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Abstract
Ancient DNA research has developed rapidly over the past few decades due to im-
provements in PCR and next-generation sequencing (NGS) technologies, but chal-
lenges still exist. One major challenge in relation to ancient DNA research is to recover 
genuine endogenous ancient DNA sequences from raw sequencing data. This is often 
difficult due to degradation of ancient DNA and high levels of contamination, espe-
cially homologous contamination that has extremely similar genetic background with 
that of the real ancient DNA. In this study, we collected whole-genome sequencing 
(WGS) data from 6 ancient samples to compare different mapping algorithms. To 
further explore more effective methods to separate endogenous DNA from homolo-
gous contaminations, we attempted to recover reads based on ancient DNA specific 
characteristics of deamination, depurination, and DNA fragmentation with different 
parameters. We propose a quick and improved pipeline for separating endogenous 
ancient DNA while simultaneously decreasing homologous contaminations to very 
low proportions. Our goal in this research was to develop useful recommendations 
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1  | INTRODUC TION

Ancient DNA research provides direct evidence to reconstruct pre-
historic biogeographies and biodiversities, which can further help to 
explain long-standing questions in evolution, phylogeny, taxonomy, 
and adaptations (Chang et al., 2017; Delsuc et al., 2019; Palkopoulou 
et al., 2018; Sikora et al., 2019; Stoneking & Krause, 2011). Ancient 
DNA research has developed rapidly over the past thirty years due 
to improvements in PCR and next-generation sequencing (NGS) 
technologies. The first successful attempt to extract ancient DNA 
was made by Higuchi et al. (1984), where DNA of Equus quagga was 
extracted from muscle and DNA fragments of 228 bp were amplified 
(Higuchi et al., 1984; Kefi, 2011). With advancements in biomolecu-
lar techniques, it is now possible to extract and amplify ancient DNA 
fragments from different ancient species and biological samples, in-
cluding bones, teeth, soft tissue, fur, and subfossilized excrements 
(Kefi, 2011; Rizzi et al., 2012). Studies on ancient DNA were previ-
ously restricted to mitochondrial DNA and extremely short nuclear 
DNA fragments (Dabney, Knapp, et al., 2013; Kefi, 2011). However, 
the advent of NGS technology has enabled ancient DNA studies at 
the whole-genome level. Consequently, the number of ancient DNA 
studies has increased exponentially in the last decade (Hofreiter 
et al., 2015). The first whole genome of woolly mammoth was se-
quenced in 2008 (Miller et al., 2008). Three Neanderthal genomes 
were also sequenced in 2010, revealing extensive gene flow to mod-
ern humans (Green et  al.,  2010). In 2012, the first high coverage 
genome (~30×) of Denisovans was published (Meyer et  al.,  2012). 
In 2015, Allentoft et  al.  (2015 sequenced 101 ancient humans at 
the whole-genome level (Allentoft et  al.,  2015). At present, more 
than 1,100 ancient human and hominine genomes (Marciniak & 
Perry,  2017) and more than 300 ancient animal genomes (Fages 
et  al.,  2019; MacHugh et  al.,  2017; Palkopoulou et  al.,  2018) have 
been sequenced and published.

Although great breakthroughs have been made in ancient DNA 
extraction, library preparation and bioinformatics, some challenges 
remain (Gansauge & Meyer,  2013; Rohland et  al.,  2018; Schubert 
et al., 2012; Skoglund et al., 2014). Effective mapping and distinguish-
ing of the present-day DNA contaminations from endogenous an-
cient DNA are still complicated and difficult to perform, and need to 
be improved for ancient DNA analysis. It is particularly difficult to fil-
ter the present-day human DNA contamination from ancient human 
or hominine DNA (Green et al., 2009; Richards et al., 1995). Ancient 
DNA is often degraded into very small fragments due to physical, 
chemical, or biological factors during a long-term preservation in un-
favorable conditions. These effects always leave valuable marks on 

ancient DNA to help us distinguish it from modern DNA, including 
C-to-T changes at the ends of ancient DNA fragments induced by de-
amination, high proportion of purine bases at the first physical posi-
tion preceding ancient DNA fragments, and the severely fragmented 
nature (Skoglund et al., 2014; Stoneking & Krause, 2011).

Bioinformatics methods have been developed for mapping 
and separating endogenous ancient DNA from total ancient DNA 
(Schubert et al., 2012; Skoglund et al., 2014). In the mapping pro-
cedure for ancient DNA, the software BWA (Li & Durbin,  2009) 
with parameters set “aln -l 1,024 -n 0.03” is usually applied to map 
ancient sequencing data against the reference genome (Schubert 
et  al.,  2012). However, this process is time-consuming. The newly 
developed method BWA mem with the seed-reseed-extend algo-
rithm, provides improved efficiencies for mapping of ancient DNA 
(Li, 2013). Skoglund et al.  (2014) developed PMDtools to separate 
genuine endogenous DNA from homologous contaminations. This 
method is effective in filtering modern human contaminated DNA 
from ancient human DNA. However, it is difficult for the PMDtools 
to set an appropriate threshold value of PMDS when contamina-
tion rates cannot be accurately evaluated. Besides, the power of 
PMDtools is further weakened for extremely young or old ancient 
samples.

In this study, we collected whole-genome sequencing data gen-
erated by the Illumina Hiseq platform from 6 samples (representing 
three species) to optimize ancient DNA mapping. This step is critical 
to improving the mapping rate of endogenous ancient DNA. Since 
optimization of ancient DNA mapping may not only require filter-
ing of present-day contaminations from endogenous ancient DNA, 
we used our simulated data to further explored a more universal 
and effective filtration pipeline to filter present-day contaminations 
based on ancient DNA cytosine deamination, depurination and frag-
mentation. The final recommendations presented here enabled re-
duction of modern human DNA contamination to an extremely low 
level while maintaining a high rate of endogenous DNA. We sought 
to develop mapping guidelines that, when coupled with screening 
recommendations to control for modern DNA contamination, could 
increase the effectiveness of future studies of ancient DNA.

2  | MATERIAL S AND METHODS

We used simulated ancient DNA data to find more effective strate-
gies for mapping and separating endogenous ancient DNA from ho-
mologous contaminations. To make the design clearer, we drafted a 
flowchart to show our overall study design (Figure 1).

for ancient DNA mapping and for separation of endogenous DNA to facilitate 
future studies of ancient DNA.

K E Y W O R D S
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2.1 | Samples and data resource

We investigated previously sequenced whole-genome sequences 
from ancient animals. In total, we retrieved whole-genome sequenc-
ing (WGS) data from 6 ancient samples derived from different age 
groups of three species, namely four ancient humans (Homo sapi-
ens) (Fu et al., 2016; Sawyer et al., 2015; Schuenemann et al., 2017), 
one ancient goat (Daly et al., 2018), and one ancient aurochs (Park 

et al., 2015). The BAM files were downloaded from NCBI (https://
www.ncbi.nlm.nih.gov/). The 6 samples were used to explore the 
methods for mapping and separating endogenous DNA (Table  1). 
The reference genomes for each species used for genome mapping 
are listed in Table S1.

2.2 | DNA damage analysis and ancient 
DNA simulation

Removing all contaminations present in real ancient data is often dif-
ficult and can lead to inaccurate evaluation. Therefore, we did not 
use real ancient sequencing data for analysis, but rather, we used 
simulated ancient sequences with the same damage parameters 
as those of the real data. With simulated data, it is possible to tag 
contamination and endogenous reads, which allows more reliable 
quantification of the effects. The most important thing for this an-
cient DNA simulation is to know the real state of the ancient DNA 
data we collected, especially investigating the real ancient DNA 
length distribution and the real proportion of deamination induced 
misincorporation (C-to-T and G-to-A) at ends of ancient DNA frag-
ments. So we used mapDamage2.0 (Jonsson et  al.,  2013) to cal-
culate the frequency of C-to-T and G-to-A changes at the ends 
of DNA fragments (misincorporation.txt) and length distribution 
(length_distribution.txt). To simulate real contaminations, we se-
quenced ancient DNA isolated from an ancient giant panda sample 
with ~100 years old (CNP0000732) by DIPSEQ-T1 platform, and then 
filtered adaptors using Trimmomatic software based on adaptor se-
quences (>Adapter/1:AAGTCGGAGGCCAAGCGGTCTTAGGAAGA 
CAA;>Adapter/2:AAGTCGGATCGTAGCCATGTCGTTCTGTGAG 
CCAAGGAGTTG). Raw reads were then mapped by BLASTing raw 
reads to the nucleotide database (Lan et al., 2019) to obtain all contam-
inated reads. This contamination consisted of DNA from more than 
twenty thousand modern species, mostly consisting of bacteria, and 
the top 10 contaminant species have been listed in the Figure S1. We 
also mapped raw sequencing reads to the giant panda reference ge-
nome to identify endogenous DNA. However, the rate of endogenous 
DNA is extremely low (<0.001%) and therefore not included in further 
ancient DNA simulation of the giant panda. Real contamination data 

F I G U R E  1   The experimental approach flow chart. Parallelogram 
box means the software we used

TA B L E  1   The description of samples and sequencing data used for simulating ancient DNA sequences

Species Sample ID
Age (kyr 
BP) Data sources

Reads 
number

Bases 
number

Average length of DNA 
fragments (bp)

Homo sapiens JK2911 2.7 Schuenemann et al. 
(2017)

2.35E + 06 1.37E + 08 58.2

Homo sapiens Villabruna 14 Fu et al. (2016) 1.22E + 07 6.70E + 08 54.9

Homo sapiens AfontovaCava 3 17 Fu et al. (2016) 8.88E + 05 5.15E + 07 58.03

Homo sapiens Denisova_8 >50 Sawyer et al. (2015) 8.26E + 05 3.69E + 07 44.6

Bos primigenius British aurochs 6.7 Park et al. (2015) 7.51E + 07 3.48E + 09 46.29

Capra aegagrus 
hircus

Direkli5 11.5 Daly et al. (2018) 3.04E + 07 1.40E + 09 45.94

Abbreviation: BP, before present.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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were then added into simulated endogenous ancient DNA to test an-
cient genome mapping methods. We also added modern human DNA 
fragments (hg38 reference genome) into simulated ancient human 
DNA to explore the method for filtering homologue contamination. 
Finally, we used gargammel (Renaud et al., 2017) (perl gargammel.pl 
-n 1,000,000 --comp 0,cont_rate,endo_rate -f length_distribution.txt 
-mapdamage misincorporation_distribution.txt single_strand/double_
strand -o data/simulation data/) to simulate FASTQ files including one 
million reads of ancient DNA sequences for our six ancient samples. 
Parameters in gargammel were strictly set based on results calculated 
by mapDamage2.0, in order to simulate the real state of these six sam-
ples. Nine different contamination rates (cont_rate) were simulated 
(20%, 40%, 60%, 80%, 90%, 95%, 99%, 99.5%, and 99.9%) (Table S3). 
And the gargammel works as following: Step 1: Reference genome 
sequences were cut into different length fragments, which are in con-
sistent with real ancient DNA data length distribution (provided by 
mapDamage2.0). Step 2: The reference reads are added with different 
DNA damage characteristics which are in consistent with DNA dam-
age patterns of real ancient DNA data (also provided by mapDam-
age2.0). And, contamination reads will not be cut into different length 
fragments and added with DNA damage patterns as step 1 and step 
2. Contamination reads can be also generated from the reference ge-
nome of some target species. Step 3: Gargammel will generate a Fastq 
file including simulated real ancient data and simulated contamination 
data. And the percentage of simulated read ancient data in the Fastq 
file is consistent with the parameter “--com” of gargammel (Figure 1).

2.3 | Genome mapping of simulated ancient DNA

Ancient DNA damage, especially C-to-T changes, can result in mis-
mapping when ancient DNA fragments are mapped to reference 
genomes. Mapping methods and parameters used for modern DNA 
are not always suitable for ancient DNA (Schubert et al., 2012). We 
compared BWA aln and BWA mem to develop a more effective map-
ping strategy based on the characteristics of ancient DNA damage.

We used leeHom (Renaud et  al.,  2014) to trim adaptors and 
merge Illumina sequencing reads, and compared BWA aln (Version: 
0.7.17) and BWA mem (Version: 0.7.17) to enhance mapping meth-
ods for ancient DNA. Here, “bwa aln -l 1,024 -n 0.03” (MS param-
eters) (Schubert et  al.,  2012) was compared with BWA mem. The 
valid mapping hits were defined as reads with endogenous ancient 
DNA tags (all simulated endogenous ancient DNA were tagged be-
fore mapping) and with a mapping quality higher than 30. Because 
it might be suitable for study of ancient DNA, the most important 
part of the BWA mem algorithm is the seed-reseed-extend strategy. 
When seeding, BWA will do exactly mapping by using part of the 
read length (19 bp in length when using the default parameter) on 
the reference genome based on FM-index algorithm. A DNA frag-
ment in the read will be chosen as a seed when its length and number 
of successful matches meet thresholds the user set. Then, the seed 
will be used to extend both in reads and reference genome to find 
global match based on Smith-Waterman algorithm. This is mainly 

supported by two parameters including minimum seed length (pa-
rameter -k) and maximum seed length without reseeding (parameter 
-r). The parameter “-k” controls the seeding function; seeding can ac-
celerate genome mapping. Additionally, the algorithm searches for 
internal seeds inside a seed longer than x bp (x=[-k] * [-r]). We tried 
to optimize these two parameters to further explore more efficient 
mapping parameters for ancient DNA mapping. We tested BWA mem 
with -k (9/14/19/24/29) and -r (0.5/1/1.5/2/2.5) parameters. To eval-
uate mapping effectiveness, we defined three main criteria: (1) CRT: 
the contamination rate after treatment (the number of mapped con-
tamination reads/ the number of mapped reads); (2) LRE: the loss rate 
of endogenous DNA (the number of unmapped endogenous ancient 
reads/the number of endogenous ancient reads); (3) MT: the running 
time of mapping.

2.4 | Separating endogenous DNA from the 
contaminations

The unique ancient DNA characteristics, especially C-to-T and/or 
G-to-A changes at ends of DNA fragments help to improve filter-
ing of contaminated present-day DNA. We wrote a program named 
AncFil using Python (home page: https://github.com/tianm​ingla​
n/AncFil) to explore a more universal and effective pipeline for 
separating endogenous ancient DNA from homologous contamina-
tions. We first screened reads with at least “DeamNum” C-to-T or 
G-to-A mutations within the first or last “DetectRange” base pair at 
3’ and/or 5’ ends (“DoubleOrSingle”). For “DeamNum” (the number 
of C-to-T or G-to-A mutations), we tested one, two and three. For 
“DetectRange” (the base number), we tested five, ten and fifteen, 
while for “DoubleOrSingle,” either 3’ or 5’ end (parameter “or”) and 
both ends (parameter “and”) were included. We explored all 18 pos-
sible screening conditions by adjusting the parameter combinations 
(“DeamNum,” “DetectRange,” “DoubleOrSingle”) (Table S2). One can 
test more possible conditions by adjusting parameters “-DeamNum,” 
“-DetectRange,” and “-DoubleOrSingle.” Given that there is a natural 
tendency toward depurination at the 5’ ends of ancient DNA frag-
ments ( Briggs et  al.,  2007), we screened reads with an A or G at 
the position preceding the first base of the 5’ end. Finally, we evalu-
ated the effect of fragment length of ancient DNA on the separation 
of endogenous DNA. Here, two criteria were used to evaluate this 
pipeline: (1) CRT: the contamination rate after treatment (the num-
ber of contamination reads after filtering/the number of reads after 
filtering); (2) LRE: the loss rate of true endogenous DNA (the number 
of filtered endogenous ancient reads/the number of endogenous an-
cient reads before filtering);

Finally, PMDtools (Skoglund et al., 2014) were used to filter ho-
mologous contaminations using the same data and evaluating crite-
ria used to evaluate our recommended method above. Meanwhile, 
“-threshold” is one of the most important parameters in PMDtools 
for adjusting the strictness of the filtration. To make a complete 
comparison, we tested five threshold values (one, two, three, four, 
and five) to adjust the PMD scores by setting “-threshold.”

https://github.com/tianminglan/AncFil
https://github.com/tianminglan/AncFil
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3  | RESULTS

3.1 | Description of samples and the simulated data

We simulated a total of 90 ancient DNA datasets (Table  S3) con-
taining the same length distribution and damage patterns as the real 
dataset (Table  1). One million reads were finally simulated under 
each condition. The average length of ancient DNA data that was 
collected ranged from 45 bp to 58 bp (Table 1). The length distri-
butions for most ancient DNA datasets ranged from 30 bp to 70 
bp (Figure S2). The sample ages ranged from ~ 2.7 kyr BP (Before 
Present) to ~50 kyr BP, which provided a good basis to evaluate the 
influence of age on ancient DNA mapping and separation of homolo-
gous contaminations. The DNA damage analysis showed an obvious 
increase of deaminated substitutions with the frequency of C-to-T 
and G-to-A at the ends of DNA fragments ranging from 2% to 80% 
(Figure S3). Samples collected in our study included ancient DNA of 
different conditions, which enabled us to draw conclusions suitable 
for most ancient DNA samples.

3.2 | Comparing different mapping algorithms on 
ancient DNA

(a) CRT: the contamination rate after treatment (the number of 
mapped contamination reads/ the number of mapped reads); (b) LRE: 
the loss rate of endogenous DNA (the number of unmapped endog-
enous ancient reads/ the number of endogenous ancient reads); (c) 
MT: the running time of mapping.

The comparison was achieved by calculating the contamination 
rate after treatment (CRT), the loss rate of endogenous DNA (LRE), 
and the running time of mapping (MT) for each dataset, and perform-
ing Repeated Measurement Analysis of Variance. The average and 
median values of CRT, LRE, and MT of the two algorithms with differ-
ent contamination rates are shown in Table S4. The analysis showed 
no significant differences in CRT (F  =  1.42, p  =  .2870) and LRE 
(F = 0.44, p =  .5344). However, significant differences were found 
in MT (F = 41.57, p =  .0013) (Table S5) and BWA aln with the MS 
parameter requiring a multiple of 7.13 more times than BWA mem by 
default. We further evaluated the influence of different samples and 
different contamination rates on ancient DNA mapping. As shown in 
Table S6 and Figure 2, CRT levels were unchanged across different 
samples. The mean values of LRE were stable between contamination 
rates but not when the contamination rate was close to 100%.

We calculated CRT, LRE, and MT using different parameters -k 
(9/14/19/24/29) (Figure 3) and performed Repeated Measurement 
Analysis of Variance Analysis to compare the results generated 
under different parameters. There were significant differences in 
CRT (F  =  644.61, p  <  .0001), LRE (F  =  17.99, p  =  .0057), and MT 
(F  =  146.75, p  <  .0001) (Table  S7). LRE was highest at -k  =  29, 
and it increased as the value of k increased. LRE value decreased 
by ~0.20% from -k = 19 to -k = 9; however, this decrease continued 

to ~4.66% from -k = 29 to -k = 19, which was 22.3 times larger than 
that between -k = 19 and -k = 9 (Table S8). In addition, the running 
time significantly decreased from -k  =  9 to -k  =  19, but was rela-
tively stable and slightly longer when -k was larger than 19 (Table S8, 
Figure 3).

We evaluated the parameter -r (0.5/1/1.5/2/2.5) with the same 
method used to evaluate the parameter -k (Figure 4). Significant dif-
ferences were found in CRT (F = 392.45, p < .0001), LRE (F = 45.11, 
p = .0010), and MT (F = 9.19, p = .0002) (Table S9). A significant de-
crease in LRE was recorded when the set values of “-r” were greater 
than 1.5 and LRE reached the lowest level at -r = 2.5 (Table S10). 
Furthermore, the running time significantly decreased from -r = 0.5 
to -r = 1.5, but it was relatively stable and slightly longer when -r was 
greater than 1.5 (Table S10, Figure 4).

3.3 | Separation of endogenous DNA

Using unique ancient DNA characteristics, the homologous con-
tamination rate was reduced to a very low level (Figure  5). The 
mean values of CRT and LRE are also shown in Table S11. No sig-
nificant differences were found in CRT (F = 3.27, p = .1097) and LRE 
(F = 1.11, p = .3893) (Table S12).

When testing the influence of parameter “DeamNum” on sep-
aration of endogenous DNA, significant differences were found 
in CRT (F  =  26.01, p  =  .0011) and LRE (F  =  24.03, p  =  .0152) 
(Table  S13). An increase in “DeamNum” resulted in lower val-
ues for CRT, but higher values for LRE (Figure S4). We also cal-
culated CRT and LRE to evaluate the influence of the parameter 
“DoubleOrSingle” on ancient DNA mapping (Figure S5). Significant 
difference was found in values of CRT (F = 44.97, p = .0068) but 
not in LRE (F = 7.20, p =  .0748) (Table S14). The result showed a 
decline of 90.27% in CRT when screening the reads with C-to-T or 
G-to-A on single end (-DoubleOrSingle = or) compared to screen-
ing on both 3’ and 5’ ends (-DoubleOrSingle  =  and) (Table  S11). 
The homologous contamination rate was held to an average of 
0.92% by using the filtering strategy with “-DetectRange  =  15 
-DeamNum = 1 -DoubleOrSingle = or.”

We compared our method with PMDtools software. These 
two methods were run in parallel using the same dataset. The re-
sults generated by PMDtools with different parameters are shown 
in Table  S15. To make the comparison fairer, LRE values of the 
tested dataset were kept similar in both our pipeline and PMDtools. 
CRT values did not differ (Z = −1.171, p =  .241) between the two 
methods. However, the running time of our method was 15.43% 
of the runtime for PMDtools, and the difference was significant 
(Difference = 2.3mins, Z = −6.50, p = 8.28E−11). Although this com-
parison does not show that our tool outperforms PMDtools, it does 
demonstrate a fast and reliable complement to PMDtools.

We tried to screen reads with G or A residues preceding the first 
base at 5’ end. The average homologous contamination rate was 
2.25% after filtering using depurination characteristic.



     |  395XU et al.

4  | DISCUSSION

4.1 | Comparing BWA aln and BWA mem to improve 
ancient DNA mapping

BWA aln uses backward search for exact matching and its seeding 
function allows differences in the first few tens of base pairs on a 
read to search inexact matching (Li & Durbin, 2009). This can accel-
erate genome mapping but it also increases the probability of incor-
rect alignments. Therefore, disabling the seed function often tends 

to be more effective in ancient DNA mapping (Schubert et al., 2012). 
BWA mem, however, uses a re-seeding strategy to increase correct 
alignments when no maximal exact matches (SMEMs) can be found 
(Li, 2013). This could compensate the shortcoming of BWA aln men-
tioned above. In our experiment, no significant difference was found 
in CRT (F = 1.42, p = .2870) between Schubert's method (Schubert 
et al., 2012) and the BWA mem algorithm. Consequently, the perfor-
mance on ancient DNA mapping of BWA mem with default param-
eters (BWA mem -k 19 -r 1.5) was comparable to BWA aln with the 
MS parameters.

F I G U R E  2   The differences between 
BWA aln with MS parameters and 
BWA mem with default parameters. (a) 
Comparison of CRT. (b) Comparison of 
LRE. (c) Comparison of MT
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Additionally, the seed-reseed-extend strategy in BWA mem can 
help to accelerate the mapping process (Li & Durbin, 2009), and it 
resulted in a 87.70% decrease of MT compared to the BWA aln al-
gorithm. Therefore, BWA mem can improve the accuracy of ancient 
genome mapping in a shorter time than that required for analysis 
using BWA aln.

Soft clipping (Langmead & Salzberg,  2012) means that some 
nucleotides at either terminal of the reads can be omitted as de-
termined by the mapping scoring scheme. And it's one of most 
important issues to consider when using BWA mem. In our study, 
7.9% of mapped reads were soft clipped during mapping and 6% of 
soft-clipped reads contained C-to-T and/or G-to-A changes within 
soft-clipped regions. In other words, only  ~0.47% (7.9%*0.6%) 
mapped reads with damaged patterns were soft clipped, which 
was a small proportion when considering the large number of dam-
aged endogenous DNA. With regard to hard clipping (Langmead & 
Salzberg, 2012), this means that some nucleotides at either termi-
nal of reads can be omitted as determined by the mapping scoring 
scheme but the omitted nucleotides do not exist in the fragment. 
This is a special kind of soft clipping to mark the multiple mapping 
of a read. But only 0.0036% of mapped reads showed damaged pat-
terns. Therefore, soft clipping only slightly impacted the filtering of 
endogenous DNA by using deamination characteristics. In summary, 

BWA mem performed as well as BWA aln with MS parameters in this 
study, but BWA mem required less running time (87.70% time) than 
did the BWA aln method. Taking all results into account, BWA mem 
performed better than BWA aln.

4.2 | Exploring more accurate and effective 
mapping parameters of BWA mem

The parameters -k and -r are extremely important for the “seeding 
and reseeding” mapping stages in BWA mem (Li, 2013). The differ-
ent parameter values of -k and -r could significantly affect CRT, LRE, 
and MT, indicating that we can obtain ancient DNA mapping results 
with a lower contamination rate by optimizing these parameter val-
ues (Tables S7, S9).

The BWA mem algorithm only found the maximal exact matches 
(SMEMs) in a read while seeding and this algorithm can trigger 
re-seeding with SMEMs to reduce the loss of mis-mapping if SMEMs 
are larger than [-k*-r] ( Li, 2013). The large [-k*-r] values meant fewer 
re-seedings, which could accelerate the mapping process. This was 
consistent with the observation of runtime results. However, too 
long seeds could also make seed mapping against genomes more dif-
ficult and eventually more time-consuming.

F I G U R E  3   Comparison of BWA mem results with “-k” parameters. (a) Comparison of CRT. (b) Comparison of LRE. (c) Comparison of MT
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We also found that running time was more sensitive to changes 
in -k parameter than in -r (Table S8, Table S10, Figure 3, Figure 4), 
indicating that running time was mainly influenced by minimum seed 
length. The -r cannot affect seeding for SMEMs, but -k can influence 
both seeding and reseeding procedures (Li, 2013), which might be 
reason for their differing influence on running time. Finally, it took 
minimum runtime to save endogenous ancient DNA reads as much 
as possible when using “BWA mem -k = 19 -r = 2.5” for mapping of 
ancient DNA.

4.3 | Improving the separation of endogenous DNA

Among all kinds of homologous contaminations, the present-day 
human DNA is a very common contamination in ancient human 
DNA. This is because contaminations can easily be induced from the 
time samples are collected to the time DNA library preparation is 
performed. These homologous contaminations are extremely diffi-
cult to remove ( Skoglund et al., 2014).

In our testing, the proportion of homologous contamination 
that could be removed from the simulated raw data decreased 
with increase in simulated contamination rates, and there was 
a significant negative correlation between them (R2  =  0.391, 

p = .019). However, it remained possible to remove > 99% of ho-
mologous contaminations even when the simulated contamination 
rate reached 99% (Figure 6). It was notable that 99.9% homologous 
contamination was removed when the simulated contamination 
rate was only 95%. On average, 99.07% of contamination could be 
removed using our recommended screening method (Table  S16), 
which was lower than that reported by many other ancient DNA 
studies (Sawyer et  al.,  2015; Schuenemann et  al.,  2017). No sig-
nificant differences were found in endogenous DNA rates con-
sidering the different samples, different damage patterns, and 
different contamination rates: This demonstrated the universal 
property of our recommended method. Using the remaining en-
dogenous ancient reads, we summarized a best combination with 
DeamNum = 1, DetectRange = 15, and DoubleOrSingle = or.

To test a potentially more effective filtering strategy, we further 
screened reads with G or A residues preceding the first base at 5’ 
end of the DNA fragments. This depurination screening decreased 
the homologous contamination rate to 2.25% (the initial contamina-
tion rates were from 20% to 99.9%), which meant that this method 
enables recovery of more endogenous DNA (Table S17). Similar to 
deamination screening, filtering effect showed no difference in re-
lation to sample ages, which was largely due to weak correlation be-
tween depurination and samples ages. Sample age and the extent 

F I G U R E  4   Comparison of “BWA mem” results with “-r” parameters. (a) Comparison of CRT. (b) Comparison of LRE. (c) Comparison of MT
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F I G U R E  5   Comparison of deamination filtering with “-DetectRange” parameters. (a) Comparison of CRT after filtering. (b) Comparison of 
LRE after filtering
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of DNA fragmentation were not significantly correlated. DNA frag-
ments are usually heavily degraded due to depurination shortly after 
death (Dabney, Meyer et al., 2013; Sawyer et al., 2012). However, 
only 10%–40% of ancient DNA fragmentation is triggered by depuri-
nation although other factors can also result in DNA fragmentation. 
As such, it is difficult to identify more endogenous ancient reads by 
screening the DNA length. However, this has also been provided in 
our python script to support filtration by depurination and fragmen-
tation as week filtering options (not recommended).

5  | CONCLUSION

We found that BWA mem with the parameters -k = 19 and -r = 2.5 was 
comparable to BWA aln with MS parameters ( Schubert et al., 2012) 
when considering the recovery of ancient DNA, but had a signifi-
cantly shorter running time than did BWA aln with MS parameters. 
For the recovery of endogenous DNA from ancient sequencing 
data with homologous contaminations, we recommend screening of 
reads with parameters: –DeamNum = 1, –DetectRange = 15, and –
DoubleOrSingle = or, which could remove more than 99% of homol-
ogous DNA contaminations from the raw contaminated sequencing 
data. Overall, these recommendations for ancient DNA mapping and 
separation of endogenous DNA can benefit ancient DNA studies, 
especially for samples preserved under poor conditions.
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