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1 | INTRODUCTION

| Danning Feng | Tianxi Wang | Yuqing Ren | YingliLiu |

Abstract

The strategy of reducing carbohydrate digestibility by controlling the activity of two
hydrolyzing enzymes (x-amylase and a-glucosidase) to control postprandial hyper-
glycemia is considered as a viable prophylactic treatment of type 2 diabetes mel-
litus (T2DM). Thus, the consumption of foods rich in hydrolyzing enzyme inhibitors
is recommended for diet therapy of diabetes. Whole cereal products have gained
increasing interests for plasma glucose-reducing effects. However, the mechanisms
for whole cereal benefits in relation to T2DM are not yet fully understood, but most
likely involve bioactive components. Cereal-derived phenolic compounds, peptides,
nonstarch polysaccharides, and lipids have been shown to inhibit a-amylase and
a-glucosidase activities. These hydrolyzing enzyme inhibitors seem to make whole
cereals become nutritional strategies in managing postmeal glucose for T2DM. This
review presents an updated overview on the effects provided by cereal-derived in-
gredients on carbohydrate digestibility. It suggests that there is some evidence for
whole cereal intake to be beneficial in amelioration of T2DM through inhibiting

a-glucosidase and a-amylase activities.
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et al., 2010). Inhibitors of a-amylase and a-glucosidase, which slow

the final stages of carbohydrate digestion and consequently pre-

Type 2 diabetes mellitus (T2DM) is commonly featured by postmeal
or postprandial hyperglycemia. Nutritional strategies that designed
to improve postprandial glycemia by reducing the glucose intake
from the digestible carbohydrates were advised to the early-stage
diabetes patients before they were administered on pharmacologic
treatment (Ch'ng et al., 2019). a-Amylase (1,4-a-D-glucan-glucano-
hydrolase, EC 3.2. 1.1) and a-glucosidase (EC 3.2.1.20) are the two
key enzymes involved in the carbohydrate digestion process (Dona

venting the entry of glucose into the circulation, are considered as a
viable prophylactic treatment of hyperglycemia. However, synthetic
and chemical a-amylase and a-glucosidase inhibitors have certain
adverse effects such as causing gastrointestinal symptoms such
as bloating, diarrhea, and abdominal pain (Chiasson et al., 2002).
Natural glucosidase inhibitors from plants have become more im-
portant for the treatment of diabetes because of their less side ef-
fects and effectiveness.
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Whole cereals are generally recommended for diabetic patients to
control their blood glucose level. There have been many clinical and
animal studies focused on the use of cereals and its components for
the prevention of diabetes, especially based on glycemic Index val-
ues and hypoglycemic effects (Berglund et al., 1982; Brand-Miller
et al., 2003; Hallfrisch et al., 2003; Lundin et al., 2004). Although these
beneficial effects are thought to be associated with dietary fiber in-
take, the actual underlying mechanism remains unclear. Besides di-
etary fiber, cereals are abundant in nutrients and bioactive ingredients
for prevention and treatment of diabetes, such as polyphenol, antho-
cyanins, triterpenoids, saponins, polysaccharides, and peptides. It has
been found that polysaccharides (Kim et al., 2015), phenols (Mcdougall
& Stewart, 2005; Nyambe-Silavwe et al., 2015; Tan & Chang, 2017),
and proteins (Svensson et al., 2004) present in plants have an inhibi-
tory effect on carbohydrate digestion enzymes. This paper presents a
modern perspective on the inhibition of digestive enzymes by cereal
constituent to encourage the design and development of whole cereal

products for preventing T2DM.

2 | a-AMYLASE AND a-GLUCOSIDASE
INHIBITORS

Carbohydrate digestibility has been reported to relate to elevated
postprandial blood glucose. One of the strategies to reduce postpran-
dial hyperglycemia is to limit the activity of carbohydrate digestive en-
zymes in intestinal tract. a-Amylase is the key enzyme that degrades
the polymeric substrate into shorter oligomers by catalyzing the hy-
drolysis of a-1,4-glucan linkages present in starch, maltodextrins, and
other related carbohydrates (Truscheit et al., 2010). a-Glucosidase
has been found on the brush border of human intestinal mucosal cells
(including maltase, a-dextrinase, and sucrase). This enzyme partici-
pates in the body's carbohydrate metabolism and cuts glucose from
the nonreducing end of the polysaccharide by hydrolyzing the a-1,4-
glycosidic bond. The dietary starch and other related carbohydrates
are digested by a-amylase to large number of maltose, which is further
digested by a-glucosidase to glucose to be absorbed in human intes-
tine (Vocadlo & Davies, 2008). Therefore, strict control of postprandial
blood glucose by inhibiting a-glucosidase and «-amylase is significant
for the development of diabetes and the prevention and treatment
of diabetic patients (Elbein, 1991; Tundis et al., 2010). a-Amylase in-
hibitors (Als) can act as carbohydrate blockers, limiting the digestibil-
ity and absorption of carbohydrate in the gastrointestinal diet (Horii
et al., 1986). Clinically, Als can be used to prevent diseases such as
diabetes, hyperglycemia, hyperlipemia, and obesity. Moreover, in most
cases, the inhibitory mechanism of protein to a-amylase occurs by di-
rectly blocking the active centers of several subsites of the enzyme
(Francoise, 2004). To determine the inhibition of a-amylase, the most
widely used method is the dinitrosalicylic acid (DNSA) assay, which is
not selective for the reduction in oligosaccharide ends formed dur-
ing hydrolysis (Bernfeld, 1955). The a-glucosidase inhibitor (Gl) inhib-
its a-glucosidase activity by reversibly occupying o-glucosidase and

sugar-binding sites, thereby reducing polysaccharide degradation,
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delaying intestinal absorption of carbohydrates, and achieving hypo-
glycemic effects. The most prominent feature of Gls is the inhibition
of a-glucosidase on the rate of intestinal carbohydrate decomposition
(Larr, 2008; Seifarth et al., 1998), and it does not stimulate insulin se-
cretion to lower blood sugar, thus not increasing the islet $-cell bur-
den. For a-glucosidase, synthetic chromogenic molecular probes such
as p-nitrophenyl-glucoside (pNPG) are widely used assays because of
the ease of measurement. Natural Gls include iminosugars, thiosugars,
flavonoids, alkaloids, and terpenes (Ghani, 2015).

3 | WHOLE CEREAL PRODUCTS WITH
LOWERING EFFECTS ON PLASMA GLUCOSE

The results of an umbrella review of meta-analyses suggest that
daily whole cereal intakes of 2 or 3 servings (30-45 g/day) can signif-
icantly reduce the incidence of developing T2DM and 1.5 servings of
whole cereal per day significantly reduced both serum glucose and
insulin concentrations (Mcrae, 2017). A meta-analysis of randomized
controlled trials including 17 studies and 212 subjects reported that
the consumption of barley and barley products lowered postprandial
glycemic response (Abumweis et al., 2016).

A series of experiments demonstrated that postprandial glucose
response was improved when whole cereal products were con-
sumed versus when refined cereals were consumed. For example,
the consumption of breakfast meals with whole rye or whole wheat
in healthy volunteers had lower early glucose responses (0-60 min)
and incremental glucose peaks in comparison with white wheat
bread. The whole rye and wheat products displayed a lower rate
of starch hydrolysis (Rosén & Bjorck, 2011). Shukla and Srivastava
(2014) reported that the glycemic index of refined wheat noodles in-
corporated with 30% finger millet was significantly lower (45.1) than
refined wheat noodles (62.6) in ten normal female subjects aged
24-26 years. Several other studies also indicated the lowering ef-
fects of whole cereals and whole cereal products on plasma glucose
(Berglund et al., 1982; Brand-Miller et al., 2003; Lundin et al., 2004).

4 | CEREAL ORIGINATED INHIBITORS
AND INHIBITOR MECHANISMS

Cereals are rich in polysaccharides, protein, and phenolic com-
pounds, and are valuable resources for inhibitors of amylase and
glucosidase (Figure 1). Als have been found in cereals such as wheat,
barley, sorghum, rye, and rice (Elbein, 1991; Mishra et al., 2017,
Pradeep & Sreerama, 2015; Premakumara et al., 2013). The wheat
Al isolated by Maeda et al. (1985) is the most studied inhibitors in ce-
reals. It has been reported that taking a wheat amylase inhibitor for
9 weeks after meals can reduce postprandial amylase levels, delay
carbohydrate digestion and absorption, and lower blood glucose lev-
els without altering pancreas growth (Bernfeld, 1955). In this part,
the recent advances made in discovery of starch hydrolase inhibitors

from cereals are summarized.
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Mechanisms under the whole cereals on prevention of hyperglycemia

4.1 | Phenolic compounds

Starch hydrolase inhibitors from cereals have been reported for phe-
nolic acids, tannins, anthocyanins, and flavonoids (Table 1). Most of
the reported studies used crude phenolic extracts, including soluble
and bound forms. The phenolic compounds from corn, rice, barley,
sorghum, millet, and quinoa (Pradeep & Sreerama, 2015; Rosén &
Bjorck, 2011; Shukla & Srivastava, 2014) were reported to be potent
inhibitors of a-amylase and a-glucosidase. The soluble and bound
phenolic extracts of whole cereals and their milled fraction inhibited
the activities of a-amylase and a-glucosidase in a dose-dependent
manner (Qin et al., 2013). The enzyme inhibitory activities of ce-
real phenolic extracts depend on the cereal types and processing
methods. For example, the phenolic extracts of little millet culti-
vars had superior inhibition of both a-amylase and a-glucosidase
than those of foxtail millet cultivars. Among the evaluated cultivars,
the soluble and bound fractions of foxtail millet cultivar CO7 (IC,,
22.37 and 57.26 pg/ml) and the little millet cultivar CO4 of (IC,,
18.97 and 55.69 pg/ml) showed strong inhibition of a-glucosidase
(Pradeep et al., 2018). HPLC analysis of phenolic extracts revealed
variations in individual phenolic acid composition among the evalu-
ated samples. Naringenin, kaempferol, luteolin glycoside, apigenin,
(4+)-catechin/(-)-epicatechin, daidzein, caffeic acid, ferulic acid, and
syringic acid from cereals are considered as the enzyme inhibitors
(Shobana et al., 2009). Caffeic, ferulic, and sinapic acids were found
as the predominant phenolic acids in soluble fractions, while ferulic
and p-coumaric acids were abundant in bound fractions. Quercetin
was the most abundant flavonoid presented in all the fractions.
Quercetin, and ferulic and p-coumaric acids are reported to have
high a-glucosidase inhibitory activity by mixed noncompetitive in-
hibition (Adisakwattana et al., 2009; Li et al., 2009). The results of
Mishra et al. (2017) had shown that organic rye varieties have higher
ferulic acid content and a-amylase inhibitory activity, while tradi-
tional rye varieties have higher catechin content and a-glucosidase
inhibitory activity.

The enzyme inhibition potency of individual phenolic compounds
through mixed, uncompetitive, and competitive type is highly cor-
related with their structures (Di Stefano et al., 2018; Kim et al., 2019;
Malunga et al., 2018; Tadera et al., 2006). Hydroxycinnamic acids

1,3,6’~tri-p-coumaroyl-6-feruloyl sucrose

a-Amylase inhibitor

are reported to be more potent on inhibition of a-glucosidase com-
pared with their corresponding hydroxybenzoic acid derivatives.
The structure-activity relationship suggests that the number of
hydroxyl and methoxy groups present in the aromatic ring phe-
nolic acids decides the inhibitory activity (Malunga et al., 2018).
Furthermore, flavonoids appeared to have a better a-glucosidase
inhibitory activity than phenolic acids due to the additional hydroxyl
groups in flavone skeleton, which is most likely responsible for the
more pronounced inhibitory activity (Di Stefano et al., 2018; Tadera
et al., 2006). Additionally, proper glucoside substitutions may boost
the enzyme inhibition activities and types due to increased number
of total aromatic hydroxyl groups (S6hretoglu et al., 2018). For ex-
ample, the hydroxy (-OH) groups at C-3 position of ring C, C-3" and
C-4’ position of ring B, and the glucoside substitutions at the C-3
position of ring C were crucial for the enzyme inhibition activities
of flavonols. Molecular docking studies revealed that phenolic com-
pounds bind at both the active sites and allosteric sites, resulting in
structural changes and activity inhibitors (Kim et al., 2019; Martinez-
Gonzalez et al., 2019). Hydrogen bonds, hydrophobic interactions,
and van der Waals interactions are the predominant force involved
in the complexation of the phenolic compounds with enzymes (Di
Stefano et al., 2018; Martinez-Gonzalez et al., 2019).

Polyphenols with higher polymerization also have inhibition ef-
fects on the enzymes. Pigmented cereals always gained attentions
due to their health benefits associated with anthocyanins (Pei-Ni
et al., 2006). Premakumara et al. (2013) screened the most resistant
varieties of a-amylase in 70% ethanol extracts from 35 varieties of
rice (red and white) in Sri Lankan. The results showed that the an-
ti-amylase activity of the red wheat bran extract was significantly
higher than the white wheat bran extract. The traditional red rice va-
rieties Masuran, Sudu Heenati, etc., all showed significant anti-am-
ylase activity in a dose-dependent manner. Yao et al. (2010) studied
Chinese colored cereals, including red, purple, black rice, purple corn,
black barley, and black soybeans. Among the Chinese colored cereals
studied, black rice (IC;, = 13.56 + 1.2 mg/ml) has the highest total an-
thocyanin content, total phenolic content, and «-glucosidase inhibi-
tory activity. Anthocyanin in purple rice (IC;, = 475.14 + 25.46 mg/
ml) has stronger inhibitory activity against a-glucosidase than pro-

anthocyanidins in red rice (IC., > 1,000 mg/ml). On the other hand,
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acarbose = 10.54 + 1.06 mg/

ml)

grains

18.97 + 0.43 pg/ml (IC,, of

Rats’ intestine pNPG

a-Glucosidase

acarbose = 91.38 + 6.20 mg/

ml)

93.89 + 1.75 pg/ml (I, of

DNSA

Porcine pancreatic

a-Amylase

Bound phenolic extracts

acarbose = 10.54 + 1.06 mg/

ml)

55.69 + 1.59 pg/ml (IC, of

Rats’ intestine pNPG

a-Glucosidase

acarbose = 91.38 + 6.20 mg/

ml)
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Hargrove et al. (2011) compared the inhibition of a-amylase by mono-
flavonoids and proanthocyanidins in Sorghum bicolor bran extract.
The results showed that the extract of sumac sorghum bran rich in
proanthocyanidins (IC;, = 1.4 ug/ml) had a stronger inhibitory effect
on a-amylase than the extract of sorghum bran (IC;, = 11.4 pg/ml)
without procyanidins. In addition, flavonoids have higher IC,, values
than proanthocyanidins. Links et al. (2015) prepared a highly effi-
cient sorghum-condensed tannins (SCT) from sorghum. The results
showed that SCT was a better a-glucosidase inhibitor (IC;, = 0.4 pg/
ml) compared with acarbose (IC,, = 8,464.0 ug/ml). SCT also had a
certain inhibitory effect on a-amylase. The effect of kafirin micro-
particles (KEMS) as an oral administration system for SCT has poten-
tial hypoglycemic effect. Lignin can also be used as novel a-amylase
inhibitor. The molecular docking studies indicated that the major
binding sites are ~-OH in G units and p-O-4 structure of lignin on
a-amylase molecule (Fan et al., 2019).

Different processing methods significantly affected the
total phenolics, individual phenolic compounds, and enzyme in-
hibitory properties of cereals (Donkor et al., 2012; Pradeep &
Sreerama, 2015). Germinated millets with higher phenolic com-
pound levels showed highest inhibitory activities toward both the
enzymes that their untreated, steamed, and microwaved treated
cereal counterparts (Pradeep & Sreerama, 2015). Similar results
were also obtained in germinated wheat, brown rice, barley, sor-
ghum, oat, rye, and buckwheat cereals (Donkor et al., 2012). In the
recent study of Gong et al. (2018), germination combined with ex-
trusion on free and bound phenolic compound extracts of whole
cereal corn increased the anti-a-glucosidase activity by 221 and
40%, and increased the anti-a-amylase activity by 105 and 108%.
In the study of Qin et al. (2013), soaked tartary buckwheat had
increased quercetin, kaempferol, total flavonoid, and total phe-
nolic compound contents which were responsible for the highest
a-glucosidase inhibitory activity as compared with raw, steamed,
and dried tartary buckwheat. The findings of Irondi et al. (2019)
demonstrated that both the a-glucosidase and a-amylase inhibi-
tory activities of sorghum decreased due to roasting, in contra-
dictory with the report of Kunyanga et al. (2011) that indicated an
increase in enzyme inhibitory activities of pearl millet. The par-
allel changes in phenolic compound levels and enzyme inhibitory
activity with different processing methods suggest that phenolic
compounds might be the major enzyme inhibitors in the cereals.
Additionally, phenolic compounds are mainly concentrated in the
pericarp, hull bran, and aleurone layers of whole cereals which
may promote their contribution to the enzyme inhibitory activ-
ities. The phenolic extracts of these fractions usually displayed
strong inhibition toward a-glucosidase and a-amylase compared
with other fractions of whole cereals (Hemalatha et al., 2016;
Pradeep & Sreerama, 2017). Moreover, the digestibility of phe-
nolic compounds plays a key role in their enzyme inhibitory ac-
tivity in the small intestine. Unencapsulated sorghum-condensed
tannins had minimal a-amylase inhibition and no «-glucosidase
inhibition after pepsin and trypsin-chymotrypsin digestion (Links

et al., 2015). Hence, technologies that ensure bioaccessibility of
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phenolic compounds in the target site (small intestine) are needed
in improving anti-enzyme activities of whole cereals.

4.2 | Peptides

Some of the bioactive peptides generated from cereal proteins by
enzymatic, or chemical hydrolysis and fermentation, have been re-
ported to exhibit enzyme-inhibiting activities (Table 2). The inhibi-
tion activity of peptides from rice bran protein on a-amylase, ranged
from 6.9 to 56.1 ug acarbose equivalent mg’1 protein, was gener-
ally correlated with the degree of protein hydrolysis (Uraipong &
Zhao, 2015). Moreover, different fractions (albumin, globulin, prol-
amin, and glutelin) of rice bran proteins, which were subjected to
different protease hydrolysis (Alcalase, Neutrase, Flavourzyme, and
Protamax), resulted in different activities. In general, highest inhi-
bition activities were found with albumin and glutelin hydrolysates
produced by Protamax- and Alcalase-catalyzed hydrolysis. The
results of this in vitro study highlight that the bioactivity of pep-
tides in the hydrolysates is dependent on the proteolytic enzyme
used. Accordingly, hydrolysates generated by 14 different enzymes
from barley and brewers’ spent grain protein were evaluated for
the a-glucosidase and o-amylase inhibition activities by Connolly
et al. (2014). The tryptic hydrolysate resulted in the highest inhibi-
tion of a-glucosidase, which had increased from 12.43% inhibition
for unhydrolyzed protein-enriched isolates to 66.81% at 7.5 mg/
ml. For a-amylase inhibition, the unhydrolyzed isolates inhibited
by 8.08% to 13.35% with the concentration increased from 2.5 to
7.5 mg/ml. However, no significant increases were found for all 14
hydrolysates. Additionally, the a-amylase and a-glucosidase inhibi-
tory peptides may also be produced during digestion. Peptides re-
leased from quinoa during the in vitro duodenal phase showed the
highest inhibitory effects, which reaching an IC, value of 0.19 mg
protein/ml for a-amylase inhibition and 1.75 mg protein/ml for
a-glucosidase inhibition, respectively (Vilcacundo et al., 2017).

The structure-activity relationships were studied for sev-
eral identified peptides. The most potent a-glucosidase inhibitory
peptide identified is LQAFEPLR (IC,, = 35.67 pg/ml) derived from
oat globulin by trypsin hydrolysis. As demonstrated by Di Stefano
et al. (2018), a-glucosidase inhibitory activity appears to occur more
for peptides containing serine, threonine, tyrosine, lysine, or arginine
at the N-terminal, and a proline residue closer to the C-terminal with
methionine or alanine occupying the C-terminal position. The roles
of hydrophobic amino acids on the inhibition of a-glucosidase were
confirmed by Vilcacundo et al. (2017). Potential a-glucosidase inhib-
itory peptides identified in quinoa after digestion were IQAEGGLT
and DKKYPK. Peptide IQAEGGLT containing three hydrophobic res-
idues showed potent inhibitory activity toward a-glucosidase via hy-
drophobic interaction. In case of a-amylase inhibitory peptides, the
aromatic-aromatic interactions between the enzyme residues and
peptide arising from hydrogen bonds, and electrostatic and Van der
Waals interactions, which may form a sliding barrier via a hydrogen

bonding with the residues of the active/substrate-binding region,

TABLE 2 A summary of newly discovered peptides as a-glucosidase and a-amylase inhibitors

Reference

1C50

Method

Enzyme origin

Inhibited enzyme

Active compounds

Part used

Variety

No.

Uraipong and

DNSA

Bacillus amyloliquefaciens

Bran Protein and peptide a-Amylase

Rice

Zhao (2015)

pNPG
DNSA

Saccharomyces cerevisiae

a-Glucosidase

Connolly

Porcine pancreatic

Protein a-Amylase

Pale brewers' spent

etal. (2014)

pNPG
DNSA

Rats’ intestine

a-Glucosidase

grain

Vilcacundo

Porcine pancreatic

a-Amylase

Protein

Seed

Quinoa

etal. (2017)

Glucose/Glucose Oxidase

Assay Kit

Rats’ intestine

a-Glucosidase
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FIGURE 2 Structure of
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are critically for the inhibitory activity (Siow & Gan, 2016, 2017).
The a-amylase has numbers of aromatic residues including phenylal-
anine, tryptophan, and tyrosine.

4.3 | Nonstarch polysaccharides

Nonstarch polysaccharides with a-glucosidase and a-amylase inhibi-
tory activities have been identified in barley, wheat, buckwheat, and
corn silk (Table 3). The barley polysaccharide exhibited a noncompeti-
tively inhibitory process toward a-glucosidase with IC;, at 22.49 mg/
ml. The sulfation can significantly raise the enzyme inhibitory activ-
ity with increases in dose and the degree of substitution of sulfate
group. However, the mechanism of sulfated polysaccharides against
a-glucosidase was reversible as a mixed one (Qian et al., 2015).
The oligosaccharide from barley malt defined as a-pyran glucosan
composed of four glucoses with (1 — 3) linkage was an effective
a-glucosidase inhibitors as acarbose (Shelat et al., 2011). The IC,,
of crude oligosaccharides, pure oligosaccharides, and acarbose was
1.30, 0.48, and 0.26 mg/ml, respectively. A novel purified neutral
polysaccharide (TBP-II, 26 kDa) from buckwheat was reported to ex-
hibit a-glucosidase inhibitory activity (Wang et al., 2016). TBP-1I was
mainly consisted of galactose, arabinose, xylose, and glucose with a
molar ratio of 0.7:1:6.3:74.2. The backbone of TBP-Il was composed
of (1 = 4)-linked-d-glucopyranosyl (Glcp), while the branches com-
prised of (1 = 3)-linked-d-glucopyranosyl (Glcp), (1 = 6)-linked-d-ga-
lactopyranosyl (Galp), and (1 = 2,4)-linked-d-rhamnopyranosyl (Rhap).
TBP-1l exhibited an excellent inhibitory activity on «-glucosidase,
which was superior to acarbose and crude polysaccharide, and the per-
centage inhibition depended on the concentration of polysaccharides.

In case of a-amylase, cellulose (either purified or as a component
of wheat bran) was demonstrated to bind a-amylase and inhibit the
activity of the enzyme through a mixed-type inhibition mechanism
(Sushil et al., 2015). Cereal arabinoxylan and p-glucan can impair diffu-
sion of the polymer probes similar in size to a-amylase, which slowed
starch hydrolysis in the small intestine (Shelat et al., 2010, 2011). The
«-amylase inhibitory activities among water-soluble corn silk polysac-
charides and their sulfated, acetylated, and carboxymethylated deriv-
atives were compared by Shuhan et al. (2013). The carboxymethylated
polysaccharide, which exhibited the highest inhibitory activity among
the four polysaccharides samples, had a high solubility, a narrow mo-

lecular weight distribution, and a hyperbranched conformation. The

IC,, of acarbose, carboxymethylated, sulfated, raw, and acetylated
derivatives was 2.51, 5.33, 8.54, 10.07, and 10.31 mg/ml. However,
limited work has been conducted on the structure-function relation-

ship of nonstarch polysaccharides against a-glucosidase or a-amylase.

4.4 | Lipids

Lipids derived from cereals are another potential a-glucosidase and
a-amylase inhibitors (Table 4). The Soxhlet hexane and ethyl acetate
extracts of wheat bran were effective inhibitors of a-glucosidase
in vitro (Liu, 2009). The isolated phosphatidic acids in wheat germ,
1,2-dilinoleylglycerol-3-phosphate  and  1-palmitoyl-2-linoleoyl
glycerol-3-phosphate (Figure 2), showed the highest a-glucosidase
inhibitory activity among the test lipids with the IC,, of 38.9 and
47.9 uM (Liu et al., 2011). The structure-activity relationship stud-
ies suggested that the unsaturated fatty acids and phosphate group
in the glycerides were significant structural requirements for the
inhibitory activity. Alkylresorcinols are another important compo-
nents that are responsible for the a-glucosidase inhibitory activity
of wheat bran lipids (Tu et al., 2013). Alkylresorcinols showed IC,
of 37.58 pg/ml by noncompetitive type of inhibition. It has been
reported that the important biological role of alkylresorcinols is to
directly regulate enzyme activity, such as inhibition of acetylcho-
linesterase, and the inhibitory activity is affected by the length of
the alkyl side chain (Athukorala et al., 2010; Stasiuk et al., 2008).
However, its effects on inhibition of a-glucosidase still require fur-
ther investigation. Additionally, there is some evidence that fatty
acids, saponins, and terpenes found in fruits, vegetables, and mush-
rooms contribute to the in vitro a-glucosidase and a-amylase inhibi-
tion activities of hexane extracts (Papoutsis et al., 2020). However,
limited work has been conducted on elucidation of the a-glucosidase
and a-amylase inhibition activities of different lipophilic compounds
found in cereals. Future studies are encouraged to investigate the

individual inhibitors of cereal lipids and their inhibition mechanism.

4.5 | Crude extracts

Distinguishable differences among cereal species were proved based
on the results of inhibitory activities of the cereal crude extracts against
these two starch digestive enzymes (Table 5). Kim et al. (2011) studied
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FIGURE 3 Potential mechanisms under the whole cereals on the prevention of hyperglycemia. The a-amylase and a-glucosidase
inhibitors in whole cereal foods are released during digestion in the gastrointestinal tract. a-Amylase inhibitors may limit the hydrolysis of
starch by block the active centers of the enzymes. a-Glucosidase inhibitors reduce shorter oligomer by occupying enzyme and sugar-binding

sites, thereby delaying intestinal absorption of glucose

the inhibition of a-glucosidase and a-amylase by 70% ethanol extracts
of different varieties of sorghum, foxtail millet, and proso millet. The
results showed that in 6 sorghum varieties, compared with the exist-
ing a-glucosidase inhibitor anti-diabetic acarbose (IC;, = 2.1 pg/ml),
Mongdang-susu (SS-1), Me-susu (SS-2), Susongsaengi-Susu (SS-3), and
Sikyung-Susu (SS-4) extracts had significantly higher inhibitory activity
against a-glucosidase (IC;, = 1.1-1.4 pg/ml). Moreover, these extracts
have a strong inhibitory effect on a-amylase in pancreas and saliva, while
foxtail and proso millets extracts have no significant inhibitory effect on
a-amylase or a-glucosidase activity. Ramakrishna et al. (2017) screened
the antihyperglycemic function of 13 barley varieties and evaluated the
a-amylase and a-glucosidase inhibitory activities of barley extracts (hot
water, cold water, and 12% ethanol). The results showed that the cold
water and ethanol extracts of most barley varieties had significant inhibi-
tory effects on a-amylase, but the differences among most varieties were
not significant. Additionally, it was observed that for all extraction meth-
ods, the black barley variety had the highest a-glucosidase inhibitory ac-
tivity (34%) and exhibited a dose-dependent pattern among all barley
varieties. Ranilla et al. (2009) used in vitro enzyme assays to determine
the a-glucosidase and a-amylase inhibition associated with early type 2
diabetes in 10 kinds of Peruvian Andean hot-processed cereals (five ce-
reals, three pseudocereals, and two legumes). The results showed that
the purple corn (Zea mays L.) water extract had the highest a-glucosidase
inhibitory activity (51%, 5 mg sample weight). No a-amylase inhibitory

activity was observed in all of the evaluated Andean grains.

5 | CONCLUSIONS

The increased interest in whole cereal foods has coincided with an in-
crease in the prevalence of chronic diseases such as T2DM. a-Amylase

and a-glucosidase inhibitors are significant for the control of postprandial

blood glucose in diabetic patients. Cereal-derived phenolic compounds,
peptides, nonstarch polysaccharides, and lipids inhibit a-amylase and
a-glucosidase activity. These inhibitors may be associated with the
prevention of hypoglycemia by whole cereal food intake (Figure 3). To
increase the utilization of whole cereals and their bioactive ingredients
in diabetes management foods, it is mandatory to understand the inhibi-
tory mechanisms and further investigate the structure-activity relation-
ships between the compounds and enzymes. For example, the number
and location of hydroxyl groups of phenolic acids, the molecular weight
of polysaccharides, acetylation, and methylation all affect the enzyme
inhibition activities. Of note, processing technologies will be able to af-
fect the distribution, compounds, chemical structures, amount, and thus
health benefits of the end whole cereal food subject to cereal types.
The cereal-derived a-amylase and/or a-glucosidase inhibitor could be
targeted for developing valuable whole cereal foods in T2DM dietary
managements. Noteworthy, most data about the impact of whole cereal
flour or whole cereal food on enzyme activities are from in vitro studies,

and further in vivo investigations are needed.
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