimental techniques and improve
control over gene expression in synthetic biology. We show that
the standard approach of introducing a variety of terminators (or
promoters) in combination with strong promoters (or termina-
tors) can in fact lead to large variability in each direction of
the actual measured levels of expression (Fig. 5c, f)45,77. Our
model was however ~1.6-fold more capable of predicting
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downregulation compared to upregulation (Fig. 6b), which was
likely due to the average native expression level being over 2-fold
higher from a predicted average basal expression level (Supple-
mentary Fig. 35a: 64.5 TPM). From an evolutionary perspective,
this suggests that the regulatory grammar might be specifically
adapted not only for higher expression levels but also for lower
ones below the basal expression level, whereas around the basal
level the grammar is less specific and possibly more diverse
(Supplementary Fig. 35c). This is also in agreement with the
observations that highly expressed genes are under stronger
selection pressure than average ones102 and thus altering these
highly optimized sequences likely results in downregulation. The
implications for future experiments are that (i) separate models
for different classes of expression as well as accounting for dif-
ferent conditions or tissues to decrease the experimental variation
might provide more accurate predictions, and (ii) more compu-
tational and experimental work is required to decipher the evo-
lutionary strategies of regulatory grammars and define the
properties of underlying basal and targeted-evolved regulation.
Nevertheless, using the deep learning models, researchers can
now computationally test the effects of the different combinations
of regions (Fig. 5b, e), even with specific perturbations to gene
coding sequences (Fig. 6b). This way, they can obtain candidate
variants that enable rapid development of constructs with desired
levels of gene expression (Fig. 6c, d). This has potential to greatly
decrease experimental noise, accelerate experimental throughput
and thus decrease the overall costs of microorganism and cell-line
development in biotechnology3.

Methods
Data. Genomic data, including gene sequences, as well as transcript and open
reading frame (ORF) boundaries, were obtained from Ensembl (https://www.
ensembl.org/index.html)103. The exceptions were organisms (i) S. cerevisiae S288C,
for which data were obtained from the Saccharomyces Genome Database (https://
www.yeastgenome.org/)104,105 and additional published transcript and ORF
boundaries were used with this organism106,107, and (ii) E. coli K-12 MG1655,
where all data were obtained from the RegulonDB database (http://regulondb.ccg.
unam.mx/)108 (Supplementary Table 1). For each organism, coding and regulatory
regions were extracted based on the transcript and ORF boundaries. DNA
sequences were one-hot encoded, UTR sequences were zero-padded up to the
specified lengths (Fig. 1d and Supplementary Figs. 9 and 10), codon frequencies
were normalized to probabilities, and 8 mRNA stability variables were computed
that included: lengths of 5′-UTR, ORF and 3′-UTR regions, GC content of 5′- and
3′-UTR regions, and GC content at each codon position in the ORF.

For gene expression levels, processed raw RNA sequencing Star counts were
obtained from the Digital Expression Explorer V2 database (http://dee2.io/index.
html)32 and filtered for experiments that passed quality control. Raw mRNA data
were transformed to transcripts per million (TPM) counts109 and genes with zero
mRNA output (TPM < 5) were removed (Supplementary Table 2). Prior to
modeling (Supplementary Fig. 7), the mRNA counts were Box-Cox transformed110

(see lambda parameters in Supplementary Table 4).
Modeling datasets were obtained with the above data processing and comprised

paired gene regulatory structure explanatory variables (Fig. 1d and Supplementary
Fig. 1c) and mRNA abundance response variables (Fig. 1a). No significant pairwise
correlations were found between the variables (Supplementary Fig. 4 and
Supplementary Table 5), except between mRNA counts and ORF lengths, due to
the technical normalization bias from fragment-based transcript abundance
estimation111. To obtain mRNA counts that were uncorrelated to gene length, the
residual of a linear model, based on ORF lengths as the response variable and
mRNA counts as the explanatory variable, was used as the corrected response
variable (Supplementary Fig. 4). When testing whether the introduced correction
could potentially remove biological signal associated with gene length, using data
from whole molecule RNA sequencing that does not rely on short-read
assembly112, no correlation between gene length and its expression was found
(Pearson’s r=−0.08, p-value < 1e-6; Supplementary Fig. 8).

Statistical hypothesis testing. For enrichment analysis, gene ontology slim
terms113,114 were obtained from the Saccharomyces Genome Database104,105 and
published promoter classifications were used27,65. For statistical hypothesis testing,
Scipy v1.1.0 was used with default settings. All tests were two-tailed except where
stated otherwise.

Supervised deep methods. Different neural network architectures were tested
that combined: (i) 1 to 4 convolutional neural network (CNN) layers115 (see tested
parameters in Supplementary Table 6), which included inception layers116 (ii) 1 to
2 bidirectional recurrent neural network (RNN) layers117, and (iii) 1 to 2 fully
connected (FC) layers, in a global architecture layout CNN-RNN-FC31,41,118,119.
Training the networks both (i) concurrently or (ii) consecutively, by weight transfer
on different variables (regulatory sequences to CNN and RNN, numeric variables
to FC), showed that the architecture yielding best results was a concurrently trained
CNN (3 layers)-FC (2 layers)12,40,120,121, which was used for all models. Batch
normalization122 and weight dropout123 were applied after all layers and max-
pooling124 after CNN layers (Supplementary Table 6). The Adam optimizer125

(Supplementary Table 6) with mean squared error (MSE) loss function and ReLU
activation function126 with uniform127 weight initialization were used. In total, 26
hyper-parameters were optimized using a tree-structured Parzen estimators
approach via Hyperopt v0.1.1128 at default settings for 1500 iterations129,130.

The explanatory input data and corresponding response variables were divided
into training (80%), validation (10%) and test (10%) sets. Tests with different sizes
of input regulatory sequences showed that whole regions resulted in the most
accurate models (Supplementary Fig. 10). The best models were chosen according to
the minimal MSE on the validation set with the least spread between training and
validation sets. The coefficient of determination (R2) computed on the test set is
reported in the main text and was defined as R2 ¼ 1� SSResidual=SSTotal [Eq. 1],
where SSResidual is the sum of residual squares of predictions and SSTotal is the total
sum of squares, and statistical significance was evaluated using the two-tailed F-test.

To assess model predictions by varying either promoter44 or terminator45

regions, input explanatory variables were constructed based on the specified coding
(fluorescence reporters codon frequencies) and regulatory regions (variable region
combined with specified adjacent regions). For building and training models Keras
v2.2 and Tensorflow v1.10 software packages were used and accessed using the
python interface.

Supervised shallow methods. For shallow modeling the following regression
algorithms were used: linear regression, ridge regression, lasso, elastic net, random
forest, support vector machines with nested cross-validation, and k-nearest
neighbour regression131. To include information from the regulatory DNA
sequences in the shallow models, k-mers of lengths 4–6 bp were extracted from the
regulatory DNA sequences55–58 and used as additional explanatory variables.
Nested cross validations by selecting the best models with the lowest MSE on held-
out sets were performed with these algorithms and GridSearchCV using the
Scikit–learn package v0.20.3 with default settings. The coefficient of determination
(R2) (Eq. 1) computed on the test is reported in the main text analogously as with
deep models in M3.

Analysis of evolutionary rates. Multi-sequence alignments of 3800 orthologous
protein-coding genes (each gene divided into separate promotor, 5′- and 3′-UTR,
terminator and coding regions) from fourteen fungal species were generated using
Mafft v7.407132 with the Linsi algorithm and default settings. Orthologs were
defined according to Ensembl Compara103. The resulting 19,000 alignments were
analysed with Zorro v1.0133 to identify regions of high sequence variability and
possible misalignment that could have a negative effect on the phylogenetic signal
in the overall sequence. After excluding sites with a confidence score ≤ 0.2, each
individual alignment was analysed for 1,000,000 generations in MrBayes v3.2.6134,
with the number of substitution types set to one, and a gamma distribution of
substitution rates, to obtain the estimated mean substitution rate (alpha) for each
dataset.

DNA relevance analysis. To calculate the relevance of different DNA sequences
for model predictions, defined as Relevance ¼ ðY � YOccludedÞ=Y [Eq. 2], where Y
is the model prediction, an input dataset with sliding window occlusions was used
with the deep models to obtain predictions64,135 (Supplementary Fig. 14). The
window size of the occlusions was set to either: (i) whole regions, to analyze the
relevance of region combinations and sensitivity analysis or (ii) 10 bp for motif
analysis, determined based on the analysis of relevance profiles at difference
occlusion sizes using the FastDTW v0.3.2 alignment method136 and analysis of the
distribution of DNA sequence motif sizes in the JASPAR database68 (Supple-
mentary Fig. 15). For clustering of relevance profiles, the consensus clustering
approach137 was used, as implemented in the package ConsensusClusteringPlus
v1.48.0 with the method Partition around medoids (pam) set to 50-fold sub-
sampling of 80% of data points and using the Pearson correlation distance. The
number of clusters (k) was determined at k= 4, for which the relative consensus
did not increase more than 10% (Supplementary Fig. 22).

DNA motif analysis. Extraction of relevant sequences, i.e. those that significantly
(standard deviation ≥ 2) affected gene expression prediction, yielded
169,763 sequences that spanned all the analysed genes (RSD < 1) (Supplementary
Fig. 18). To identify regulatory motifs, clustering of the relevant sequences was
performed using CD-HIT v4.8.1138,139, with recommended settings (a k-mer size of
4, 5 and 6 was used in correspondence with sequence identity cutoff 0.8, 0.85, and
0.9, respectively) and a cluster size of 5 sequences, based on the amount of
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recovered sequences and unique motifs. Multiple sequence alignment on the
clustered sequences was performed using Mafft v7.407132, with the Linsi algorithm
and default settings. Position weight motifs (PWMs) were processed using the
Biopython package v1.73140 and motif edges were trimmed below a cutoff of 0.2
bits141. Pairwise comparisons of the PWMs across the regulatory regions and
comparisons to JASPAR68 (core fungi, non-redundant) and Yeastract69 databases
was performed using Tomtom and Meme suite v4.1267,142, with recommended
settings. Motif co-occurrence was analysed using the FP-growth algorithm as
implemented in Apache Spark v2.4143, with default settings accessed through the
Python interface, where support, confidence and lift were calculated as defined in75.
The statistical significance level of co-occurring motifs was determined using the
chi-squared test76.

Experimental strain construction. The S. cerevisiae strain CEN.PK113–7D144 was
used as the base strain for all genetic engineering. Integration of the promoter-
GFP-terminator constructs was done using the CRISPr/Cas9 plasmid as well as the
gRNA Helper vectors from the EasyClone marker-free system at the XI-2 locus
(using pCFB2312+ pCFB3044)145. All transformation steps were performed
according to the published manual, with the exception that the repair fragment was
provided as three fragments: the promoter with 30 bp overlap to the genome and
30 bp overlap to the GFP gene, the GFP gene, and the terminator with 30 bp
overlap to the GFP gene and 30 bp overlap to the genome. For each fragment,
250 µg of DNA were used for the transformation. The DNA fragments for the
promoters and terminators were obtained using PCR (see Supplementary Table 14
for the list of primers). All PCR products were purified using the Thermo Scientific
GeneJET PCR Purification Kit. For the GFP gene, the UBIMΔkGFP* version from
Houser et al.146 was used (see Supplementary Table 15 for sequence), where the
DNA sequence was ordered as a gene fragment from Eurofins.

Fluorescence measurements and analysis. The yeast cells were pre-cultured
overnight in 96 deep well plates in 0.5 ml of minimal media with 2% glucose (see
Supplementary Table 16 for media composition) at 30°C and 300 rpm. The fol-
lowing day, the cultures were set up in 96 deep well plates with a starting OD600 of
0.1. After 5 h of cultivation, when the cells were in mid-exponential growth phase,
the cells were diluted with water to a final OD600 of 0.02 in a total volume of 200 µl
in 96-well round plates in technical duplicates. Using the Guava easyCyte 8HT flow
cytometry system the GFP (green fluorescence) intensity as well as cell size (for-
ward scatter) and granularity (side scatter) were measured (Supplementary Fig. 36).
The cells were gated based on the forward and side scatter intensity in order to
exclude a few very large and very small cells (Supplementary Fig. 37). For each
technical duplicate the median GFP intensity value is reported.

Software. Python v3.6 (www.python.org) and R v3.6 (www.r-project.org) were
used for computations. Code for the data analysis is available at https://github.com/
JanZrimec/DeepExpression147 and data at https://doi.org/10.5281/zenodo.3905251
(see also section on Data Availability).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genomic data, transcript and gene boundaries were obtained from Ensembl Genomes
release 41 and Ensembl release 94 (https://www.ensembl.org/), Saccharomyces Genome
Database (https://www.yeastgenome.org/) and RegulonDB v10.5 database (http://
regulondb.ccg.unam.mx/) (links to raw data in Supplementary Tables 4 and 10). RNA
sequencing data was obtained from the Digital Expression Explorer V2 database (http://
dee2.io/mx/), DNA sequence motifs from the Meme suite motifs databases file (http://
meme-suite.org/) and additional data from the cited references (links to raw data in
Supplementary Table 7). The Source Data file was deposited to the Zenodo repository
and is available at https://doi.org/10.5281/zenodo.3905251.

Code availability
Code for the data analysis was deposited to the Github repository and is available at
https://github.com/JanZrimec/DeepExpression147.
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