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Zika virus (ZIKV) is one of the recently emerging vector-borne viruses in humans and
is responsible for severe congenital abnormalities such as microcephaly in the Western
Hemisphere. Currently, only a few vaccine candidates and therapeutic drugs are being
developed for the treatment of ZIKV infections, and as of yet none are commercially
available. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been
shown to have a broad-spectrum antimicrobial and antiviral activity. In this study, we
evaluated ATA as a potential antiviral drug against ZIKV replication. The antiviral activity
of ATA against ZIKV replication in vitro showed median inhibitory concentrations (IC50)
of 13.87 ± 1.09 µM and 33.33 ± 1.13 µM in Vero and A549 cells, respectively;
without showing any cytotoxic effect in both cell lines (median cytotoxic concentration
(CC50) > 1,000 µM). Moreover, ATA protected both cell types from ZIKV-induced
cytopathic effect (CPE) and apoptosis in a time- and concentration-dependent manner.
In addition, pre-treatment of Vero cells with ATA for up to 72 h also resulted in effective
suppression of ZIKV replication with similar IC50. Importantly, the inhibitory effect of
ATA on ZIKV infection was effective against strains of the African and Asian/American
lineages, indicating that this inhibitory effect was not strain dependent. Overall, these
results demonstrate that ATA has potent inhibitory activity against ZIKV replication and
may be considered as a potential anti-ZIKV therapy for future clinical evaluation.

Keywords: Flavivirus, Zika virus, aurintricarboxylic acid, antivirals, prophylactic, therapeutic, drug treatment

INTRODUCTION

Zika virus (ZIKV) belongs to the genus Flavivirus within the Flaviviridae family. ZIKV is an
enveloped positive sense single-stranded RNA virus with a genome size of∼10.7 kb that encodes a
single polyprotein, which is post-translationally processed by cellular and viral proteases into three
structural (capsid, C; pre-membrane, prM; and envelope, E) and seven non-structural (NS1, NS2A,
NS2B, NS3, NS4A, NS4B, and NS5) proteins (Tripathi et al., 2017; Avila-Perez et al., 2018).

Zika virus was initially isolated from Uganda in 1947 and viral infections only occurred
sporadically in Africa and Asia until 2007. ZIKV appeared explosively as the first large-scale
outbreak occurred in the Yap island in 2007 and French Polynesia in 2013 (Weaver et al., 2016).
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Most recently, in 2015, the first local transmission of ZIKV was
found in territories of Latin America and the Caribbean, resulting
in up to 1.3 million of ZIKV infection suspected cases (Tang et al.,
2016; Tripathi et al., 2017).

Like other members of the Flaviviridae family, such as yellow
fever virus (YFV), Dengue virus (DENV), Japanese encephalitis
virus (JEV), and West Nile virus (WNV), ZIKV is commonly
transmitted by the bite of infected Aedes mosquitos, but it can
also be transmitted vertically from mother to child, through
sexual contact, and in rare cases from blood transfusions (Lessler
et al., 2016; Fink et al., 2018). Upon infection, ZIKV can be
shed in blood, urine, semen, saliva, amniotic fluid, breast milk,
and cerebrospinal fluid (Nayak et al., 2016; Colt et al., 2017;
Nazerai et al., 2019). Most people (75∼80%) infected with ZIKV
are asymptomatic or have mild symptoms such as fever, rash,
joint pain, and conjunctivitis that can last for several days to a
week (Fink et al., 2018). In rare cases, people with symptoms
may have neurological Guillain-Barré syndrome complications
(Oehler et al., 2014; Rivera-Concepcion et al., 2018; Nazerai et al.,
2019). In the case of pregnant women, ZIKV infection can lead to
microcephaly and other fetal complications as occurred during
the large-scale ZIKV outbreak in Brazil in 2015 (Lessler et al.,
2016). Because of the significant outbreaks in South, Central, and
North America, ZIKV was declared a Public Health concern by
the World Health Organization (WHO) in February 2016 (Lazear
and Diamond, 2016; Ramos da Silva and Gao, 2016; Weaver et al.,
2016; Tripathi et al., 2017).

There are several vaccines and antiviral drugs currently under
development for the prevention or treatment of ZIKV infection
(Abbink et al., 2016; Larocca et al., 2016; Shan et al., 2017;
Fink et al., 2018). DNA-based (Abbink et al., 2016; Larocca
et al., 2016), inactivated (Abbink et al., 2016; Larocca et al.,
2016; Shan et al., 2017), live-attenuated and mRNA (Richner
et al., 2017) vaccines have been proposed for the prophylactic
treatment of ZIKV infections. On the other hand, arbidol
(ARB) (Fink et al., 2018; Haviernik et al., 2018), bortezomib,
mycophenolic acid, daptomycin (Barrows et al., 2016), obatoclax,
saliphenylhalamide, gemcitabine (Kuivanen et al., 2017), emetine
(Yang et al., 2018), and sofosbuvir (Bullard-Feibelman et al.,
2017) have been proposed for the therapeutic treatment of ZIKV
infection. Despite these tremendous efforts, there is currently no
Food and Drug Administration (FDA)-approved vaccines and/or
anti-viral drugs available for the treatment of ZIKV infection.
Since vaccination takes at least 2 weeks to several months to
show protective effects against ZIKV infection, vaccination is
probably not the most appropriate prophylactic method for
those who are traveling to areas where ZIKV is epidemic,
endemic, or have already been infected. Moreover, vaccination
may cause an important issue, such as antibody-dependent
enhancement (ADE) (Bardina et al., 2017; Priyamvada et al.,
2017). ADE, which has been extensively described in DENV
(Priyamvada et al., 2017), is a phenomenon where preexisting
antibodies facilitate binding and infection during subsequent
exposure to infectious viruses, instead of neutralizing them,
resulting in exacerbation of clinical signs (Bardina et al., 2017;
Priyamvada et al., 2017). Because of the structural similarities
between DENV and ZIKV, DENV immunity–linked ADE of

ZIKV infection has also been reported (Bardina et al., 2017;
Priyamvada et al., 2017). Since vaccination for ZIKV could lead
to DENV ADE, antivirals could represent a better choice for the
control of ZIKV infection.

Aurintricarboxylic acid (ATA), a polyanionic aromatic
compound, has been shown to have inhibitory properties
against several bacteria and viruses including, among others,
Yersinia pestis (Liang et al., 2003), Cryptosporidium parvum
(Klein et al., 2008), human immunodeficient virus (HIV)
(Mitra et al., 1996; De Clercq, 2005), hepatitis C virus (HCV)
(Chen et al., 2009; Mukherjee et al., 2012; Shadrick et al.,
2013), Vaccinia virus (Myskiw et al., 2007), influenza virus
(Hung et al., 2009), Enterovirus 71 (Hung et al., 2010) and
severe acute respiratory syndrome coronaviruses (SARS-CoV)
(He et al., 2004). Mechanistic studies have suggested that
ATA has the ability to modulate various cellular enzymes
such as activators of the Janus kinase 2 (JAK2) and signal
transducer and activator of transcription 5 (STAT5) families
(Rui et al., 1998), inhibitors of nucleases (Shadrick et al., 2013),
glucose-6-phosphate dehydrogenase (Bina-Stein and Tritton,
1976), and topoisomerase II proteins (Catchpoole and Stewart,
1994; Benchokroun et al., 1995) as well as the enzymatic
activity of the Vaccinia virus AH1L phosphatase (Smee et al.,
2010). However, to date, the ability of ATA to inhibit ZIKV
infection has not been evaluated. Herein, we investigated
ATA as a plausible prophylactic and therapeutic candidate
against ZIKV infection. Our results demonstrate that ATA
has a potent and effective antiviral activity against ZIKV
in pre- and post-infection settings, including broadly antiviral
activity against strains of the African and American/Asian
lineages with no toxicity up to 1,000 µM in cultured cells.
These data support the feasibility of implementing ATA for the
treatment of ZIKV infection.

MATERIALS AND METHODS

Cell Lines and Viruses
African green monkey kidney epithelial Vero (ATCC CCL-81)
and human adenocarcinoma alveolar basal epithelial A549
(ATCC CCL-185) cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM; Mediatech, Inc.) supplemented with
5% fetal bovine serum (FBS) and 1% PSG (100 U/ml penicillin,
100 µg/ml streptomycin, and 2 mM L-glutamine) at 37◦C in a
5% CO2 atmosphere.

Paraiba/2015 ZIKV isolate was kindly provided by Stephen
Dewhurst (Department of Microbiology and Immunology,
University of Rochester). Uganda/1947 (MR_766 strain,
Catalog No. NR-50065) and Nigeria/1968 (IbH 30656 strain,
Catalog No. NR-50066) ZIKV isolates were obtained from
the Biodefense and Emerging Infections Research Resources
Repository (BEI Resources). Puerto Rico/2015 (PRVABC59
strain) and French Polynesia/2013 ZIKV isolates were
kindly provided from the Centers for Disease Control and
Prevention (CDC). Virus stocks were propagated in Vero
cells and titrated by plaque assay as previously described
(Marquez-Jurado et al., 2018).
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Compounds
Aurintricarboxylic acid (Catalog No. A1895) and Arbidol (ARB,
Catalog No. SLM0860) were purchased from Sigma-Aldrich,
MO, United States. Both compounds were prepared at 100 mM
stock solution dissolved in dimethyl sulfoxide (DMSO)
and kept at −20◦C until experimental use. Each drug was
diluted into infectious media (DMEM 2% FBS, 1% PSG)
for the described experiments, where the maximum DMSO
concentration was 0.1%.

Cell Viability Assay
Cell viability in Vero and A549 cells was measured using the
CellTiter 96 Non-Radioactive Cell Proliferation assay (Promega)
following the manufacturer’s instructions. Briefly, confluent Vero
or A549 cells (96-well plate format, 5× 104 cells/well, triplicates)
were treated with 100 µl of DMEM containing serially diluted
(twofold dilutions, starting concentration of 1,000 µM) chemicals
or 0.1% DMSO (vehicle control). Plates were incubated at
37◦C in a 5% CO2 atmosphere for 36 or 72 h. Samples were
treated with 15 µl of Dye Solution and incubated at 37◦C in
a 5% CO2 atmosphere for 4 h. Next, cells were treated with
100 µl of Solubilization Solution/Stop Mix and absorbance at
570 nm was measured using a Vmax kinetic microplate reader
(Molecular Devices, Waltham, MA, United States). Viability of
compound-treated cells was calculated as a percentage relative to
values obtained with DMSO-treated cells. Non-linear regression
curves and the median cytotoxic concentration (CC50) were
calculated using GraphPad Prism software version 8.0.

Microplaque Reduction Assay
and Immunostaining
Confluent monolayers (96-plate format, 5 × 104 cells/well,
triplicates) of Vero cells were infected with 25 plaque forming
units (PFU)/well of Paraiba/2015, Uganda/1947, Nigeria/1968,
Puerto Rico/2015, and French Polynesia/2013 ZIKV strains
at 37◦C in infection media. After 1 h of adsorption, virus
inoculum was removed and cells were washed three times with
infection media before adding fresh infection media containing
1% microcrystalline cellulose (Avicel, Sigma-Aldrich) and the
indicated concentration of compounds, or 0.1% DMSO as
vehicle control. In case of pre-treatment experiments, the cell
monolayers were treated with the indicated concentration of
compound, or 0.1% DMSO, for the indicated times before ZIKV
infection. Infected cells were incubated at 37◦C for 36–60 h,
depending on virus strains. For immunostaining, cells were
fixed with 4% paraformaldehyde for 1 h, washed three times
with phosphate buffered saline (PBS) and permeabilized with
0.2% Triton X-100 for 10 min at room temperature. Then,
the plates were blocked with 1.25% bovine serum albumin
(BSA) in PBS (blocking solution) for 1 h at room temperature,
followed by incubation with 1 µg/ml of the pan-flavivirus envelop
(E) protein monoclonal antibody 4G2 (ATCC, Catalog No.
VR-1852) diluted in blocking solution for 1 h at 37◦C. After
incubation with the primary antibody, cells were washed three
times with PBS and developed with the Vectastain ABC kit
and the DAB Peroxidase Substrate kit (Vector Laboratory, Inc.,

CA, United States) according to the manufacturers’ instructions.
Stained plaques were analyzed using the CTL ImmunoSpot plate
reader and counting software (Cellular Technology Limited,
Cleveland, OH, United States). Virus titers were calculated as
PFU/ml (Nogales et al., 2015). Non-linear regression curves and
the median inhibitory concentration (IC50) were determined as
described above.

Virus Growth Kinetics
Confluent monolayers (24-well plate format, 2.5× 105 cells/well,
triplicates) of Vero or A549 cells were infected (multiplicity
of infection, MOI, 0.1) with Paraiba/2015 diluted in infection
media for 1 h at room temperature. After viral absorption, cells
were incubated with infection media containing the indicated
concentrations (250, 25, 2.5, and 0 µM) of ATA. At 12, 24,
48, and 72 h post-infection (h p.i.), tissue culture supernatants
were collected and titrated on Vero cells by immunostaining as
described previously (Marquez-Jurado et al., 2018).

Apoptosis Assay
Levels of apoptosis were measured using the Caspase-Glo R© 3/7
Assay (Promega, WI, United States) following the manufacturer’s
instruction. Briefly, Vero and A549 cells (24-well plate format,
2.5 × 105 cells/well, triplicates) were infected with ZIKV
Paraiba/2015 (MOI of 0.1) and, at the indicated times
post-infection, cells and tissue culture supernatants were
collected and centrifuged. Twenty five microliters of supernatants
were mixed with 25 µl of Caspase-3/7 reagent using a
plate shaker, incubated at room temperature for 1 h, and
luminescence at 570 nm was measured using a SpectraMax iD5
(Molecular Devices, Waltham, MA, United States) following the
manufacturer’s instructions.

Statistical Analysis
Two-way ANOVA was used to evaluate significant differences.
Data are expressed as the mean ± standard deviation (SD)
of at least three independent experiments in triplicates using
Microsoft Excel software. Value were considered statistically
significant when ∗p < 0.0332, ∗∗p < 0.0021, ∗∗∗p < 0.0002,
∗∗∗∗p < 0.0001. All data were analyzed with Prism software
version 8.00 (GraphPad Software, CA, United States). CC50 and
IC50 were determined using sigmoidal dose response curves
(GraphPad Software, CA, United States). The selective index
(SI) of each compound was calculated by dividing the CC50
with the IC50.

RESULTS

Analysis of ATA Toxicity in Vero and
A549 Cells
Before examining the inhibitory effect of ATA (Figure 1) against
ZIKV infection, we first determined the CC50 of ATA on Vero
and A549 cells (Figure 2). For this, we treated both cell lines with
serial (twofold) dilutions of ATA and measured cell viability at 36
and 72 h post-treatment. As an internal control for these studies,
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FIGURE 1 | Aurintricarboxylic acid (ATA) structure. Molecular
weight = 441.329 g/mol. Compound ID in PubChem: 2259.

we used ARB, a drug that has been previously described to have
antiviral activity against ZIKV in Vero (Haviernik et al., 2018)
and A549 (Fink et al., 2018) cells. We did not observe any toxicity
with ATA in Vero (Figure 2A) or A549 (Figure 2B) cells at 36

or 72 h post-treatment, even at the highest concentration tested
(1,000 µM), while ARB showed CC50 values of 74.71 ± 1.09
or 59.37 ± 1.10 µM in Vero (Figure 2C) and 114.6 ± 1.08 or
91.0± 1.08 µM in A549 (Figure 2D) cells (Table 1) at 36 or 72 h
post-treatment, respectively.

Inhibitory Effect of ATA on
ZIKV Replication
To determine the IC50 of ATA, Vero and A549 cells were
infected with 25 PFU/well of Paraiba/2015 and after 1 h of
viral absorption, virus inoculum was replaced with infection
media with twofold serial dilutions (starting concentration of
1,000 µM) of ATA or ARB (Figure 3) and the IC50 calculated
as described in the Section “Materials and Methods.” Although
the IC50 of ATA (Figure 3A) and ARB (Figure 3C) in Vero
cells were similar (13.87 ± 1.09 µM and 18.19 ± 1.6 µM,
respectively), the selective index (SI, CC50/IC50) of ATA
(>72.10) was significantly higher than that of ARB (4.11)
(Table 1). Likewise, the IC50 of ATA (Figure 3B) and ARB
(Figure 3D) in A549 cells were similar but with clearly different
SI values (>26.26 for ATA and 2.21 for ARB) (Table 1).
Notably the CC50, IC50, and SI of ARB were similar to those
previously described in the literature in these cell lines (Fink
et al., 2018; Haviernik et al., 2018). These data suggest that
ATA exhibited an effective inhibition of ZIKV infection with
limited toxicity and SI values better than those previously
described for ARB.

FIGURE 2 | Cytotoxicity of ATA: Vero (A,C) or A549 (B,D) cells (96-well plate format, 5 × 104 cells/well, triplicates) were treated with the indicated doses (twofolds
dilutions, starting concentration 1,000 µM) of ATA (A,B) or ARB (C,D). Cell proliferation assays were performed at 36 h (triangle) and 72 h (square) post-treatment
and the CC50 for each compound was calculated at both 36 and 72 h after treatment. Dotted line indicates the 50% toxicity. Data was expressed as mean and SD
from three independent experiments conducted in triplicates.
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TABLE 1 | Inhibition of ZIKV replication with ATA.

ZIKV strain Drug Treatment Hours Cells CC50 (µM)1 IC50 (µM)2 SI3

Paraiba/2015 ATA Post 36 Vero >1,000 13.87 ± 1.09 > 72.10

Paraiba/2015 ATA Post 36 A549 >1,000 33.33 ± 1.13 > 26.26

Paraiba/2015 ARB Post 36 Vero 74.71 ± 1.09 18.19 ± 1.16 4.11

Paraiba/2015 ARB Post 36 A549 114.6 ± 1.08 51.87 ± 1.08 2.21

Uganda/1947 ATA Post 48 Vero >1,000 15.07 ± 1.19 > 66.35

Nigeria/1968 ATA Post 60 Vero >1,000 15.97 ± 1.02 > 62.62

Puerto Rico/2015 ATA Post 48 Vero >1,000 17.55 ± 1.16 > 56.98

French Polynesia/2013 ATA Post 48 Vero >1,000 13.92 ± 1.01 > 76.80

Brazil/2015 ATA Pre 12 Vero >1,000 14.33 ± 1.06 > 69.78

Brazil/2015 ATA Pre 24 Vero >1,000 13.18 ± 1.05 > 75.87

Brazil/2015 ATA Pre 48 Vero >1,000 12.59 ± 1.02 > 79.42

Brazil/2015 ATA Pre 72 Vero >1,000 10.50 ± 1.05 > 95.24

1Median cytotoxicity concentration 50 (CC50). 2Median inhibitory concentration 50 (IC50). 3SI (Selective index) = CC50/IC50. For ATA, the SI was calculated considering a
CC50 of 1,000 µM.

FIGURE 3 | Inhibition of ZIKV Paraiba/2015 infection by ATA: Vero (A,C) or A549 (B,D) cells (96-well plate format, 5 × 104 cells/well, triplicates) were infected with
25 PFU of Paraiba/2015. After 1 h of viral adsorption, the indicated concentrations (twofolds dilutions, starting concentration 1,000 µM) of ATA (A,B) or ARB (C,D)
were added to 100 µl of infection media containing 1% Avicel. At 36 h p.i., infected cells were fixed for virus titration by immunostaining assay. Dotted line indicates
50% inhibition. Data was expressed as mean and SD from three independent experiments conducted in triplicates.

We also observed that ZIKV replication was completely
inhibited at a concentration of 250 µM of ATA in Vero
(Figure 4A) and A549 (Figure 4B) cells while 2.5 µM and 25 µM
concentrations of ATA showed partial viral inhibition in Vero
and A549 cells (Figures 4A,B), respectively, demonstrating a
dose-dependent inhibition of viral replication in both cell lines.

ATA Protects Cells From ZIKV-Induced
Cell Death
We next evaluated the ability of ATA to protect cells from
the cytopathic effect (CPE) induced during ZIKV infection

(Figure 5). To that end, Vero and A549 cells were infected (MOI
0.1) with Paraiba/2015 and, after 1 h of viral absorption, cells
were treated with 0, 2.5, 25, and 250 µM of ATA. At 48 h p.i.,
cells were observed under a light microscope for evaluation of
their morphology and CPE (Figure 5A). As expected from our
previous results, 25 µM and more clearly 250 µM of ATA were
able to prevent ZIKV-induced CPE in both cell lines (Figure 5A).
To quantify the ability of ATA to prevent ZIKV-induced
apoptosis, tissue culture supernatants from ZIKV-infected Vero
and A549 cells were harvested at 24, 48, and 72 h p.i. to
measure the level of apoptotic signal as determined by caspase
3 and 7 activities (Figure 5B). ZIKV-infected cells showed
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FIGURE 4 | Aurintricarboxylic acid inhibition of ZIKV replication: Vero (A) and A549 (B) cells (24-well plate format, 2.5 × 105 cells/well, triplicates) were infected (MOI
0.1) with Paraiba/2015. Tissue culture supernatants were collected at 24, 48, and 72 h p.i., and viral titer were calculated by immunostaining (fluorescent forming
units, FFU/ml). Dotted line indicates the limit of detection (20 FFU/ml). Data was expressed as mean and standard deviations (SD) from three independent
experiments conducted in triplicates. Statistical analysis was conducted by two-way ANOVA, ∗p < 0.0332, ∗∗p < 0.0021, ∗∗∗p < 0.0002, ∗∗∗∗p < 0.0001, or no
significance (n.s.).

FIGURE 5 | Aurintricarboxylic acid protects Vero and A549 cells from ZIKV-induced cell death: Vero and A549 cells (24-well plate format, 2.5 × 105 cells/well,
triplicates) were infected (MOI 0.1) with Paraiba/2015. After 1 h viral adsorption, cells were treated with the indicated concentrations (250, 25, 2.5, and 0 µM) of ATA.
At 48 h p.i., cells were observed and imaged under an optical microscope. Scale bar = 100 µm. (A) Caspase 3/7 levels were measured in the tissue culture
supernatants at 24, 48, and 72 h p.i. (B) Data of each time point was compared to mock-infected control cells and expressed as mean of relative percentage and
SD from three independent experiments conducted in triplicates. Statistical analyses were conducted by two-way ANOVA, ∗p < 0.0332, ∗∗p < 0.0021,
∗∗∗p < 0.0002, ∗∗∗∗p < 0.0001, or no significance (n.s.).

increased caspase 3 and 7 levels up to eightfolds in Vero cells
and up to 4.2-folds in A549 cells compared to mock-infected
cells (Figure 5B). Levels of caspase 3 and 7 activation were

dose-dependently reduced by ATA with 250 µM of ATA showed
only 0.4- and 1.7-fold induction as compared to mock-infected
Vero and A549 cells, respectively (Figure 5B).

Frontiers in Microbiology | www.frontiersin.org 6 April 2019 | Volume 10 | Article 718

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00718 April 11, 2019 Time: 17:17 # 7

Park et al. Inhibition of ZIKV by ATA

ATA Inhibition of Representative African
and Asia/American ZIKV Strains
We next determined whether ATA is able to inhibit both
ancestor African (Uganda/1947 and Nigeria/1968) and
contemporary Asian/American (Puerto Rico/2015 and French
Polynesia/2013) ZIKV lineage strains using our microplaque
reduction assay (Figure 6). We observed similar IC50 values of
ATA with Uganda/1947 (Figure 6A, IC50 = 15.07 ± 1.19 µM),
Nigeria/1968 (Figure 6B, IC50 = 15.97 ± 1.02 µM), Puerto
Rico/2015 (Figure 6C, IC50 = 17.55 ± 1.16 µM), and French
Polynesia/2013 (Figure 6D, IC50 = 13.92 ± 1.01 µM),
compared to those observed with Paraiba/2015 (Figure 3
and Table 1), demonstrating the broad antiviral activity of
ATA against different ZIKV strains, regardless of the year and
place of isolation.

Pre-treatment of ATA Inhibits
ZIKV Replication
To demonstrate the feasibility of using ATA for the prevention of
ZIKV infection, important for travelers to regions where ZIKV
is endemic, we next evaluated whether pre-treatment with ATA
results in inhibition of ZIKV replication (Figure 7). To that
end, Vero cells were pre-treated with ATA for 12 (Figure 7A),
24 (Figure 7B), 48 (Figure 7C), or 72 (Figure 7D) h prior to

infection (MOI 0.1) with Paraiba/2015. Pre-treatment with ATA
for 12–72 h before ZIKV infection resulted in similar IC50 values
(14.33 ± 1.06 µM, 13.18 ± 1.05 µM, 12.59 ± 1.02 µM, and
10.50 ± 1.05 µM; respectively) demonstrating that ATA is stable
and able to prevent ZIKV infection even when administered
3 days previous to viral infection (Figure 7 and Table 1).

DISCUSSION

The recent outbreak of ZIKV accompanied with severe
pathology, including microcephaly in newborns, prompted
many researchers to develop prophylactic vaccines and to
identify therapeutic drugs against ZIKV infection (Abbink et al.,
2016; Larocca et al., 2016; Lessler et al., 2016; Shan et al.,
2017; Fink et al., 2018). Currently, there are no commercially
available vaccines and/or antiviral therapies for the treatment
of ZIKV infection. Therefore, there is an urgent medical need
for the development of effective counter measurements to
control ZIKV infection.

In this study, we demonstrated that ATA (Figure 1) has
limited toxicity (Figure 2) and an effective and dose-dependent
antiviral activity against ZIKV infection (Figures 3, 4) in both
monkey kidney epithelial Vero and human alveolar A549 cells.
Notably, ATA can prevent ZIKV-induced CPE and apoptosis in

FIGURE 6 | Aurintricarboxylic acid inhibition of African and Asian/American ZIKV strains: Vero cells (96-well plates, 5 × 104 cells/well, triplicates) were infected with
25 PFU of Uganda/1947 (A), Nigeria/1968 (B), Puerto Rico/2015 (C), and French Polynesia/2013 (D) ZIKV strains. After 1 h of viral adsorption, the indicated
concentrations (twofolds dilutions, starting concentration 1,000 µM) of ATA were added to 100 µl of infection media containing 1% of Avicel. Infected cells were
fixed for virus titration by immunostaining assay at 36–60 h p.i., depending on the ZIKV strains. Dotted line indicates 50% inhibition. Data was expressed as mean
and SD from three independent experiments conducted in triplicates.
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FIGURE 7 | Inhibition of ZIKV by pre-treatment with ATA: Vero cells (96-well plates, 5 × 104 cells/well, triplicates) were pre-treated with the indicated twofold dilution
concentrations of ATA (starting concentration 1,000 µM) for 12 (A), 24 (B), 48 (C), and 72 (D) h before infection (25 PFU) with ZIKV Paraiba/2015. At 36 h p.i.,
infected cells were fixed for virus titration by immunostaining. Dotted line indicates 50% inhibition. Data was expressed as mean and SD from three independent
experiments conducted in triplicates.

both cell lines (Figure 5) and has broad anti-viral activity against
representative ZIKV strains from the African (Uganda/1947 and
Nigeria/1968) and the Asian/American (Puerto Rico/2015 and
French Polynesia/2013) lineages (Figure 6). Moreover, ATA can
also prevent ZIKV infection even when administered 3 days
before infection (Figure 7).

Aurintricarboxylic acid is a polyanionic aromatic compound
that structurally relates to suramin (Balzarini et al., 1986) and is
believed to influence over 100 host and viral enzymes (Shadrick
et al., 2013). Although the exact mechanism by which ATA
inhibits ZIKV infection was not identified in this study, there
are several plausible mechanisms on ZIKV inhibition mediated
by ATA, including the targeting of viral and cellular proteins.
In terms of inhibiting viral proteins, ATA could bind to ZIKV
NS3 helicase and prevent its binding to either ATP or nucleic
acids, as previously described for HCV (Mukherjee et al.,
2012; Shadrick et al., 2013). Likewise, ATA could inhibit the
ZIKV RNA-dependent RNA polymerase (RdRp) NS5 protein, as
described for HCV (Chen et al., 2009; Mukherjee et al., 2012;
Shadrick et al., 2013) and enterovirus 71 (Hung et al., 2010).
Similarly, ATA could inhibit the methyltransferase activity of NS5
involved in mRNA capping processes, as previously described
for other Flaviviruses (DENV and YFV) (Milani et al., 2009;
Garcia et al., 2017). Because of the structural similarities between
DENV and ZIKV NS5 proteins, it is feasible that, similar to
DENV, ATA binds to NS5 to inhibit ZIKV infection (Garcia
et al., 2017). Moreover, it is possible that ATA targets and has

inhibitory activities against one or more of the viral proteins
described above.

In terms of targeting cellular proteins important for the
efficient replication of ZIKV, it has been previously described
that ATA has anti-apoptotic properties in a variety of cells (Chen
et al., 2002). It is possible that the anti-apoptotic activity of ATA
protects against ZIKV-induced cell death, as demonstrated in
this study (Figure 5). Notably, it has been recently shown that
ZIKV infection induced apoptosis through caspase 3 and 9 in
A549 cells and through caspase 3 in neonatal mice brain (Huang
et al., 2016; Frumence et al., 2016). These results suggest that
inhibition of ZIKV replication results in a decrease in the level
of apoptotic cells and that the anti-apoptotic effect of ATA affects
ZIKV replication. Further research is guaranteed to yield a better
understanding of the antiviral activity of ATA on ZIKV infection,
and other viruses, before the use of ATA as an antiviral drug.

During January 2015 to February 2016, a total of 116 residents
from 33 states in the United States were diagnosed with ZIKV
infection (Armstrong et al., 2016). Out of 115 patients, 110 (96%)
traveled to areas of active ZIKV transmission before the infection
and five (4%) did not travel but reported sexual contact with a
traveler who had a symptomatic illness (Armstrong et al., 2016).
For these reasons, preventive efforts are required prior to travel to
areas of active ZIKV transmission. In this study, cells pretreated
with ATA for up to 72 h prior to infection with ZIKV showed
similar IC50 than those in post-treatment settings, potentially
suggesting that ATA might target a cellular protein required for
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ZIKV replication or that the concentration and stability of ATA
in pre-treated cells is sufficient to inhibit ZIKV infection, or both.
Nevertheless, these results demonstrate the feasibility of using
ATA for the prophylactic treatment of viral infection, including
those traveling to areas where ZIKV is endemic. Moreover, due
the broad inhibition effect of ATA against others viruses and
parasites (Liang et al., 2003; He et al., 2004; De Clercq, 2005;
Myskiw et al., 2007; Klein et al., 2008; Chen et al., 2009; Hung
et al., 2009, 2010; Mukherjee et al., 2012; Shadrick et al., 2013) that
are present in ZIKV endemic areas, treatment with ATA could
be used for the broad prevention of DENV, YFV (Milani et al.,
2009; Shadrick et al., 2013; Garcia et al., 2017), HCV (Chen et al.,
2009; Mukherjee et al., 2012; Shadrick et al., 2013), and parasitic
infestation (Cryptosporidium parvum) (Klein et al., 2008) for
people traveling to these endemic regions. Moreover, the broad
spectrum antiviral activity of ATA against different African and
Asian/American ZIKV strains further guarantees the feasibility
of implementing ATA to prevent ZIKV infection to travelers
around the world.

Although ATA has been amply evaluated in vitro, only few
studies have assessed the activity of ATA in vivo, including
its use as a curative agent against thrombosis (Strony et al.,
1990), apoptosis (Roberts-Lewis et al., 1993; Heiduschka and
Thanos, 2000), parasite infestations (Klein et al., 2008), bacterial
(Y. pestis) (Liang et al., 2003), and Vaccinia virus (Smee et al.,
2010) infections. In the case of Vaccinia virus, ATA did not
protect mice from a lethal challenge at a dose of 30 mg/kg/day
(Smee et al., 2010). Further studies are needed to evaluate the
anti-viral activity of ATA in vivo for the treatment of viral
infections, including ZIKV.

Our studies show limited toxicity, if any, of ATA in cultured
cells, including human A549 cells. The lack of knowledge about

the use of ATA in pregnant women requires future additional
safety tests, including studies using validated animal models of
ZIKV infection, before using ATA for the treatment of ZIKV
infection during pregnancy. Based on the effectiveness of ATA
against ZIKV infection (SI = 72.1 in Vero cells and 26.26 in A549
cells) as compared to other previously described drugs, including
emetine (SI = 9.84 in SNB-19 cells and 2.88 in ENV+ cells)
(Yang et al., 2018), obatoclax [SI = 65 in human retinal pigment
epithelial (RPE) cells] (Kuivanen et al., 2017), saliphenylhalamide
(SI > 200 in RPE cells) (Kuivanen et al., 2017), gemcitabine
(SI > 1,000 in RPE cells) (Kuivanen et al., 2017), sofosbuvir
(SI > 52.63 in Huh-7 cells and 90.9 in Jar cells) (Bullard-
Feibelman et al., 2017) and ARB (SI = 4.11 in Vero cells and
2.21 in A549 cells) (Fink et al., 2018; Haviernik et al., 2018) and
this study (ATA, SI = 56.98–95.24 in Vero cells, and 26.26 in
A549 cells), it is possible that ATA represents one of the most
reasonable options of the treatment of ZIKV infection.
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