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Abstract

Purpose

High-density lipoproteins (HDL) have long been implicated in the pathogenesis of age-
related macular degeneration (AMD). However, conflicting results have been reported with
regard to the associations of AMD with HDL-cholesterol levels. The present study is the first
to assess HDL composition and metrics of HDL function in patients with exudative AMD
and control patients.

Methods

Blood samples were collected from 29 patients with exudative AMD and 26 age-matched
control patients. Major HDL associated apolipoproteins were determined in apoB-depleted
serum by immunoturbidimetry or ELISA, HDL-associated lipids were quantified enzymati-
cally. To get an integrated measure of HDL quantity and quality, we assessed several met-
rics of HDL function, including cholesterol efflux capacity, anti-oxidative and anti-
inflammatory activities using apoB-depleted serum from study participants.

Results

In our study, we observed that the HDL associated acute phase protein serum amyloid A
(SAA) was significantly increased in AMD patients (p<0.01), whereas all other assessed
apolipoproteins including ApoA-l, apoA-Il, apoC-Il, apoC-Ill and apoE as well as major HDL
associated lipids were not altered. HDL efflux capacity, anti-oxidative capacity and aryles-
terase activity were not different in AMD patients when compared with the control group.
The ability of apoB-depleted serum to inhibit monocyte NF-kB expression was significantly
improved in AMD patients (mean difference (MD) -5.6, p<0.01). Moreover, lipoprotein-asso-
ciated phospholipase A2 activity, a marker of vascular inflammation, was decreased in
AMD subjects (MD -24.1, p<0.01).
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Conclusions

The investigated metrics of HDL composition and HDL function were not associated with
exudative AMD in this study, despite an increased content of HDL associated SAA in AMD
patients. Unexpectedly, anti-inflammatory activity of apoB-depleted serum was even
increased in our study. Our data suggest that the investigated parameters of serum HDL
function showed no significant association with exudative AMD. However, we cannot
exclude that alterations in locally produced HDL may be part of the AMD pathogenesis.

Introduction

Cholesterol maintenance in the retina is still poorly understood but needs to be studied to
delineate the link between retinal cholesterol and age-related macular degeneration (AMD), an
important cause of blindness in the elderly population. High-density lipoproteins (HDL) have
long been implicated in the pathogenesis of age-related macular degeneration (AMD) [1].
However, conflicting results have been reported with regard to the associations of AMD with
HDL-cholesterol levels [2]. Earlier studies reported that high HDL-cholesterol levels were asso-
ciated with a reduced risk of AMD [3,4], while in more recent studies no association [2,5-9] or
even an inverse association between HDL and AMD was observed [10-12]. Likewise systemic
levels of apolipoprotein A1 (apoA-I), the major protein component in HDL, were not associ-
ated with AMD [13].

Although there have been reports of HDL-related loci associated with AMD [3-6,14,15],
some studies could not confirm these results [2,16,17]. Common genetic variants have been
found on the cholesteryl ester transfer protein (CETP) gene, which promotes the transfer of
cholesteryl-ester from HDL to very low-density and low-density lipoprotein (LDL), the hepatic
lipase gene, which is involved in the metabolism of HDL, the apolipoprotein E (apoE) gene, an
apolipoprotein of HDL, and the ATP-binding cassette transporter 1 gene, which mediates the
efflux of cholesterol and phospholipids to poorly lipidated HDL [15,18,19].

Therefore, the complexity of HDL composition may indicate that changes in the functional-
ity of HDL rather than serum HDL-cholesterol levels determine its protective activities [20].
Dysfunctional or even pro-inflammatory forms of HDL may, therefore, play a role in the path-
ogenesis of AMD [20]. In the present study, we sought to assess whether dysfunctional HDL,
characterised by a reduced ability to mobilise cholesterol and by impaired anti-oxidative and
anti-inflammatory capacities, are linked to the pathogenesis of exudative AMD.

Patients and Methods
Patient Recruitment

This study was designed as a case-control study. Blood samples were collected from 29 patients
with exudative AMD and 26 control patients after obtaining written informed consent at the
Department of Ophthalmology, Medical University of Graz. This study was approved by the
institutional review board at the Medical University of Graz and adheres to the tenets of the
Declaration of Helsinki. All patients with exudative AMD underwent funduscopic examination
and optical coherence tomography. Fluorescein/indocyanine green angiography (Heidelberg
Spectralis HRA, Heidelberg Engineering, Heidelberg, Germany) was used to confirm the diag-
nosis of exudative AMD. All 29 patients previously underwent intravitreal injections of vascu-
lar endothelial growth factor (VEGF) inhibitors as a treatment for exudative AMD. Initially all
patients received bevacizumab. Three patients were switched to aflibercept, when they showed
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inadequate response to bevacizumab treatment. As a control group we included age-matched
patients without any evidence of AMD presenting at our department for cataract surgery. All
control patients underwent funduscopic examination and optical coherence tomography. Con-
trol patients showing any signs of AMD (e.g. drusen) were not eligible for study enrolment.
Exclusion criteria in exudative AMD and control patients were any evidence of other retinal
disorders (such as uveitis, retinal vascular occlusion, diabetic maculopathy or myopic CNV).
Patients reporting a history of other chronic inflammatory disorders (such as psoriasis, rheu-
matoid arthritis, heart attack), history of diabetes type 1 and 2, intake of antihyperlipidemic
agents, regular intake of anti-inflammatory drugs, history of severe renal failure, history of
severe hepatic dysfunction and a recent infection were excluded. The patients’ medical history
was carefully reviewed. All exudative AMD and control patients were measured and weighed
and their BMI calculated. Fasting blood samples were collected by antecubital venipuncture
into two 9 mL serum tubes (VACUETTE TUBE 9 ml Z Serum Clot Activator). The samples
were centrifuged, separated and frozen at -80°C after 30 minutes. Laboratory analyses were
performed at the Institute of Experimental and Clinical pharmacology, Medical University
Graz.

ApoB-depletion of serum

ApoB-depleted serum was prepared by addition of 40 uL polyethylene glycol (20% in 200
mmol/L glycine buffer) to 100 pL serum. Samples were incubated at room temperature for 20

minutes and the supernatant recovered after centrifugation (10.000 rpm, 20 minutes, 4°C) as
described [21].

Determination of serum and HDL-lipid composition

Levels of total cholesterol, non-esterified cholesterol, triglycerides, phospholipids, fatty acids
(Diasys, Holzheim, Germany) were measured enzymatically. LDL cholesterol was calculated
according to the Friedewald equation. HDL-associated lipids were measured in apoB-depleted
serum. Cholesterol was measured with enzymatic reagents from WAKO (Neuss, Germany) on
a WAKO R30 or Olympus AU640 analyzer.

Apolipoprotein determination by immunoturbidimetry

ApoA-I, apoA-II, apoB, apoC-II, apoC-III and apoE were determined in apoB-depleted serum
by immunoturbidimetry with reagents from Greiner (Flacht, Germany). Analyses were per-
formed on an Olympus AU640 analyzer (Olypmpus Diagnostika, Hamburg, Germany). Serum
amyloid A (SAA) was quantified by ELISA (Human SAA, BioSource Europe S.A., Belgium).

Cholesterol efflux capability of HDL

RAW264.7 macrophages, maintained in DMEM with 10% fetal bovine serum were plated on
48-well plates (300.000 cells/well). Cells were labeled for 24 hours with 1 pCi/ml [H]-choles-
terol (Perkin Elmer, Boston, MA, USA). To upregulate ATP-binding cassette transporter Al,
cells were stimulated for 6 hours with serum-free DMEM containing 0.3 mmol/L 8-(4-chloro-
phenylthio)-cyclic AMP (Sigma, Darmstadt, Germany). After labeling, cells were washed and
[*H]-cholesterol efflux was determined by incubating cells for 4 hours with 2.8% apoB-depleted
serum. Cholesterol efflux was expressed as the radioactivity in the medium relative to total
radioactivity in medium and cells. All steps were performed in the presence of 2 ug/ml of the
acyl coenzyme A cholesterol acyltransferase inhibitor Sandoz 58-035 (Sigma, Darmstadt,
Germany).
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Dihydrorhodamine (DHR) oxidation

ApoB-depleted serum (1 uL) was placed in a 384-well, 15l of 50 umol/L DHR reagent contain-
ing 1 mmol/L 2,2'-azobis-2-methyl-propanimidamide-dihydrochloride was added. The
increase in fluorescence (538nm) per minute was determined for samples containing only
DHR and for samples containing DHR and individual HDL samples.

Arylesterase activity

Ca”"-dependent paraoxonase activity was determined with a photometric assay using phenyla-
cetate as substrates. ApoB-depleted serum was added to 200 pL buffer containing 100 mmol/L
Tris, 2 mmol/L CaCl, (pH 8.0) and 1 mmol/L phenylacetate. The rate of hydrolysis of phenyla-
cetate was monitored by the increase of absorbance at 270 nm and readings were taken every
15 seconds at room temperature to generate a kinetic plot. The slope from the kinetic chart was
used to determine AADb,y¢,, / min. Enzymatic activity was calculated with the Beer-Lambert

Law from the molar extinction coefficient of 1310 L*mol *cm™.

Ability of serum HDL to inhibit monocyte NF-kB expression

U937 monocytic cells containing a 5x NF-kB- green fluorescence protein reporter cassette
were cultivated in RPMI 1640 containing 7.5% fetal bovine serum in 1.1 mL micro tubes (Bio-
quote, York, UK) (50.000 cells/tube). The cells were pretreated for 1 % hours with 2.5% full
serum, 5% apoB-depleted serum, 10% LPDS or rHDL (50 pg/ml). Subsequently, the cells were
stimulated for 24 hours with lipopolysaccharide (LPS) (50 ng/ml) (Sigma, Darmstadt, Ger-
many), collected by centrifugation at 400 x g for 7 minutes and fixed with 100 pL BD CellFIX
solution (BD Biosciences, Franklin Lakes, NJ, USA). The expression of NF-kB was assessed by
flow cytometry. The supernatants were collected and used for cytokine quantification by flow
cytometry using a multiplex bead-based immunoassay (eBioscience, San Diego, CA, USA).

Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity

Lp-PLA2 activity in apoB-depleted serum was measured with a commercially available photo-
metric assay (Cayman Europe, Talinn, Estonia) using 2-thio PAF as substrate as described
[22].

Statistics

Our study sample size (n =29 vs n = 26) was designed to provide > 90% power to detect a 10%
difference in cholesterol efflux capability of HDL based on our hypothesis that we would
observe differences similar to those described in our previous study.[22] All statistical analyses
were performed using STATA 13 (StataCorp LP, USA). Our specific aims were HDL efflux
capacity, DHR oxidation, NF-xB, AAE-acitivity and Lp-PLA, activity. We compared the
means between the groups using Mann Whitney U and Wilcoxon signed rank test as required.
P-values of 0.05 were considered to be significant throughout the manuscript.

Results
Demographic Results

Demographics of AMD patients and controls are shown in Table 1. The mean age of the study
group was 76 years. There were more females than males participating in this study. The
median values of the laboratory parameters were all in the normal range, except for total cho-
lesterol, and not significantly different between the AMD patients and controls. 12 AMD
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Table 1. Clinical characteristics of study subjects. Values are reported as median (+SD).

Age (years)
Female (Male)
BMI

Creatinine (mg/dl)
GFR (ml/min)
GGT (UN)

AST (U/l)

ALT (UA)

HbA1c (mmol/mol)
CRP (mg/l)
Cholesterol (mg/dl)
LDL (mg/dl)

Triglycerides (mg/dl)

C3 (g/l)
c4 (gl

Values are reported as median (+SD).

doi:10.1371/journal.pone.0154397.t001

AMD patients (n = 29) Controls (n = 26) p-value Normal range
75.6 (£5.8) 77.9 (£5.8) 0.14 n/a

16 (10) 0.08 n/a
26.6 (+4.3) 26.5 (+2.6) 0.88 n/a
0.88 (£0.17) 0.88 (£0.19) 0.98 <1
69.2 (+14.3) 70.7 (£14.4) 0.69 80-140
30.3 (£16.8) 24.5 (£13.1) 0.17 <38
23.7 (+4.4) 23.9 (+6.7) 0.84 <30
20.2 (¢6.2) 17.2 (£6.9) 0.1 <30
38.2 (£3.5) 37.4 (£3.3) 0.38 20-40
4.5 (+3.2) 2.4 (x1.4) 0.06 <5
211 (£34) 204 (+35) 0.55 <200
124 (£31) 119 (+43) 0.6 <160
110 (£51) 107 (+44) 0.83 <150
1.14 (x0.14) 1.13 (x0.18) 0.83 0.9-1.8
0.27 (+0.06) 0.24 (+0.06) 0.08 0.1-04

patients were under current antioxidant micronutrients supplementation. The average HDL-
cholesterol levels were comparable between exudative AMD patients and controls (50.7 mg/dl
vs 52 mg/dl, respectively; mean difference (MD) 1.3, 95% CI -9.6 to 10.9, p = 0.78). After
adjusting for age, gender, BMI, CRP level, kidney and liver parameters, and HbAIc, these dif-
ferences remained statistically not significant (p = 0.6) (Table 2).

HDL-composition

It is now well accepted that different disease states markedly alter HDL composition and func-
tion [23]. We assessed major HDL associated lipids and apolipoproteins in apoB-depleted sera
of study participants, including apolipoprotein (apo)A-I, apoA-II, apoC-II, apoC-III, apoE and
the acute phase protein serum amyloid A(SAA) (Fig 1, Fig 2). As expected, the most abundant
proteins on HDL particles from healthy controls and AMD patients were apoA-I and apoA-II
(Fig 1). Low-density lipoprotein associated apoB could not be detected, indicating efficient

Table 2. HDL serum levels, efflux capacity and HDL associated enzyme activities.

HDL-cholesterol (mg/dl)
HDL efflux capacity (%)

DHR (%)

AE activity (mM/min/ml)
Inhibition of NF-kB (%)
Lp-PLA, activity (mM/min/ml)

ApoA-| (mg/dl)
SAA (mg/dl)

Values are reported as mean (+SD).

AMD patients Controls p-value adjusted p-value®
50.7 (x2.9) 52 (+3.4) 0.78 0.6

14.1 (¥2.4) 13.8 (+1.7) 0.58 0.51

41.2 (£6.4) 42.9 (+5.6) 0.08 0.39

243 (+60) 215 (£63) 0.84 0.5

32.8 (+5.1) 27.2 (+8.6) <0.05 <0.05

169 (+25) 199 (+28) <0.01 <0.01

133 (£5.2) 131 (24.8) 0.74 0.85

8.5 (£1.5) 3.2 (+0.46) <0.01 <0.01

@Adjusted for age, gender, BMI, CRP level, kidney and liver parameters and HbA1c.

doi:10.1371/journal.pone.0154397.t1002
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Fig 1. HDL-apolipoproteins and HDL associated lipids. Levels of total cholesterol (A), non-esterified
cholesterol (FC) (B), phospholipids (PL) (C), free fatty acids (FFA) (D), triglycerides (TG) (E) were measured
enzymatically in apoB depleted serum. HDL associated apolipoproteins ApoA-I (F), apoA-Il (G), apoC-II (H),
apoC-lll (I) and apoE (J) were determined in apoB-depleted serum by immunoturbidimetry.

doi:10.1371/journal.pone.0154397.g001

apoB-depletion. After statistical analysis, we identified that the content of HDL associated SAA
was significantly increased (Fig 2, p<0.01). After adjusting for age, gender, BMI, CRP level,
kidney and liver parameters, and HbAlc, these difference remained statistically significant
(p<0.01) (Table 2). All other assessed HDL-apolipoproteins and HDL-associated lipids were
not altered in AMD patients (Fig 1).
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Fig 2. Serum amyloid a levels are increased in AMD patients. Serum amyloid A (SAA) levels in
apolipoprotein B (apoB)-depleted sera was quantified by ELISA. Values shown represent means of four
independent experiments.

doi:10.1371/journal.pone.0154397.g002
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Fig 3. Cholesterol efflux capacity. Apolipoprotein B (apoB)-depleted sera of healthy subjects (control,

n = 27) and patients with age-related macular degeneration (AMD, n = 29) were examined for (A) their ability
to promote [°H]-cholesterol efflux from macrophages. [*H]-cholesterol-labeled RAW264.7 macrophages were
incubated with 2.8% apoB-depleted sera for 4 hours. Cholesterol efflux is expressed as radioactivity in the
supernatant relative to total radioactivity (in supernatant and cells). Values shown represent means of two
independent experiments.

doi:10.1371/journal.pone.0154397.g003

Cholesterol efflux capacity

Cholesterol efflux capacity of apoB-depleted serum is an integrated measure of HDL quantity
and quality [21]. Interestingly, despite alterations in HDL associated SAA (Fig 3), cholesterol
efflux capacity of apoB-depleted sera of exudative AMD patients was not altered when com-
pared to controls (MD 0.32, 95% CI -0.8 to 1.5, p = 0.58) (Fig 1). These results prevailed even
after adjusting for age, gender, BMI, CRP level, kidney and liver parameters and HbAlc

(p =0.51). Serum efflux capacity was inversely associated with CRP levels (p<0.01) and HDL-
associated SAA (p<0.01), in line with previous studies showing that inflammation alters HDL
efflux capacity.[24] Higher HDL contents of apoA-I, apoA-II, cholesterol and phospholipids
were strongly associated with an increase in efflux capacity (p<0.01).

Metrics of anti-oxidative activities

Anti-oxidative activity of apoB-depleted serum of AMD patients was not significantly different
when compared to controls (Fig 4). The average DHR-oxidation rate was 41.2% in AMD
patients and 42.9% in the control group (MD -2.7, 95% CI -6.0 to 0.5, p = 0.08). After adjust-
ment for age, gender, BMI, CRP level, kidney and liver parameters and HbAlc, the difference
between the groups remained insignificant (p = 0.39). In line with our previous results [25],
age was significantly inversely associated with anti-oxidative activity (p<0.01).

The average arylesterase activity of PON1 was 242.6 mM/min/ml in AMD patients com-
pared to 215.4 mM/min/ml among controls (MD 3.3, 95% CI -29.9 to 36.7, p = 0.84) (Fig 5).
These results prevailed after adjusting for age, gender, BMI, CRP level, kidney and liver param-
eters and HbAlc (p = 0.5). Higher HDL contents of apoA-I, apoC-II1, and triglycerides were
associated with an increase in arylesterase activity (p<0.05).
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Fig 4. Anti-oxidative capability. The anti-oxidative activity of HDL was determined by inhibition of AAPH-
initiated oxidation of the fluorescent dye dihydrorhodamine (DHR). Incubation of DHR in presence of apoB-
depleted sera from healthy subjects or AMD patients led to a reduction in the oxidation of DHR. Values shown
represent means of two independent experiments.

doi:10.1371/journal.pone.0154397.g004

Metrics of anti-inflammatory activities

We assessed the capacity of apoB-depleted sera to inhibit LPS induced activation of the pro-
inflammatory transcription factor NF-«xB in monocytes. Addition of reconstituted HDL (con-
taining human apoA-I and phosphatidylcholine as sole constituents) effectively and dose-
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Fig 5. Paraoxonase activity. Activity of HDL-associated paraoxonase was measured using phenylacetate
as substrate. Paraoxonase activity of apoB-depleted sera was calculated from the slopes of the kinetic chart.
Values shown represent means of four independent experiments.

doi:10.1371/journal.pone.0154397.g005
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Fig 6. Anti-inflammatory capacity. (A) U937 monocytes containing a reporter cassette for factor-kB (NF-
kB) were pretreated in the absence and presence of 10% lipoprotein deficient sera (LPDS) in the presence of
indicated concentrations of reconstituted HDL (rHDL). After 1 %2 hours, cells were stimulated with LPS (50 ng/
ml) for 24 hours, followed by assessment of GFP expression by flow cytometry. (B) ApoB-depleted sera of
healthy subjects and AMD patients were analyzed for their ability to inhibit lipopolysaccharide LPS-induced
NF-kB activation in monocytes. U937 monocytes were pretreated with 7% apoB- depleted sera. After 1 /2
hours, cells were stimulated with LPS (50 ng/ml) for 24 hours, followed by assessment of GFP expression by
means of flow cytometry. Values shown represent means of two independent experiments.

doi:10.1371/journal.pone.0154397.g006

dependently inhibited LPS induced NF-«B activation (Fig 6A) whereas lipoprotein deficient
serum (LPDS) showed no inhibitory activity. These data clearly suggest that HDL is required
to suppress LPS-induced activation of NF-xB in monocytes. The ability of HDL to inhibit NF-
kB expression was higher in AMD patients (MD -5.6, 95% CI -9.5 to -1.8, p<0.05) (Fig 6B),
even after adjusting for age, gender, BMI, CRP level, kidney and liver parameters, and HbAlc
(p<0.05). NF-«B inhibitory activity was associated with HDL-cholesterol levels (p = 0.04) and
tended to be associated with HDL efflux capacity (p = 0.08).

The average Lp-PLA, activity was lower in AMD patients (169.4 mM/min/ml) when com-
pared to controls (198.9 mM/min/ml) (Fig 7). This difference was significant (MD -24.1, 95%
CI -38.3 t0 -9.8, p<0.01), even after adjustment for age, gender, BMI, CRP level, kidney and
liver parameters, and HbAlc (p<0.01). Lp-PLA, activity inversely correlated with the ability to
inhibit monocyte NF-xB expression (p<0.01).

Supplemental antioxidant micronutrients

The median NF-xB inhibitory activity was higher in patients currently taking supplemental
antioxidant micronutrients, although this was not significant (MD 3.6, 95% CI -1.6 to 8.7,

p = 0.17). Current intake of supplemental antioxidant micronutrients was associated with a
lower Lp-PLA, activity (MD -25.3, 95% CI -7.9 to -42.7, p<0.01). Age, gender, BMI, CRP lev-
els, kidney and liver parameters, HbAlc, HDL serum levels, HDL efflux capacity, DHR, AE
activity and apoA-I levels were not associated with supplemental antioxidant micronutrients
intake.

Discussion

In the present study, we sought to assess whether dysfunctional HDL, characterized by a
reduced ability to mobilize cholesterol and by impaired anti-oxidative and anti-inflammatory
capacities, are linked to the pathogenesis of exudative AMD. To get an integrated measure of
HDL quantity and quality, we assessed several metrics of HDL function, including cholesterol
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Fig 7. Lipoprotein associated phospholipase A2 (Lp-PLA2) activity. Lipoprotein associated
phospholipase A2 (Lp-PLA2) activity of apoB-depleted sera was measured using 2-thio PAF as substrate.
Lp-PLA2 activity of apoB-depleted sera was calculated from the slopes of the kinetic chart. Values shown
represent means of two independent experiments.

doi:10.1371/journal.pone.0154397.g007

efflux capacity, anti-oxidative and anti-inflammatory activities using apoB-depleted serum
from study participants. We assessed major HDL associated lipids and apolipoproteins, includ-
ing apoA-I, apoA-II, apoC-II, apoC-III, apoE and the major acute phase protein SAA.

We observed that the content of HDL associated SAA was significantly increased in AMD
patients, whereas the content of all other assessed apolipoproteins and lipids were not altered.
During an inflammatory response, SAA can displace apoA-I from the HDL surface and in
extreme circumstances SAA can account for up to 80% of the HDL proteins [26,27]. The con-
tribution of HDL-bound SAA to HDL dysfunctionality is a matter of debate. Previous studies
indicated that the ability of HDL to remove cholesterol from human macrophages is only sig-
nificantly attenuated, when SAA constitutes at least 50% of total protein in HDL [28], a situa-
tion that is not achieved in patients with exudative AMD, at least in our study. However, we
observed a negative correlation of SAA levels and cholesterol efflux capacity (p<0.01), suggest-
ing that SAA affects cholesterol efflux capacity at least to some extent. SAA was not associated
with anti-oxidative or anti-inflammatory activities of apoB-depleted sera.

Although reverse cholesterol transport from macrophages represents only a small fraction
of overall cholesterol efflux, it is probably the most relevant factor in atheroprotection [22,29].
The results of our study do not provide evidence of impaired serum cholesterol efflux capacity
in exudative AMD patients.

Besides the central role in lipid metabolism, HDL exhibits unique anti-oxidative activity.
We assessed the anti-oxidative activity of HDL by measuring increasing fluorescence due to
DHR oxidation over time [22]. We found no difference in DHR oxidation between exudative
AMD patients and the control group.

As a second marker for anti-oxidative activity of HDL, arylesterase activity of apoB depleted
sera, as a marker of HDL associated PON-1 activity, was assessed. In our study, we did not
observe that patients with exudative AMD show decreased arylesterase activity of apoB
depleted sera. Polymorphisms in the PON-1 gene are associated with AMD [30-32].
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HDL is a potent endogenous inhibitor of inflammatory responses [33]. We assessed the
capacity of our patients’ sera to inhibit lipopolysaccharide (LPS)-induced activation of the pro-
inflammatory transcription factor NF-«xB in monocytes. In the absence of added reconstituted
HDL, lipoprotein deficient serum shows no inhibitory activity. Addition of reconstituted HDL
to lipoprotein deficient serum effectively and dose-dependently inhibits LPS induced NF-«B
activation (Fig 5A). ApoB-depleted sera of exudative AMD patients had an increased ability to
supress LPS induced NF-kB expression in monocytes when compared to the control group.

We assessed the lipoprotein associated phospholipase A2 (Lp-PLA,), a proatherogenic
enzyme, as a second marker for HDL-associated anti-inflammatory activity [34]. HDL associ-
ated Lp-PLA, activity was significantly lower in exudative AMD patients when compared to
control patients.

In our study, patients with AMD showed a significantly greater HDL-associated anti-
inflammatory activity when compared with control subjects. These unexpected findings might
be explained by the use of antioxidant micronutrient supplementation (containing lutein/zea-
xanthin) in exudative AMD patients. Indeed, current intake of supplemental antioxidant
micronutrients was associated with a lower Lp-PLA, activity (p<0.01) and the median NF-«xB
inhibitory activity was higher in patients currently taking supplemental antioxidant micronu-
trients, although this was not significant. Age, gender, BMI, CRP levels, kidney and liver
parameters, HbAlc, HDL serum levels, HDL efflux capacity, DHR, AE activity and ApoA1l
were not associated with supplemental antioxidant micronutrients intake.

The repeated use of vascular endothelial growth factor (VEGF) inhibitors [35] might addi-
tionally contribute to the greater HDL associated anti-inflammatory activity in exudative AMD
patients. Future prospective studies are warranted to elucidate whether supplemental anti-oxi-
dants are able to improve HDL composition and functionality.

We acknowledge limitations to this study. Due to the laborious analyses we kept the patient
number rather small. Our study (n = 29 vs n = 26) provided > 90% power to detect a 10% dif-
ference in cholesterol efflux capability of HDL based on our hypothesis that we would observe
differences similar to those described in previous studies [22]. Much larger studies are war-
ranted to confirm our findings. Although we assessed multiple metrics of HDL function, it is
possible that other activities mediated by HDL, like endothelial protective activities, are affected
in AMD patients.

Further we did not take genetic polymorphism into account. Genome-wide association
studies have identified 21 common genetic variants for age-related macular degeneration,
some of which are implicated in HDL function. As we did not perform genetic analysis, certain
common and rare genetic variants may influence HDL function and contribute to the develop-
ment of AMD [15]. In a recent study [14] CETP and apoE genotype influenced HDL choles-
terol and apoA-I levels and both were significantly associated with AMD. Therefore future
studies are warranted to determine whether genetic polymorphisms affect metrics of HDL
functionality.

The retina maintains cholesterol homeostasis by balancing cholesterol input and output.
The relative contribution of these pathways to the retinal cholesterol pool is unknown. We can-
not exclude that proteins involved in lipoprotein metabolism as well as HDL like particles that
are expressed locally within the eye are affected in AMD patients. This might be of particular
relevance, given that intra-ocular gene expression suggests production of apoB-containing
lipoproteins by the retinal pigment epithelium [13,36,37]. Moreover, we only included patients
with exudative AMD. Jonasson et al [20] showed in a study that plasma HDL-cholesterol was
associated with incident early AMD and progression to geographic atrophy, but not with exu-
dative AMD.
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To our knowledge, this is the first study that assessed parameters of HDL composition and
function in AMD patients. The investigated parameters of HDL function were not associated
with exudative AMD, despite an increased content of HDL associated SAA in AMD patients.
Unexpectedly, anti-inflammatory activity of apoB-depleted serum was even increased in our
study. It appears that this is a result of the treatment of patients with micronutrient supplemen-
tation rather than disease mediated. In conclusion, the investigated parameters of serum HDL
function showed no significant association with exudative AMD. [15]
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