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Abstract

Background: Giardia lamblia parasitizes the human small intestine to cause diarrhea and malabsorption. It undergoes
differentiation from a pathogenic trophozoite form into a resistant walled cyst form. Few cyst proteins have been identified
to date, including three cyst wall proteins (CWPs) and one High Cysteine Non-variant Cyst protein (HCNCp). They are highly
expressed during encystation and are mainly targeted to the cyst wall.

Methodology and Principal Findings: To identify new cyst wall proteins, we searched the G. lamblia genome data base
with the sequence of the Cryptosporidium parvum oocyst wall protein as a query and found an Epidermal Growth Factor
(EGF)-like Cyst Protein (EGFCP1). Sequence analysis revealed that the EGF-like repeats of the EGFCP1 are similar to those of
the tenascin family of extracellular matrix glycoproteins. EGFCP1 and HCNCp have a higher percentage of cysteine than
CWPs, but EGFCP1 has no C-terminal transmembrane region found in HCNCp. Like CWPs and HCNCp, the EGFCP1 protein
(but not transcript) was expressed at higher levels during encystation and it was localized to encystation-specific vesicles in
encysting trophozoites. Like HCNCp, EGFCP1 was localized to the encystation-specific vesicles, cyst wall and cell body of
cysts, suggesting that they may share a common trafficking pathway. Interestingly, overexpression of EGFCP1 induced cyst
formation and deletion of the signal peptide from EGFCP1 reduced its protein levels and cyst formation, suggesting that
EGFCP1 may help mediate cyst wall synthesis. We also found that five other putative EGFCPs have similar expression profiles
and similar locations and that the cyst formation was induced upon their overexpression.

Conclusions and Significance: Our results suggest that EGFCPs may function like cyst wall proteins, involved in
differentiation of G. lamblia trophozoites into cysts. The results lead to greater understanding of parasite cyst walls and
provide valuable information that helps develop ways to interrupt the G. lamblia life cycle.
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Introduction

Giardia lamblia is a prevalent intestinal parasite causing

waterborne diarrheal disease [1,2]. G. lamblia trophozoite causes

malabsorption and diarrhea without penetrating intestinal epithe-

lial cells [3]. It has two synchronous nuclei, moves by the flagella

and adheres via the ventral disk to the upper intestine of host, a

place suitable for their proliferation [2]. When a trophozoite is

carried downstream to the lower intestine, encystation occurs, cyst

wall is formed and both nuclei divide simultaneously, resulting in a

cyst with four nuclei [2]. Transmission of giardiasis arises when

cysts are ingested from faecally contaminated food or water.

The cyst form is the infective form capable of survival under

hostile environments after excretion [2]. It has a resistant wall

composed of proteins and polysaccharides to protect the parasite

from hypotonic lysis by fresh water and from gastric acid during

infection of the new host [4,5]. The polysaccharide moiety is

composed mainly of N-acetylgalactosamine homopolymer [6].

The strong interchain interactions of the polysaccharides and the

strong interaction of the polysaccharide and the proteins may lead

to a highly insoluble cyst wall [6].

The three known cyst wall proteins (CWPs) have similar

expression levels, architectural motifs, and biological properties.

Expression of the cwp1-3 genes and a gene encoding an enzyme in

the cyst wall polysaccharide biosynthetic pathway (glucosamine-6-

phosphate isomerase-B, G6PI-B) increases with similar kinetics

during encystation [7–11], suggesting the importance of gene

regulation at transcriptional and/or translational level. During

encystation, CWPs are concentrated within large membrane-

bounded encystation secretory vesicles (ESVs) before transport to

the cyst wall [7–9]. The ESVs have been proposed to be the trans-

Golgi network or Golgi equivalents of the other eukaryotic cells

[12,13]. All three CWPs have N-terminal signal peptides, four to

five tandem leucine-rich repeats (LRRs) and .14 positionally

conserved cysteines [7–9]. Deletion of signal peptide or any one of

LRRs prevented CWP3 from targeting to the ESVs or cyst wall

[9]. Formation of intramolecular or intermolecular disulfide bonds

between the cysteines may lead to heterooligomer formation
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between CWPs in the ESVs and cyst wall [9,14]. Treatment of live

encysting cells with DTT prevents the formation of disulfide

bonds, ESVs and cyst wall [15,13].

G. lamblia trophozoites are covered by variant surface proteins

(VSPs) that are cysteine-rich type I integral membrane proteins,

protecting them from protease and enzyme digestion in intestine

[2,16]. VSPs and CWPs have different expression patterns and

subcellular localization profiles [17]. VSPs switch during vegeta-

tive growth or encystation and they are surface proteins that are

transported to the trophozoite plasmalemma from endoplasmic

reticulum (ER) pathway [17]. A High Cysteine Non-variant Cyst

protein (HCNCp) has been identified recently [16]. It was

originally annotated as a large VSP [16]. Like VSPs, it is a

cysteine rich, acidic, type 1 integral membrane protein [16].

HCNCp has many CxC motifs that are rarely found in VSPs.

Unlike CWPs, HCNCp has a higher molecular weight and many

CxC or Cx2C motifs that are rarely found in CWPs and it does

not have LRR motifs [7–9,16]. Like CWPs, HCNCp is highly

expressed during encystation and localized in ESVs of encysting

trophozoites. However, HCNCp was localized to the wall and cell

body of cysts, different from the exclusive cyst wall localization of

the CWPs [16]. A total of 61 (0.63% of the genome) large High

Cysteine Membrane (with a transmembrane region) proteins

(HCMp) containing $400 amino acids, $10% Cys, $20 CxC

and/or CxxC, but lacking the VSP-specific C-terminal CRGKA

have been found in the G. lamblia genome [16]. Some of HCMps

are recognized as VSP-like, EGF-like and transmembrane kinases-

like [16].

A group of oocyst membrane proteins have been identified

recently, including nine Cryptosporidium oocyst wall proteins

(COWP1–9) in Cryptosporidium parvum and one COWP homolog

(TgCOWP1) in Toxoplasma gondii [18,19]. COWPs have signal

peptides and two types of repeated domains but lack transmem-

brane regions [18,19]. The type I and II domains both have 6

positionally conserved cysteines but the type I domain (65 amino

acids) is longer than the type II domain (53 amino acids). All

COWPs have the type I domains, but the type II domains are only

present in COWP1–3 [18]. COWP1 is localized in the wall-

forming bodies of late macrogametes and the inner oocyst wall of

the double-walled oocysts, respectively [17]. COWP8 is localized

in the oocyst wall [18]. The function of the cysteine-rich type I and

II domains is not known, but it has been proposed that disulfide

bonds of cysteine-rich protein may provide rigidity to the oocyst

wall [17,18]. COWP1–9 are up-regulated during later stages of C.

parvum development [18].

To identify new cyst protein, we used the type I domain

sequences of COWP8 to screen the G. lamblia genome data base

(http://www.giardiadb.org/giardiadb/) [20]. We found a group of

Epidermal Growth Factor (EGF)-like Cyst Proteins (EGFCPs) in

the G. lamblia genome. Sequence analysis revealed that the EGF-

like repeats of the EGFCPs are similar to those of the tenascin

family glycoproteins. Tenascins are extracellular matrix glycopro-

teins that are highly expressed during embryonic cell development

and reappear during wound repair, nervous regeneration and

tumorigenesis [21]. Tenascins have multiple domains including

the EGF-like repeats. A single EGF-like repeat contains ,40

amino acids with six positionally conserved cysteines [22]. Nine

EGF or EGF-like repeats are present in the EGFCP1. EGFCP1

matches some of the characteristics of HCNCp or HCMps, but it

does not have a transmembrane region. Unlike CWPs and

HCNCp, whose mRNA levels increased during encystation, the

endogenous mRNA levels of the EGFCP1 decreased during

encystation. Interestingly, the EGFCP1 protein levels significantly

increased during encystation, which matches the characteristics of

CWPs and HCNCp. Like CWPs, EGFCP1 formed polydisperse

disulfide-bonded complexes detected in non-reducing gels and it

was localized to ESVs in encysting trophozoites. Like HCNCp,

EGFCP1 was localized to the wall and cell body of cysts (relatively

little of EGFCP1 remained in the cyst cell body), suggesting that

EGFCP1 and HCNCp may be involved in a novel secretory

pathway for parasite cyst and for extracellular matrix assembly.

We also found that overexpressed EGFCP1 induced the cyst

formation. In addition, deletion of the signal peptide from

EGFCP1 prevented its targeting to the ESVs and reduced its

protein levels and cyst formation, suggesting that EGFCP1 may

help mediate the cyst wall synthesis. By searching the G. lamblia

genome data base (http://www.giardiadb.org/giardiadb/) [20],

we found five other open reading frames with high similarity to

EGFCP1. These five other putative EGFCPs were expressed in

similar profiles and localized to similar locations and their

overexpression resulted in an induction of cyst formation. Our

results provide insights into the role of a novel group of cyst

proteins with EGF repeats in parasite differentiation into cysts.

Methods

G. lamblia culture
Trophozoites of G. lamblia WB (ATCC 30957), clone C6, were

cultured in modified TYI-S33 medium [23] and encysted as

previously described [9]. Cyst count was performed on 24 h

encysting cultures as previously described [24].

Isolation and analysis of the egfcp1 gene
The G. lamblia genome data base (http://www.giardiadb.org/

giardiadb/) [20] was searched with the amino acid sequences of the

type I domain of COWP8 (GenBank accession number AY465056)

[19] using the BLASTP program [25]. Amino acid sequences with

the highest similarity were found in an open reading frame with

EGF-like repeats we named EGF-like Cyst Protein 1 (EGFCP1)(o-

pen reading frame 95162, GenBank accession number

XM_001704009). The EGFCP1 coding region with 360 nt of

59- flanking regions was cloned and the nucleotide sequence was

Author Summary

The biological goal of Giardia lamblia life cycle is
differentiation into a cyst form (encystation) that can
survive in the environment and infect a new host. Since
cystic stages are key to transmission of parasites, this
differentiation may be a target for interruption of the life
cycle. Synthesis and assembly of the extracellular cyst wall
are the major hallmarks of this important differentiation.
During encystation, cyst wall structural proteins are
coordinately synthesized and are mainly targeted to the
cyst wall. However, only a few such proteins have been
identified to date. In this study, we used a combination of
bioinformatics and molecular approaches to identify new
cyst structural proteins from G. lamblia and found a group
of Epidermal Growth Factor (EGF)-like Repeats containing
Cyst Proteins (EGFCPs). Interestingly, the levels of EGFCPs
proteins increased significantly during encystation, which
matches the characteristics of the Giardia cyst wall protein.
Further characterization and localization studies suggest
that EGFCPs may function like cyst wall proteins, involved
in differentiation of G. lamblia trophozoites into cysts. Our
results provide valuable information regarding the func-
tion of a new group of cyst proteins in parasite
differentiation into cysts and help develop ways to
interrupt the parasite life cycle.
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determined. The egfcp1 gene sequence in the data base was correct.

To isolate the cDNA of the egfcp1 gene, we performed RT-PCR

with egfcp1-specific primers using total RNA from G. lamblia. For

RT-PCR, 5 mg of DNase-treated total RNA from vegetative and

24 h encysting cells was mixed with oligo (dT)12–18 and Superscript

II RNase H- reverse transcriptase (Invitrogen). Synthesized cDNA

was used as a template in subsequent PCR with primers EGFCP1F

(CACCATGATAGCCGCGGCCTTT) and EGFCP1R (CACA-

CATCTACCATCGCG). Genomic and RT-PCR products were

cloned into pGEM-T easy vector (Promega) and sequenced (Applied

Biosystems, ABI).

RNA extraction, RT-PCR and quantitative real time PCR
analysis

Total RNA was extracted from G. lamblia cell line at the indicated

differentiation stages using TRIzol reagent (Invitrogen). For RT-

PCR, 5 mg of DNase-treated total RNA from vegetative and 24 h

encysting cells was mixed with oligo (dT)12–18 and Superscript II

RNase H- reverse transcriptase (Life Technologies). Synthesized

cDNA (,20 ng) was used as a template in subsequent PCR with

20–45 cycles (depending on the genes and primers). Semi-

quantitative RT-PCR analysis of total egfcp1 (open reading frame

95162, GenBank accession number XM_001704009), egfcp1-ha,

endogenous egfcp1, cwp1 (U09330), ran (U02589), glycyl t-RNA

synthetase (open reading frame 9011, GenBank accession number

XM_773334), egfcp2 (open reading frame 113038, GenBank

accession number XM_001707464, egfcp3 (open reading frame

114815, GenBank accession number XM_001705096), egfcp4

(open reading frame 16477, GenBank accession number XM_

001710038), egfcp5 (open reading frame 16322, GenBank accession

number XM_001706828), and egfcp6 (open reading frame 8687,

GenBank accession number XM_001704393) gene expression was

performed using primers egfcp1F and egfcp1R; egfcp13F and

egfcp1HAR; egfcp1HAF and egfcp13R; cwp1F and cwp1R; ranF

and ranR; glycylrealF and glycylrealR; egfcp2realF and egfc-

p2realR; egfcp3realF and egfcp3R; egfcp4realF and egfcp4R;

egfcp5realF and egfcp5R; and egfcp6realF and egfcp6R, respec-

tively. For quantitative real time PCR, SYBR Green PCR master

mixture was used (Applied Biosystems). PCR was performed using

an Applied Biosystems PRISMTM 7900 Sequence Detection

System (Applied Biosystems). Specific primers were designed for

detection of the total egfcp1, egfcp1-ha, endogenous egfcp1, cwp1, ran,

glycyl t-RNA synthetase, egfcp2, egfcp3, egfcp4, egfcp5, and egfcp6 genes:

egfcp1realF and egfcp1realR; egfcp1HAF and egfcp1HAR; egfc-

p1HAF and egfcp13R; cwp1realF and cwp1realR; ranrealF and

ranrealR; glycylrealF and glycylrealR; egfcp2realF and egfcp2realR;

egfcp3realF and egfcp3realR; egfcp4realF and egfcp4realR; egfc-

p5realF and egfcp5realR; egfcp6realF and egfcp6realR. Two

independently generated stably transfected lines were made from

each construct and each of these cell lines was assayed three separate

times. The results are expressed as relative expression level over

control. Student’s t-tests were used to determine statistical

significance of differences between samples.

Plasmid construction
All constructs were verified by DNA sequencing with BigDye

Terminator 3.1 DNA Sequencing kit and an Applied Biosystems

3100 DNA Analyser (Applied Biosystems). Plasmid 59D5N-Pac was

a gift from Dr. Steven Singer and Dr. Theodore Nash [26]. Detailed

cloning procedures for plasmids pPTEGFCP1, pNEGFCP1,

pPTEGFCP1nsp, and pPEGFCP2–6 are available as the supple-

mentary materials (Fig. S1 and Table S1). Cloning steps include the

use of plasmids pPop2NHA, pNLop2-1, and pPop2N [27,28].

Plasmid ran32 has been previously described [28].

Expression and purification of recombinant EGFCP1
protein

The genomic egfcp1 gene was amplified using oligonucleotides

egfcp1F and egfcp1R. The product was cloned into the expression

vector pET Directional TOPO (Invitrogen) in frame with the C-

terminal His and V5 tag to generate plasmid pEGFCP1. The

pEGFCP1 plasmid was freshly transformed into Escherichia coli

BL21 (DE3) pLysE (QIAexpressionist, Qiagen). An overnight pre-

culture was used to start a 250-ml culture. E. coli cells were growth

to an A600 of 0.5, and then induced with 1 mM isopropyl-D-

thiogalactopyranoside (Promega) for 4 h. Bacteria were harvested

by centrifugation and sonicated in 10 ml of buffer A (50 mM

sodium phosphate, pH 8.0, 300 mM NaCl) containing 10 mM

imidazole and protease inhibitor mixture (Sigma). The samples

were centrifuged, and the supernatant was mixed with 1 ml of

50% slurry of nickel-nitrilotriacetic acid superflow (Qiagen). The

resin was washed with buffer A containing 20 mM imidazole and

eluted with buffer A containing 250 mM imidazole. Fractions

containing EGFCP1 were pooled, dialyzed in 25 mM HEPES

pH 7.9, 20 mM KCl, and 15% glycerol, and stored at 270uC.

Protein purity and concentration were estimated by Coomassie

Blue and silver staining compared with serum albumin. EGFCP1

was purified to apparent homogeneity (.95%).

Generation of anti-EGFCP1 antibody
Recombinant EGFCP1 protein was purified from E. coli and

used to generate rabbit polyclonal antibodies through a commer-

cial vendor (Angene, Taipei, Taiwan).

Transfection and Western blot analysis
Cells transfected with pN series plasmid were selected with

G418 as described previously [29]. Stable transfectants were

maintained at 150 mg/ml G418. Cells transfected with pP series

plasmid containing the pac gene were selected and maintained with

54 mg/ml puromycin. Western blots were probed with anti-AU1

(1/5000 in blocking buffer; Covance) or anti-HA monoclonal

antibody (1/5000 in blocking buffer; Sigma), and detected with

horseradish peroxidase-conjugated goat anti-rabbit/mouse IgG

(1/5000; Pierce) and enhanced chemiluminescence (GE Health-

care). Western blots were also probed with anti-EGFCP1 antibody

(1/10000), anti-CWP1 antibody (1/10000) [30] or anti-human

RAN antibody (1/5000) (Santa Cruz Biotechnology), and detected

with horseradish peroxidase-conjugated goat anti-rabbit IgG (1/

5000; Pierce) and enhanced chemiluminescence (GE Healthcare).

Detecting EGFCPs in medium
59D5N-Pac, pPTEGFCP1nsp, and pPTEGFCP1–6 cell lines

were cultured in growth medium or encystation medium for 24 h.

The cultured media were collected and centrifuged at 8006g for

10 min and then passed through a 0.22 mm syringe filter to

eliminate G. lamblia cells. Four ml of the collected medium was

incubated with 40 ml of anti-HA antibody conjugated to beads

(Bethyl Laboratories Inc.). The beads were washed three times

with 500 ml of luciferase lysis buffer (Promega). Finally the beads

were then resuspended in sample buffer and analyzed by Western

blot and probed with anti-HA monoclonal antibody (1/5000 in

blocking buffer; Sigma).

Immunofluorescence assays
Stably transfected cells were harvested after 24 h in growth or

encystation medium under drug selection, washed in phosphate-

buffered saline, and attached to glass coverslips (26106 cells/

coverslip) and then fixed and stained [11]. The cysts from
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encystation medium were treated with water for 5 times. Cells

were reacted with anti-CWP1 [30] or anti-HA monoclonal

antibody (1/300 in blocking buffer; Sigma), and anti-rabbit

ALEXA 568 or anti-mouse ALEXA 488 (1/500 in blocking

buffer; Molecular Probes) as the detector. The ProLong antifade

kit with 49,6-diamidino-2-phenylindole (DAPI) (Invitrogen) was

used for mounting. Images were acquired using a Leica TCS SP2

Spectral Confocal System.

Results

Identification and characterization of the egfcp1 gene
To identify possible new cyst wall proteins, we queried the G.

lamblia genome data base (http://www.giardiadb.org/giardiadb/)

[20] with the amino acid sequences of the type I domain of

COWP8 (GenBank accession number AY465056) [19]. COWPs

have been localized in the wall-forming bodies of late macroga-

metes and the inner oocyst wall of the double-walled oocysts,

respectively [18,19]. Amino acid sequences with similarity to the

type I domain of COWP8 were found in an open reading frame

with EGF-like repeats and we named it EGF-like Cyst Protein 1

(EGFCP1) (open reading frame 95162, GenBank accession

number XM_001704009) (Figs. 1A and 1B). A typical type I

domain of COWP8 has 6 cysteines spaced 10 to 12 amino acids

apart (Fig. 1A) [18,19]. The 6 cysteines in the type I domain of

COWP8 are positionally conserved with some cysteine residues in

EGFCP1, but EGFCP1 has two additional cysteine residues

(Fig. 1A).

AT-rich initiator sequences that have been found spanning the

transcription start sites of many genes [31,32] are also present in

the 59- flanking region of the egfcp1 gene (227 to 21 relative to

translation start site) (data not shown). Classic Myb2 binding sites

‘‘C(T/A)ACAG’’ have not been found in the 200-bp 59-flanking

region of the egfcp1 gene [28]. A classic polyadenylation signal

(ATGTAAAC) [33] was 20 nt downstream of the stop codon (data

not shown). Comparison of genomic and cDNA sequences showed

that the egfcp1 gene contained no introns. Short untranslated

regions and lack of introns are typical of giardial transcripts [20].

Figure 1. Sequence analysis of EGFCPs. (A) Alignment of the amino acid sequences of the type I domain of COWP8 and part of giardial EGFCP1.
To identify possible new cyst wall proteins, we queried the G. lamblia genome data base (http://www.giardiadb.org/giardiadb/) [20] with the amino
acid sequences of the type I domain of COWP8 (residues 46–108, GenBank accession number AY465056) [19] using the BLASTP algorithm [25]. This
search identified similarity of the type I domain of COWP8 and part of giardial EGFCP1 (residues 286–341 of open reading frame number 95162 in the
G. lamblia genome data base) (,36% identity and ,47% similarity). Numbers indicate positions of the residues relative to the first amino acid. Amino
acids that are similar or identical to the consensus according to Clustal W 1.83 [49] are indicated in gray or black. Six positionally conserved cysteines
are shown with black triangles. Additional cysteines in EGFCP1 are pointed by arrows. (B) Sequence alignment of EGFCPs. We searched the G. lamblia
genome data base (http://www.giardiadb.org/giardiadb/) [20] using the amino acid sequences of EGFCP1 (open reading frame number 95162 in the
G. lamblia genome data base). Amino acid sequences with similarity to that of EGFCP1 were found in five other open reading frames including
113038, 114815, 16477, 16322 and 8687. Amino acids that are similar or identical to the consensus Clustal W 1.83 [49] are indicated in gray or black.
The predicted signal peptide cleavage site of the EGFCP1 (Signal P prediction) [34] is between residues 16 and 17 as indicated by an open oval. The
location of nine EGF-like repeats of EGFCP1 predicted by SMART analysis (http://smart.embl-heidelberg.de) is underlined. The location of two TIL
domains of EGFCP1 predicted by pfam analysis (http://pfam.sanger.ac.uk/) is indicated by dotted lines. Seventy to eighty-three cysteines are present
in these EGFCPs (also see Fig. 2). Sixty-seven cysteines of all EGFCPs are positionally conserved (black triangles). Additional thirteen cysteines are
positionally conserved in at least four EGFCPs (gray triangles).
doi:10.1371/journal.pntd.0000677.g001
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The deduced EGFCP1 protein contains 572 amino acids with a

predicted molecular mass of ,61.8 kDa and an acidic pI 4.12

(Figs. 1B and S1A). The N-terminal 16 amino acids of EGFCP1

comprise a predicted signal peptide sequence (Signal P prediction)

[34] with the most likely cleavage site between positions 16 and 17

(Fig. 1B).

Because VSPs, HCNCp and EGFCP1 have common characteris-

tics, including high cysteine contents, acidic pIs, and N-termianl signal

peptides, they were compared in more details. A well-studied VSP,

TSA417 [17], was used as a representative of VSPs in this work. The

C-terminal sequence of VSPs, HCNCp and EGFCP1 are all divergent

(Fig. S2A, ‘‘CRGKA’’, ‘‘CCRRSKAV’’ and ‘‘CRDGRCV’’).

HCNCp and EGFCP1 have no GGCY and zinc finger motifs which

are found in VSPs [16]. In addition, HCNCp and EGFCP1 have

common characteristics that are not present in VSPs. HCNCp and

EGFCP1 have 8–11 ‘‘CxC’’ and 33–36 ‘‘Cx4-6C’’ motifs, but

TSA417 has only 1 ‘‘CxC’’ and 9 ‘‘Cx4-6’’ motifs. EGFCP1 does not

have some characteristics of VSPs and HCNCp. For example, VSPs

and HCNCp have C-terminal transmembrane regions, but EGFCP1

does not have a transmembrane domain as predicted by TMHMM

(http://www.cbs.dtu.dk/services/TMHMM/) (data not shown and

Fig. S2A). TSA417 (VSP) and HCNCp have 29 and 77 ‘‘Cx2C’’

motifs, respectively, but EGFCP1 has only 2 ‘‘Cx2C’’ motifs (Fig. S2B).

TSA417 (VSP) and HCNCp have .5 ‘‘Cx3C’’ but EGFCP1 does

not have this motif. EGFCP1 matches some of the characteristics of

HCNCp or HCMps, which contain $400 amino acids and $10%

Cys, but it only has 11 CxC and 2 CxxC and does not match

the characteristics of $20 CxC and/or CxxC (Figs. S2A and S2B)

[16].

A query against the genome of all organisms using the NCBI

BLAST web server using the amino acid sequences of the

EGFCP1 suggests that the EGF-like repeats of the EGFCP1 are

similar to those of the tenascin family glycoproteins in mammals.

Tenascins are extracellular matrix glycoproteins expressed in

embryonic cell development, tissue repair, and tumor stroma

[21,35]. They can function in inhibiting cell adhesion, enhancing

migration and invasion of cancer cells, and promoting cancer cell

proliferation [21]. They have multiple domains including the

EGF-like repeats. A single EGF-like repeat contains ,40 amino

acids with six positionally conserved cysteines [22]. These repeats

have been found in extracellular proteins and in many

extracellular domains of membrane-bound proteins that function

as sensors or receptors or are involved in extracellular matrix

remodeling [22,36,37]. EGFCP1 has nine EGF or EGF-like

repeats predicted by SMART analysis (http://smart.embl-heidel-

berg.de) (Figs. 1B and S3). In addition, EGFCP1 also has two

putative trypsin inhibitor-like (TIL) cysteine rich domains (Pfam:

PF01826) as predicted by pfam (http://pfam.sanger.ac.uk/search)

(Figs. 1B and S4). An EGF-like repeat is overlapped with the

second TIL domain (Fig. 1B). TIL domains have been found in

some extracellular proteins or small serine protease inhibitors that

inhibit peptidases in parasitic nematodes, arthropods and

amphibian [38–40]. The TIL domain has 10 positionally

conserved cysteine residues forming 5 disulfide bonds [41]. The

similarity between the TIL domains of EGFCP1 and those of two

Ancylostoma caninum anti-coagulant precursors, one A. ceylanicum

Ascaris-type serine protease inhibitor, and one Apis mellifera

(honeybee) chymotrypsin inhibitor is mainly limited to the

cysteines residues. Each of the two putative TIL domains of

EGFCP1 has 9 cysteines while one more cysteine can be found

outside of the TIL domain (see inserted sequence in Fig. S4).

We further searched the G. lamblia genome data base (http://

www.giardiadb.org/giardiadb/) [20] using the amino acid se-

quences of the EGFCP1. Amino acid sequences with similarity to

that of EGFCP1 were found in five other open reading frames

including 113038 (EGFCP2), 114815 (EGFCP3), 16477

(EGFCP4), 16322 (EGFCP5) and 8687 (EGFCP6) (Fig. 1B).

Seventy to eighty-three cysteines are present in these EGFCPs

(Fig. 2). Interestingly, sixty-seven cysteines of all EGFCPs are

positionally conserved (Fig. 1B). Additional thirteen cysteines are

positionally conserved in at least four EGFCPs (Fig. 1B). All

EGFCPs have 8–11 EGF or EGF-like repeats (Fig. 2). All EGFCPs

Figure 2. Summary of domain characteristics in EGFCPs. The number and location of the EGF or EGF-like repeats in EGFCPs are predicted by
SMART analysis (http://smart.embl-heidelberg.de). Eight to eleven EGF or EGF-like repeats are present in these EGFCPs. Seventy to eighty-three
cysteines are present in these EGFCPs. They have no transmembrane domains as predicted by TMHMM (http://www.cbs.dtu.dk/services/TMHMM/).
They have acidic pIs and signal peptides (black boxes) as predicted by Signal P [34].
doi:10.1371/journal.pntd.0000677.g002
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have acidic pIs and signal peptides (Signal P prediction) [34] but

they have no transmembrane domains as predicted by TMHMM

(http://www.cbs.dtu.dk/services/TMHMM/) (Fig. 2).

Encystation-induced expression of EGFCP1
RT-PCR and quantitative real time PCR analysis of total RNA

showed that the native egfcp1 transcript was present in vegetative

cells and decreased significantly during encystation (Fig. 3A). The

cwp1 and ran genes, which encode a component of the cyst wall [7]

and a ras-related nuclear protein [29], were upregulated and

downregulated during encystation, respectively, as previously

reported [42].

To determine the expression of EGFCP1 protein, we purified

the full-length recombinant EGFCP1 from E. coli and used it to

generate an antibody specific to EGFCP1 (Fig. S5A for purified

EGFCP1). Western blot analysis confirmed that this antibody

recognized the EGFCP1 protein at a size of ,70 kDa (Figs. 3B

and S5B). EGFCP1 was expressed in vegetative cells and its levels

increased significantly during encystation (Fig. 3B). Compared

with the expression profile of EGFCP1, the levels of CWPs

increase more during encystation [9]. When the samples were not

reduced, EGFCP1 was expressed as a smear with a molecular

mass ranging above ,50 kDa band, indicating the formation of

larger complexes through intermolecular disulfide linkages

(Fig. 3B). CWPs formed similar polydisperse disulfide-bonded

complexes [7–9]. Immunofluorescence assays showed that

EGFCP1 was localized to the ER in vegetative trophozoites

(Fig. 3C, Veg). During early encystation, EGFCP1 was localized to

the ER and some big vesicles in encysting trophozoites (Fig. 3C,

2 h Enc). During late encystation, EGFCP1 was localized to the

ESVs in encysting trophozoites (Fig. 3C, 24 h Enc). In the cyst

stage, EGFCP1 was localized to the cyst wall and weakly to cell

body (Fig. 3C, Cyst). It seems that relatively little of EGFCP1

remained in the cyst cell body as compared with the results of

HCNCp [16].

To determine the expression of EGFCP1 protein, we prepared

construct pNEGFCP1 in which the egfcp1 gene is controlled by its

own promoter and contains an AU1 epitope tag at its C terminus

Figure 3. Analysis of egfcp1 gene expression. (A) RT-PCR and quantitative real time PCR analysis of egfcp1 gene expression. RNA samples were
prepared from G. lamblia wild-type non-transfected WB cells cultured in growth (Veg) or encystation medium and harvested at 24 h (Enc). RT-PCR
and real time PCR were preformed using primers specific for egfcp1, cwp1, ran, and glycyl t-RNA synthetase genes. Representative results are shown
on the left panel. Transcript levels of specific genes were normalized to glycyl t-RNA synthetase (control) transcript levels [50]. Fold changes in mRNA
expression are shown as the ratio of transcript levels in encysting cells relative to vegetative cells. Results are expressed as the means 6 S.E. of at least
three separate experiments (right panel). (B) EGFCP1 protein levels in different stages. The wild-type non-transfected WB cells were cultured in
growth (Veg) or encystation medium (Enc) for 2, 5, 9, and 24 h and then subjected to SDS-PAGE and Western blot (left). The blot was probed by anti-
EGFCP1 antibody. Representative results are shown. The results from Western blot analysis of nonreduced proteins are shown at right panel. Equal
amounts of proteins loaded were confirmed by SDS-PAGE and Coomassie blue staining (lower panels). (C) Localization of EGFCP1. The wild-type non-
transfected WB cells were cultured in growth (Veg) or encystation medium (Enc) and harvested at 2 h or 24 h, and then subjected to
immunofluorescence analysis using anti-EGFCP1 antibody (1/300) for detection (upper panels). The lower panels show the DAPI staining of cell
nuclei. EGFCP1 was localized to the ER in a vegetative trophozoite (Veg). During encystation, EGFCP1 was localized to the ER and some big vesicles in
a 2 h encysting trophozoite (2 h Enc) and to the ESVs in a 24 h encysting trophozoite (24 h Enc). In the cyst stage, EGFCP1 was localized to the cyst
wall and weakly to cell body (Cyst). Most (.80%) cells or cysts are positive stained. (D) The pNEGFCP1 and pPTEGFCP1 plasmids. A neo or pac gene is
under the control of the 59- and 39-flanking regions of the ran (dotted box) or gdh (slashed box) gene. The egfcp1 gene is under the control of its own
59-flanking region (open boxes) or constitutively expressed a2-tubulin promoter (striated box) and the 39-flanking region of the ran gene (dotted box).
The filled black box indicates the coding sequence of the AU1 (for pNEGFCP1 plasmid) or HA (for pPTEGFCP1 plasmid) epitope tag. The filled gray box
indicates the coding sequence of the signal peptide. The arrows show the directions of gene transcription. (E) EGFCP1 protein levels in pNEGFCP1
stable transfectants. The pNEGFCP1 stable transfectants were cultured in growth medium (Veg) or encystation medium and harvested at 24 h (Enc).
AU1-tagged EGFCP1 protein was detected using an anti-AU1 antibody by Western blot analysis of reduced proteins. Coomassie-stained total protein
loading control is shown below. (F) EGFCP1 protein levels in pPTEGFCP1 stable transfectants. The pPTEGFCP1 stable transfectants were cultured in
growth medium (Veg) or encystation medium and harvested at 24 h (Enc). HA-tagged EGFCP1 protein was detected using an anti-HA antibody by
Western blot analysis of reduced proteins. Coomassie-stained total protein loading control is shown below.
doi:10.1371/journal.pntd.0000677.g003
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(Fig. 3D) and stably transfected it into G. lamblia. A ,70-kDa

protein was detected (Fig. 3E), which is slightly larger than the

predicted ,61.8-kDa molecular mass of EGFCP1 with the AU1

tag (,0.8 kDa). The EGFCP1 protein levels increased significant-

ly during encystation (Fig. 3E). However, the egfcp1-au1 mRNA

levels decreased significantly in encysting pNEGFCP1 transfec-

tants, similar to the results in wild-type cells (data not shown, see

Fig. 3A for wild-type cells). The lack of correlation between the

steady state mRNA and protein levels could be due to an increase

in translation rate or protein half life during encystation.

The AU1-tagged EGFCP1 in the pNEGFCP1 cell line can be

detected by immunofluorescence assays but the signal was too

weak to be observed (data not shown). We therefore prepared

construct pPTEGFCP1 in which the egfcp1 gene is controlled by

an a2-tubulin promoter and has an HA epitope tag at its C

terminus (Fig. 3D). The a2-tubulin gene is down-regulated during

encystation [24]. We also found that the HA-tagged egfcp1 mRNA

levels decreased significantly in encysting pPTEGFCP1 transfec-

tants (data not shown). However, the levels of the HA-tagged

EGFCP1 protein also increased significantly during encystation

(Fig. 3F).

Localization of EGFCP1
Immunofluorescence assays showed that the HA-tagged

EGFCP1 was localized to the ER in vegetative trophozoites

(Fig. 4A). During encystation, EGFCP1-HA was localized to the

ESVs in encysting trophozoites (Fig. 4D). It was also localized to

the ER and some big vesicles in a few positive encysting cells

(Fig. 4G). In these stages, CWP1 was also colocalized with

EGFCP1 (Figs. 4A–I). In the cyst stage, CWP1 was localized to the

cyst wall but EGFCP1 was localized to the cyst wall and weakly to

the cell body (Figs. 4J–L). The number of EGFCP1-HA positively

stained cells detected in vegetative trophozoites was small (20%)

and increased (to ,80%) during encystation.

To further understand the function of EGFCP1, we constructed a

pPTEGFCP1nsp plasmid which encodes a mutant EGFCP1

(EGFCP1nsp) lacking the predicted N terminal signal peptide

(residues 2–16) (Fig. 5A). We found that deletion of the predicted N

terminal signal peptide (residues 2–16, construct pPTEGFCP1nsp,

Fig. 5A) decreased the number of positively stained cells (from 80%)

to 10% during encystation. The staining was weak and limited to

cytosol and some small vesicles (Fig. 5B) and no cysts were observed

to be positively stained (data not shown), suggesting that the N

terminal signal peptide sequence is essential to target EGFCP1 to

the ESVs, and possibly to the cyst wall.

Overexpression of EGFCP1 increased the levels of cyst
formation

We further investigated the effect of EGFCP1 on cyst formation

using the EGFCP1 overexpressing cell line. The Protein levels of

the endogenous EGFCP1 plus vector expressed EGFCP1-HA in

the EGFCP1 overexpressing cell line increased significantly

(Fig. 5D, EGFCP1) relative to the control cell line which expressed

only the puromycin selection marker (59D5N-Pac) (Fig. 5A) [26].

We found that the cyst number in the EGFCP1 overexpressing cell

line (pPTEGFCP1, in which the egfcp1 gene is controlled by an a2-

tubulin promoter) increased by ,2.3-fold (p,0.05) relative to the

control cell line which expresses only the puromycin selection

marker (59n5N-Pac) (Figs. 5A and C), indicating that the

overexpressed EGFCP1 can increase the cyst formation. The cyst

number in the luciferase overexpressing cell line did not change

(ran32)(Figs. 5A and C). We also found that deletion of the

predicted N terminal signal peptide of EGFCP1 (residues 2–16,

construct pPTEGFCP1nsp) decreased cyst number by ,50%

(p,0.05) relative to the levels in the pPTEGFCP1 cell line during

encystation (Figs. 5A and C). We further analyzed whether the

protein levels of the EGFCP1nsp were changed. As shown by

Western blot analysis, the levels of EGFCP1nsp decreased

Figure 4. Localization of EGFCP1. The pPTEGFCP1 stable transfectants were cultured in growth medium (Veg) or encystation medium, harvested
at 24 h (Enc), and then subjected to immunofluorescence analysis using anti-HA and anti-CWP1 antibody for detection of EGFCP1-HA and CWP1
proteins. Panels A and B show that EGFCP1-HA and CWP1 localizes to the ER in a vegetative trophozoite, respectively. Panels D and E show that
EGFCP1-HA and CWP1 localizes to the ESVs in an encysting trophozoite, respectively. Panels G and H show that EGFCP1-HA and CWP1 localizes to the
ER and some big vesicles in an encysting trophozoite, respectively. Panel J shows that EGFCP1-HA localizes to the cyst wall and weakly to the cell
body in a cyst. Panel K shows that CWP1 localizes to the cyst wall of the same cyst. Panel C, F, I, or L is the merged images of A and B, D and E, G and
H, or J and K, respectively.
doi:10.1371/journal.pntd.0000677.g004
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significantly compared with that of wild type EGFCP1 during

encystation (Fig. 5D). The HA-tagged EGFCP1nsp protein can

be detected with a longer exposure (Fig. S5C). These results

indicate that EGFCP1 can increase the cyst formation and

deletion of the signal peptide from EGFCP1 reduced its protein

levels and cyst formation.

We further analyzed whether the transcript levels of the

EGFCP1nsp were changed. As shown by RT-PCR and

quantitative real time PCR analysis, the levels of HA-tagged

egfcp1nsp mRNA decreased significantly compared with that of

wild type HA-tagged egfcp1 during encystation (Fig. 5E, exogenous

egfcp1-ha). We did not detect any HA-tagged egfcp1 transcripts in

the 59n5N-Pac control cell line. In addition, the mRNA levels of

the endogenous egfcp1 plus vector expressed egfcp1-ha in the

EGFCP1 or EGFCP1nsp overexpressing cell line increased by

,5 or ,1.6-fold (p,0.05) (Fig. 5E, total egfcp1) relative to the

control cell line which expressed only the puromycin selection

marker (59D5N-Pac) (Fig. 5A) [26]. We also found that the levels of

the CWP1 protein and mRNA increased with the increase of the

cyst counts in the EGFCP1 overexpressing cell line (Fig. 5D and

E). As a control, the levels of the endogenous RAN protein and

mRNA in the EGFCP1 or EGFCP1nsp overexpressing cell line

did not change relative to the 59D5N-Pac control cell line (Fig. 5D

and E).

Release of EGFCP1 into medium during encystation
We further tried to understand whether EGFCP1 can be

released into medium. The EGFCP1 overexpressing cell line

(pPTEGFCP1) was cultured in growth or encystation medium

for 24 h. Both culture media were then immunoprecipitated

with anti-HA antibody and then subjected to Western blot

analysis. Intact EGFCP1 (a ,70-kDa band, which is slightly

Figure 5. Overexpression of EGFCP1 increased the levels of cyst formation. (A) Diagrams of the 59n5N-Pac, ran32, and pPTEGFCP1nsp
plasmid. The expression cassettes of the pac and egfcp1 genes (open box) are the same as in Fig. 3D. The ran32 plasmid constains a luciferase gene
under the control of the 32 bp ran promoter (dotted box). The pPTEGFCP1nsp plasmid contains an egfcp1 gene lacking the coding sequence for the
predicted signal peptide sequence (nucleotides 4–48) (gray box in Fig. 3D). (B) Localization of an EGFCP1 mutant with a deletion of signal peptide
(EGFCP1nsp). The pPTEGFCP1nsp stable transfectants were cultured in encystation medium and harvested at 24 h, and then subjected to
immunofluorescence analysis using anti-HA antibody for detection (left panel). The right panel shows the DAPI staining of cell nuclei. (C) Cyst count.
The 59n5N-Pac, pPTEGFCP1 and pPTEGFCP1nsp stable transfectants were cultured in encystation medium for 24 h, treated with water for 5 times,
and subjected to cyst count. The sum of total cysts is expressed as relative expression level over control. Values are shown as means 6 S.E. (D)
Deletion of signal peptide reduced the levels of the EGFCP1 protein. The 59n5N-Pac, pPTEGFCP1, and pPTEGFCP1nsp stable transfectants were
cultured in encystation medium for 24 h and then subjected to SDS-PAGE and Western blots. The blots were probed by anti-HA, anti-EGFCP1, anti-
CWP1, and anti-RAN antibodies. Equal amounts of proteins loaded were confirmed by detection of giardial RAN protein and Coomassie-stained total
protein loading control (in the bottom panel). Representative results are shown. (E) Deletion of signal peptide reduced the levels of the egfcp1
transcripts. The 59n5N-Pac, pPTEGFCP1, and pPTEGFCP1nsp stable transfectants were cultured in encystation medium for 24 h and then subjected
to RT-PCR (left panel) and quantitative real time PCR analysis (right panel). RT-PCR was preformed using primers specific for total egfcp1, exogenous
egfcp1-ha, endogenous egfcp1, cwp1, ran, and glycyl t-RNA synthetase genes. Real time PCR was preformed using primers specific for total egfcp1,
exogenous egfcp1-ha, endogenous egfcp1, cwp1, ran and glycyl t-RNA synthetase genes. Transcript levels of specific genes were normalized to glycyl
t-RNA synthetase (control) transcript levels [50]. Fold changes in mRNA expression are shown as the ratio of transcript levels in pPTEGFCP1 or
pPTEGFCP1nsp cell line relative to the 59n5N-Pac cell lines. Results are expressed as the means 6 S.E. of at least three separate experiments. N.D. =
Not determined. (F) Release of EGFCP1 into medium during encystation. 59D5N-Pac, pPTEGFCP1, and pPTEGFCP1nsp stable transfectants were
cultured in vegetative growth medium (Veg) or encystation medium (Enc) for 24 h. The cultured media were immunoprecipitated with the anti-HA
antibody and then analyzed by Western blot using anti-HA antibody.
doi:10.1371/journal.pntd.0000677.g005
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larger than the predicted ,61.8-kDa molecular mass of

EGFCP1 with ,1 kDa HA tag) was detected in the encystation

medium, whereas there was no evidence for EGFCP1 release

into the normal growth medium (Fig. 5F). We did not detect any

released EGFCP1nsp in the culture medium of the

EGFCP1nsp cell line and vector control cell line (Fig. 5F).

The results suggest that EGFCP1 can be released into medium

during encystation.

Encystation-induced expression of EGFCP2–6
Amino acid sequences with similarity to that of EGFCP1

were found in five other open reading frames including open

reading frames 113038 (EGFCP2), 114815 (EGFCP3), 16477

(EGFCP4), 16322 (EGFCP5) and 8687 (EGFCP6) (Fig. 1B).

RT-PCR and quantitative real time PCR analysis of total RNA

showed that the native transcripts of these EGFCPs were

present in vegetative cells and decreased significantly in 24 h

encysting cells (Fig. 6A). To further understand the function of

these putative EGFCPs, we prepared construct pPEGFCP2 (or

pPEGFCP3, pPEGFCP4, pPEGFCP5, pPEGFCP6) in which

the egfcp2 (or egfcp3, egfcp4, egfcp5, egfcp6) gene is controlled by

its own promoter and contains an HA epitope tag at its C

terminus (Fig. 6B) and stably transfected it into G. lamblia. A

,70-kDa protein was detected (Fig. 6C), which is slightly

larger than the predicted ,63.0-kDa molecular mass of

EGFCP3 (or EGFCP4, EGFCP5, EGFCP6) with the HA tag

(,1 kDa). The protein levels of the HA-tagged EGFCP3 (or

EGFCP4, EGFCP5, EGFCP6) increased significantly during

encystation (Fig. 6C). When the samples are not reduced, the

HA-tagged EGFCP3 (or EGFCP4, EGFCP5, EGFCP6) was

expressed as a smear with a molecular mass ranging above

,50 kDa band, indicating the formation of larger complexes

through intermolecular disulfide linkages (Fig. 6D). The HA-

tagged EGFCP2 protein was not detected in either vegetative

or encysting cells in Western blots (data not shown), suggesting

that the expression of the egfcp2 gene under its own promoter is

very low. Using the more sensitive immunofluorescence assay,

we were able to detect an up-regulation of the expression of the

HA-tagged EGFCP2 under the control of its own promoter

during encystation (Fig. 7A and see below).

Figure 6. Overexpression of EGFCP2–6 increased the levels of cyst formation. (A) Analysis of egfcp2–6 gene expression. RNA samples
were prepared from G. lamblia wild-type non-transfected WB cells cultured in growth (Veg) or encystation medium and harvested at 24 h (Enc).
RT-PCR and real time PCR were preformed using primers specific for egfcp2–6 and glycyl t-RNA synthetase genes. Representative results are
shown on the left panel. Transcript levels of specific genes were normalized to glycyl t-RNA synthetase (control) transcript levels [50]. Fold
changes in mRNA expression are shown as the ratio of transcript levels in encysting cells relative to vegetative cells. Results are expressed as the
means 6 S.E. of at least three separate experiments (right panel). (B) Diagrams of the pPEGFCP2 (or pPEGFCP3, pPEGFCP4, pPEGFCP5, and
pPEGFCP6) plasmid. The expression cassette of the pac gene (open box) is the same as in Fig. 3D. The egfcp2 (or egfcp3, egfcp4, egfcp5, egfcp6)
gene is under the control of its own 59-flanking region (open boxes) and the 39-flanking region of the ran gene (dotted box). The filled black box
indicates the coding sequence of the HA epitope tag. (C) Protein levels of EGFCP2–6 in different stages. The pPEGFCP2–6 stable transfectants
were cultured in growth medium (Veg) or encystation medium and harvested at 24 h (Enc). HA-tagged EGFCP2–6 proteins were detected using
an anti-HA antibody by Western blot analysis of reduced proteins. Their size are very similar, ,70 kDa, except that the HA-tagged EGFCP2
protein was not detected (data not shown). Coomassie-stained total protein loading control is shown below. Representative results are shown.
(D) Western blot analysis of nonreduced EGFCP2–6 proteins. HA-tagged EGFCP2–6 proteins were detected using an anti-HA antibody by
Western blot analysis of nonreduced proteins. Their pattern are similar, except that the HA-tagged EGFCP2 protein was not detected (data not
shown). (E) Cyst count. The 59n5N-Pac, pPEGFCP2–6 stable transfectants were cultured in encystation medium for 24 h and then subjected to
cyst count. The sum of total cysts is expressed as relative expression level over the control (59n5N-Pac). Values are shown as means 6 S.E. (F)
Secretion of EGFCP5 into medium during encystation. pPTEGFCP5 stable transfectants were cultured in vegetative growth medium (Veg) or
encystation medium (Enc) for 24 h. The cultured media were immunoprecipitated with the anti-HA antibody and then analyzed by Western blot
using anti-HA antibody.
doi:10.1371/journal.pntd.0000677.g006
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Overexpression of EGFCP2–6 increased the levels of cyst
formation

We further investigated the effect of EGFCP2 (or EGFCP3,

EGFCP4, EGFCP5, EGFCP6) on cyst formation. We found that

the cyst number in the EGFCP2 (or EGFCP3, EGFCP4,

EGFCP5, EGFCP6) overexpressing cell line increased by ,1.3-

2.0-fold (p,0.05) relative to the control cell line which expresses

only the puromycin selection marker (59n5N-Pac) (Figs. 5A and

6E), indicating that the overexpressed EGFCP2 (or EGFCP3,

EGFCP4, EGFCP5, EGFCP6) can increase the cyst formation.

Release of EGFCP5 into medium during encystation
We further tried to understand whether EGFCP2–6 can be

released into medium. The EGFCP2–6 overexpressing cell lines

(pPTEGFCP2–6) were cultured in growth or encystation medium for

24 h. Both culture media were then immunoprecipitated with anti-HA

antibody and then subjected to Western blot analysis. Intact EGFCP5

(a ,70-kDa band, which is slightly larger than the predicted ,63.1-

kDa molecular mass of EGFCP5 with ,1 kDa HA tag) was detected

in the encystation medium (Fig. 6F), whereas there was no evidence for

EGFCP5 release into the normal growth medium (Fig. 6F). We did not

detect any released EGFCP2 (or EGFCP3, EGFCP4, EGFCP6) in the

EGFCP2 (or EGFCP3, EGFCP4, EGFCP6) overexpressing cell line

(data not shown). The results suggest that EGFCP5 can be released

into medium during encystation.

Localization of EGFCP2–6
Immunofluorescence assays showed that the HA-tagged

EGFCP2–6 were localized to the ER in vegetative trophozoites

(data not shown). During encystation, the HA-tagged EGFCP2–6

were localized to the ESVs in encysting trophozoites (Figs. 7A, E,

I, M, Q). CWP1 was also colocalized with the EGFCP2–6

(Figs. 7B, C, F, G, J, K, N, O, R, S). The EGFCP2–6 were also

localized to the ER and some big vesicles in a few positive

encysting cells (data not shown). In the cyst stage, HA-tagged

EGFCP2–6 were localized to the cyst wall plus the cell body

(Figs. 7D, H, L, P, T). However, CWP1 was localized in the cyst

wall in the respective cysts (data not shown). The number of

positively stained cells detected in vegetative trophozoites was

small (,2% for EGFCP2, ,15% for EGFCP3, ,5% for

EGFCP4, ,20% for EGFCP5, ,2% for EGFCP6) and increased

(,10% for EGFCP2, ,50% for EGFCP3, ,20% for EGFCP4,

,80% for EGFCP5, ,10% for EGFCP6) during encystation.

Discussion

The unicellular G. lamblia can form a resistant cyst wall

composed of proteins and polysaccharides to protect it during

infection [4,5]. To date, only a few of cyst proteins have been

identified, including three CWPs and one HCNCp [7–9,16].

These proteins are highly expressed during encystation and are

mainly targeted to the cyst wall. In this study, we have identified a

new cyst protein (EGFCP1) with nine EGF repeats by screening of

the G. lamblia genome data base. EGFCP1 protein (but not

transcript) was expressed at higher levels during encystation and it

formed high molecular weight disulfide bonded complexes that

were detected in non-reducing gels. We also found that EGFCP1

was localized to the ER during vegetative growth and to the ESVs

of encysting trophozoites (it was also localized to the ER and some

Figure 7. Localization of EGFCP2–6. The pPEGFCP2–6 stable transfectants were cultured in encystation medium, harvested at 24 h (Enc), and
then subjected to immunofluorescence analysis using anti-HA antibody and anti-CWP1 antibody for detection. Panels A, E, I, M, and Q respectively
show that HA-tagged EGFCP2, EGFCP3, EGFCP4, EGFCP5, and EGFCP6 localize to the ESVs in encysting trophozoites. Panels B, F, J, N, and R show that
CWP1 localizes to the ESVs in these respective cells. Panels C, G, K, O, and S are the merged images of the DAPI staining and images of A and B, E and
F, I and J, M and N, or Q and R, respectively. Panels D, H, L, P, and T respectively show that HA-tagged EGFCP2, EGFCP3, EGFCP4, EGFCP5, and EGFCP6
localize to the cyst wall and weakly to the cell body in cysts.
doi:10.1371/journal.pntd.0000677.g007
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big vesicles in a few positive encysting cells, Fig. 4G) and to the cyst

wall and cell body of cysts. In addition, overexpression of EGFCP1

induced the cyst formation and deletion of signal peptide sequence

prevented targeting of EGFCP1 to the ESVs, and possibly to the

cyst wall. This deletion also reduced the EGFCP1 protein levels

and cyst formation, suggesting that a released form of EGFCP1

may help mediate the cyst wall synthesis.

Interestingly, CWP1–3, HCNCp and EGFCP1 all have signal

peptides, suggesting that they can enter the secretory pathway to

target to the ESVs and cyst wall. CWP1–3 are cysteine rich but the

percentage is ,5.7–7.5%, not as high as HCNCp and EGFCP1

(,14%). CWP1, CWP3, HCNCp and EGFCP1 have acidic pI

(3.59–4.72), but CWP2 has a pI of 8.13. HCNCp has an integral

membrane domain, but CWP1–3 and EGFCP1 have no

transmembrane domains. The CWP1–3, HCNCp, and EGFCP1

protein levels increased greatly during encystation and they could

target to the ESVs of encysting trophozoites [12,13]. It has also

been shown that the levels of EGFCP1 increased by ,3 fold

during encystation according to proteomics data [43]. CWP1–3

were transported exclusively to the wall of water-resistant cysts [7–

9]. However, HCNCp and EGFCP1 were transported to the cyst

wall and cell body of cysts, suggesting that they share the same

protein trafficking pathway. Like CWPs, EGFCP1 could also form

disulfide bonded heterodimers and oligomers [7–9]. Formation of

intramolecular or intermolecular disulfide bonds between the

cysteines could be critical for heterooligomer formation between

these cyst wall proteins in the ESVs and cyst wall [9,14], as

treatment of live encysting cells with DTT prevented the

formation of disulfide bonds, ESVs and cyst wall [13,15].

The EGF repeats of EGFCP1 are similar to those of the

tenascin family of extracellular matrix glycoproteins [21]. The

highly expressed tenascin-C in tumor stroma can stimulate tumor

cell proliferation by stimulating signal transduction pathways [21].

EGF repeats have been found in hundreds of extracellular proteins

and extracellular domains of membrane-bound proteins in

humans [22,36,37]. A single EGF-like repeat contains ,40 amino

acids with six positionally conserved cysteines forming 3 disulfide

bonds with a 1–3, 2–4, 5–6 pattern [22]. EGF-like repeats have

been found in secreted proteins or cell surface proteins that

function as extracellular matrix glycoproteins, cytokines, sensors or

receptors [21,22,36,37]. They are involved in many different

physiological functions, including extracellular matrix remodeling,

coagulation, fibrinolysis, cell adhesion, cell mobility, development,

cell proliferation and differentiation, and cell cycle progression

[21,22,36,37]. However, the functions of the EGF-like repeats in

these proteins are largely unknown and some of them are known

to be important for protein-protein interaction or cell adhesion

[22,36,37]. It has also been shown that the EGF-like repeats in

tenascin-C can modulate cell adhesion [44] and can act directly as

ligands for EGF receptor to activate EGF receptor signaling and

induce cell mitosis [45]. In addition, it has been shown that a

microneme protein with EGF repeat is functional for host cell

receptor recognition when secreted onto the surface of Toxoplasma

gondii [46]. Giardial cyst wall is a resistant extracellular wall that

helps cysts survive in the hostile environment and infect a new host

[2]. It is possible that giardial proteins with EGF repeats may also

be extracellular proteins or membrane-bound proteins and that

they may use the EGF repeats to modulate cell adhesion or induce

signaling. In additional to giardial EGFCP1, some HCMps (EGF

group of HCMps) also have EGF repeats [16]. HCNCp also has

nine EGF repeats as predicted by SMART analysis (http://smart.

embl-heidelberg.de) (data not shown). The similar localization of

EGFCP1 and HCNCp in the ESVs, cyst wall and cell body of

cysts [16] suggests that they may share the same novel protein

trafficking pathway and they may have similar functions, including

providing structural support of cyst wall. It has been proposed that

the cell body is the precursor of the excyzoite and the localization

of HCNCp and EGFCP1 in the cyst cell body suggests that they

may have a function during or after excystation [16]. It is also

possible that EGFCP1 and HCNCp may induce signal transduc-

tion during or after excystation when they are on the cyst wall. It is

possible that EGFCP1 may act as a ligand to induce encystation-

specific signal transduction.

EGFCP1 has two putative TIL cysteine rich domains (Pfam:

PF01826) (Fig. 1B). One is overlapped with an EGF repeat with all

conserved cysteines (Fig. 1B). TIL domains have been found in

some protease inhibitors. For example, Chymotrypsin/elastase

inhibitors with TIL domains have been found in Ascaris suum to

protect the parasites from host digestive enzymes [47]. The two

TIL domains of EGFCP1 are not typical because only 9 conserved

cysteines were found (one more cysteine can be found outside of

the TIL domain) (Fig. S4). We were unable to detect any inhibition

of trypsin and chymotrypsin activity by recombinant EGFCP1

despite using a variety of conditions (data not shown), suggesting

that the TIL domains of EGFCP1 are not complete and not

functional.

To date, only COWP1 and COWP8 have been localized to the

oocyst wall which are of interest [17,18]. We chose the type I

domain to do the search because every COWP has type I domain

but not type II domain. EGFCP1 was identified by screening of

the G. lamblia genome data base using the type I domain of

COWP8 as a query sequence. This search detected three other

open reading frames, including 114161, 14331, and 17328 (data

not shown). Open reading frames 14331 and 17328 were

annotated as VSP and HCMp, respectively. Open reading frame

114161 was described as a cysteine-rich protein with a C-terminal

transmembrane region [16]. It was not classified as HCMp

because it did not match the characteristics of $20 CxC and/or

CxxC [16].

Five other open reading frames were identified by searching

the G. lamblia genome data base with the amino acid sequences

of the EGFCP1, including open reading frames 113038

(EGFCP2), 114815 (EGFCP3), 16477 (EGFCP4), 16322

(EGFCP5) and 8687 (EGFCP6). They had high expectation

values (from 6.6e2149 to 5.0e264) to EGFCP1. We found that

these putative EGFCPs have similar characteristics with

EGFCP1: i) they were expressed at higher levels during

encystation (except that the expression of EGFCP2 was too

low to be detected); ii) they formed high molecular weight

disulfide bonded complexes that were detected in non-reducing

gels (except that the expression of EGFCP2 was too low to be

detected); iii) they were localized to the ER during vegetative

growth and partly to the ESVs of encysting trophozoites and to

the cyst wall and cell body of cysts; iv) Overexpression of these

five putative EGFCPs induced the cyst formation. Like

EGFCP1, EGFCP5 can also be released into the medium

during encystation. We did not detect the release of EGFCP2, 3,

4, 6 into the medium, possibly because they are too little to be

detected. All the six putative EGFCPs (including EGFCP1) have

acidic pIs, signal peptides (Signal P prediction) [34], .10%

cysteines and .8 EGF repeats, but they have no transmem-

brane domains (Fig. 2). Interestingly, sixty-seven cysteines of

these putative EGFCPs are positionally conserved. We also

detected 44 other open reading frames with high expectation

values (from 4.8e273 to 4.1e210) to EGFCP1 (data not shown).

Among these open reading frames, two have been annotated as

VSPs. One have been annotated as HCNCp. Twenty-four have

been annotated as HCMps. Six have been annotated as
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cysteine-rich proteins but not classified as HCMps (they are too

short and/or have ,20 CxC and/or CxxC) [16]. Five have

transmembrane domains as predicted by TMHMM (http://

www.cbs.dtu.dk/services/TMHMM/) (data not shown). Finally,

there are six open reading frames without transmembrane

domains as predicted by TMHMM (data not shown and Fig.

S6). They also have some characteristics of EGFCPs (Fig. S6).

They are cysteine-rich proteins with variable sizes and numbers

of EGF repeats (257–1093 amino acids and 2–11 EGF repeats)

(Fig. S6). However, only five and four of them have signal

peptides (Signal P prediction) [34] and acidic pIs, respectively

(Fig. S6). We were not able to include these open reading frames

into the list of EGFCPs (in Figs. 1B and 2) because of their

variable sizes and numbers of EGF repeats. Further studies will

be required to elucidate the functions of these putative EGFCPs.

Signal peptide is important for protein secretion and its

deletion may result in loss of protein function. It has been shown

that overexpression of the human hyaluronan and proteoglycan

linked protein 1 can increase tumorigenicity and deletion of the

signal peptide can decrease its tumorigenic activity [48]. The

results of our study revealed that overexpression of EGFCP1

induced the cyst formation and that deletion of the N-terminal

signal peptide (the EGFCP1Dsp mutant) led to a decrease of cyst

formation. Similarly, we found that overexpression of CWP3

resulted in an increase of cyst formation and that deletion of the

N-terminal signal peptide of CWP3 resulted in a decrease of cyst

formation (Sun et al., unpublished data). The EGFCP1Dsp

protein was present in cytosol and did not enter the secretory

pathway to reach the ESVs, and possibly cyst wall. In addition,

the protein levels of the EGFCP1Dsp in the pPTEGFCP1Dsp

cell line were very low relative to that in the pPTEGFCP1 cell

line, indicating that N-terminal coding region for signal peptide

was required for the EGFCP1 protein translation or stability.

The different expression levels could be not due to different

plasmid copy numbers in the pTEGFCP1Dsp and pTEGFCP1

cell lines, because similar plasmid copy numbers were found in

the these cell lines (data not shown). This indicates that N-

terminal coding region for signal peptide was required for the

EGFCP1 protein translation or stability. As shown in RT-PCR

and quantitative real time PCR, the decreased levels of

EGFCP1Dsp protein were due, at least in part, to a decrease

of steady state mRNA levels, suggesting that the signal peptide

coding region may interact with regulatory protein factors that

may play a role in regulation of transcription initiation or RNA

stability.

There is a reverse correlation between the steady state mRNA

and protein levels of the EGFCPs. During encystation, the

endogenous protein levels of the EGFCP1 increased, but the

endogenous mRNA levels of the EGFCP1 decreased. We also

found that the protein levels of the epitope-tagged EGFCPs

increased during encystation, but the mRNA levels of the tagged

EGFCPs decreased, even when the encystation-reduced a2-tubulin

promoter were used to drive the EGFCP1 expression. Further

studies will be required to elucidate whether the increased protein

levels of the EGFCPs could be due to an increase in their

translation rate or protein half life during encystation. It is also

possible that protein turnover may be decreased during

encystation.

Our findings provide new insight into distinct function of

cysteine-rich EGF-repeats containing cyst proteins in differentia-

tion of G. lamblia trophozoites into cysts. Our findings also lead to

greater understanding of parasite cyst wall, which is more complex

than expected, and provide a model to investigate the mechanism

of extracellular matrix secretion and assembly.

Supporting Information

Figure S1 Schematic representation of plasmid construction.

For constructing pPTEGFCP1, a PCR with oligonucleotides

TUBNF (GGCGGCTAGCCGCAGACGCATGA) and TUBBR

(GGCGGGATCCTTTTATTTCCGCCCGTCCAG) generated

a 0.3-kb product that was digested with NheI and BamHI. Another

PCR with primers egfcp1BF (GGCGGAGATCTATGATAGC-

CGCGGCCTTTCTC) and egfcp1MR (GGCGACGCGTCA-

CACATCTACCATCGC) generated a 1.7-kb PCR product that

was digested with BglII and MluI and cloned into NheI/MluI

digested pPop2NHA [27] with the 0.3-kb NheI/BamHI fragment.

The resulting plasmid, pPTEGFCP1, contained the egfcp1 gene

controlled by a2-tubulin promoter with an HA tag fused at its C-

terminus. For constructing pNEGFCP1, we integrated the AU1

tag sequence into the pNLop2-1 vector [28]. Complementary

oligonucleotides AUF (CTAGCAAAAACGCGTGATACGTAT-

CGATACATCTAAG) and AUR (AATTCTTAGATGTATC-

GATACGTATCACGCGTTTTTG) were phosphorylated and

annealed. The double-strand DNA fragment was ligated into

NheI/EcoRI-digested and dephosphorylated pNLop2-1 to produce

pNAU. The egfcp1 gene and its 360-bp 59-flanking region was

amplified with oligonucleotides egfcp1NF (GGCGGCTAGCT-

CAACAGAGGAGAACGA) and egfcp1MR, digested with NheI/

MluI, and ligated in place of the NheI/MluI-excised luciferase gene

in pNAU. The resulting plasmid, pNEGFCP1, contained the

egfcp1 gene controlled by its own promoter with an AU1 tag fused

at its C-terminus. For constructing pPTEGFCP1Dsp, a PCR

with oligonucleotides egfcp1dBF (GGGCGAGATCTATG-

GATGGCGAGGTGGATGTAAAC), egfcp1MR generated a

1.5-kb product was digested with BglII and MluI, and cloned

into BamHI/MluI digested pPTEGFCP1. The resulting plasmid,

pPTEGFCP1Dsp, contains an egfcp1 gene lacking the coding

sequence for the predicted signal peptide sequence (nucleotides 4–

48, residues 2–16). For constructing pPEGFCP2 (or pPEGFCP4,

pPEGFCP5, or pEGFCP6), a PCR with oligonucleotides

EGFCP2NF (GGGCGGCTAGCGAGGAGCTCTCTGCGAA-

AGAC) and EGFCP2MR (GGGCGACGCGTATTGCCATA-

GAAACAAGCTCC) (or EGFCP4NF (GGGCGGCTAGCTG-

CTGGTTTGAAGGAGGCGCT) and EGFCP4MR (GGGC-

GACGCGTCGCTGCTCTTTCACAATATCC), EGFCP5NF

(GGGCGGCTAGCTGGTCTTAAAGCGGCTGATGG) and

EGFCP5MR (GGGCGACGCGTAAGTGTTTTTACATTAC-

AGTG), EGFCP6NF (GGGCGGCTAGCTGACCTTGGGGG-

CAACGGGCG) and EGFCP6MR (GGGCGACGCGTCTGG-

GAGCTGCTGACTGCACA)) generated a 1.7-kb product was

digested with NheI and MluI, and cloned into NheI/MluI digested

pPTEGFCP1. The resulting plasmid, pPEGFCP2, pPEGFCP4,

pPEGFCP5, or pPEGFCP6, contains the egfcp2, egfcp4, egfcp5, or

egfcp6 gene controlled by its own promoter with an HA tag fused at

its C-terminus. For constructing pPEGFCP3, a PCR with

oligonucleotides EGFCP3NF (GGGCGGCTAGCTTAGAG-

TAAATTTAAGGGACT) and EGFCP3XR (GGGCGTCTA-

GACTATACCCATACGATGTTCCAGATTACGCTATCGC-

TATAGA AACAGGCTCC) generated a 1.7-kb product was

digested with NheI and XbaI, and cloned into NheI/XbaI digested

pPop2N [27]. The resulting plasmid, pPEGFCP3, contains an

egfcp3 gene controlled by its own promoter with an HA tag fused at

its C-terminus.

Found at: doi:10.1371/journal.pntd.0000677.s001 (0.03 MB

PDF)

Figure S2 Comparison of TSA417, HCNCp and EGFCP1. (A)

Summary of characteristics of TSA417, HCNCp and EGFCP1.

TSA417 is a representative of VSPs. (B) Comparison of cysteines
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of EGFCPs. The number of cysteine-containing motifs from Cx0C

to Cx20C is shown. The number zero is not shown.

Found at: doi:10.1371/journal.pntd.0000677.s002 (0.01 MB PDF)

Figure S3 Alignment of the amino acid sequences of the EGF or

EGF-like repeats of EGFCP1. The EGF or EGF-like repeats

predicted by SMART analysis (http://smart.embl-heidelberg.de)

in Fig. 1B were compared respectively. Amino acids that are

similar or identical to the consensus according to Clustal W 1.83

[49] are indicated in gray or black. Six positionally conserved

cysteines are shown with black triangles. Consensus sequence of

EGF-like repeats is shown below (Campbell LD, Bork, P. (1993)

Epidermal growth factor-like modules. Current Opinions in

Structural Biology. 3: 385–392.).

Found at: doi:10.1371/journal.pntd.0000677.s003 (0.06 MB PDF)

Figure S4 Alignment of the amino acid sequences of the two

putative TIL domains of EGFCP1 and Ancylostoma caninum anti-

coagulant precursors (AcSP6 and AcASP5), A. ceylanicum Ascaris-

type serine protease inhibitor (Acl), and Apis mellifera (honeybee)

chymotrypsin inhibitor (AMCI) (Accession numbers AAC47081,

AAC47082, AAD51336, and P56682, respectively). All alignments

were carried out using Clustal W 1.83 [49]. Amino acids that are

similar or identical to the consensus are indicated in gray or black.

The TIL domain has 10 positionally conserved cysteine residues

forming 5 disulfide bonds [41]. Eight positionally conserved

cysteines are shown with black triangles. Two positionally

conserved cysteines of these proteins except those in the two

TIL domains of EGFCP1 are indicated with gray triangles.

Cysteines that are not positionally conserved in the two TIL

domains of EGFCP1 are indicated with gray arrows. Each of the

two TIL domains of EGFCP1 has 9 cysteines and one more

cysteine is located in the N-terminal extended sequence (see

inserted sequence).

Found at: doi:10.1371/journal.pntd.0000677.s004 (0.03 MB PDF)

Figure S5 Coomassie Blue staining of purified EGFCP1.

Recombinant EGFCP1 protein was purified from E. coli using

nickel affinity chromatography under native conditions. Purified

EGFCP1 protein was analyzed by SDS-PAGE and Coomassie

Blue staining. (B) EGFCP1 protein levels in different stages. The

wild-type non-transfected WB cells were cultured in growth (Veg)

or encystation medium (Enc) for 2, 5, 9, and 24 h and then

subjected to SDS-PAGE and Western blot. The blot was probed

by anti-EGFCP1 antibody. A representative full-length result is

shown (also see Fig. 3B). (C) Detection of EGFCP1Dsp. This figure

is a longer exposure of anti-HA part of the Fig. 8D to show the

presence of HA-tagged EGFCP1Dsp.

Found at: doi:10.1371/journal.pntd.0000677.s005 (0.11 MB PDF)

Figure S6 Six open reading frames with some characteristics of

EGFCPs. Amino acid sequences with similarity to that of EGFCP1

were found in six other open reading frames including 92495,

16833, 14573, 10330, 113268 and 103983.The number and

location of the EGF or EGF-like repeats in EGFCPs are predicted

by SMART analysis (http://smart.embl-heidelberg.de). Two to

eleven EGF or EGF-like repeats are present in these open reading

frames. Thirty-four to one hundred and forty-six cysteines are

present in these open reading frames. They have no transmem-

brane domains as predicted by TMHMM (http://www.cbs.dtu.

dk/services/TMHMM/). Some have acidic pIs and signal

peptides (black boxes) as predicted by Signal P [34].

Found at: doi:10.1371/journal.pntd.0000677.s006 (0.05 MB PDF)

Table S1 Primers used for semi-quantitative RT-PCR and

quantitative real time PCR.

Found at: doi:10.1371/journal.pntd.0000677.s007 (0.01 MB PDF)
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