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ABSTRACT
Background. Gastric cancer is one of the most common malignant cancers worldwide.
Despite substantial developments in therapeutic strategies, the five-year survival rate
remains low. Therefore, novel biomarkers and therapeutic targets involved in the
progression of gastric tumors need to be identified.
Methods. We obtained the mRNA microarray datasets GSE65801, GSE54129 and
GSE79973 from the Gene Expression Omnibus database to acquire differentially
expressed genes (DEGs). We used the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) to analyze DEG pathways and functions, and the Search
Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape to obtain the
protein–protein interaction (PPI) network. Next, we validated the hub gene expression
levels using the Oncomine database and Gene Expression Profiling Interactive Analysis
(GEPIA), and conducted stage expression and survival analysis.
Results. From the three microarray datasets, we identified nine major hub genes:
COL1A1, COL1A2, COL3A1, COL5A2, COL4A1, FN1, COL5A1, COL4A2, and
COL6A3.
Conclusion. Our study identified COL1A1 and COL1A2 as potential gastric cancer
prognostic biomarkers.

Subjects Bioinformatics, Molecular Biology, Gastroenterology and Hepatology, Oncology
Keywords Gastric cancer, Bioinformatics, Survival, Biomarker

INTRODUCTION
Gastric cancer (GC) is the fifth most common malignant cancer and the third leading
cause of cancer-related mortality worldwide (Bray et al., 2018). In 2018, there were more
than 1,000,000 new cases of GC and approximately 783,000 deaths (Bray et al., 2018;
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Siegel, Miller & Jemal, 2015). GC poses a great threat to public health, particularly in East
Asia where the incidence has increased remarkably. Over the last decade, considerable
progress has been made with finding and applying GC biomarkers in clinical diagnosis and
treatment. For example, HER2, a member of the human EGFR family, was recognized as
the most significant GC biomarker. GC’s HER2 overexpression rate reported across the
literature fluctuates between 9% and 38% (Gravalos & Jimeno, 2008; Okines et al., 2013).
Trastuzumab, a HER2-targeting drug beneficial for HER2-positive GC patients, is the
only targeted drug currently approved for advanced GC treatment (Gomez-Martín et al.,
2014). However, we still do not fully understand HER2’s role in gastric carcinogenesis.
Programmed death ligand 1 (PD-L1) is overexpressed in approximately 40% of GC cases,
designating it as a GC biomarker (Raufi & Klempner, 2015). PD-L1 and programmed cell
death protein 1 (PD-1) affect immune tolerance. Tumors evade immune surveillance
through the PD-1 pathway. The anti-PD-1 monoclonal antibody Pembrolizumab has
shown clinical efficacy in GC patients with high PD-1 expression (Fife & Pauken, 2011).
PD-1 pathway-blocking GC treatments and the potential biomarkers MET and E-cadherin
(Durães et al., 2014; Ferreira et al., 2005) deserve further study. It is important to explore
more clinically valuable GC biomarkers and therapeutic targets.

Microarray technology and bioinformatics analysis have recently become popular tools
in cancer research and are used to identify differentially expressed genes (DEGs). These
tools can also identify underlying biomarkers and therapeutic targets and their roles in
biological processes, molecular functions, and different pathways.

In order to avoid potential false positives from using one single microarray, we screened
three mRNA public datasets in our study to obtain DEGs between GC tissues and adjacent
noncancerous tissue samples. Additionally, we carried out Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and protein–protein interaction (PPI)
network analyses to show the molecular pathogenesis underlying carcinogenesis. Overall,
we identified 159 DEGs and nine hub genes as potential GC biomarkers.

MATERIALS & METHODS
Obtaining microarray data
Wedownloaded three gene expressionprofiles (GSE65801,GSE54129, andGSE79973) from
the Gene Expression Omnibus (GEO) dataset, an open data storage platform. GSE65801’s
microarray dataset consisted of 32 GC tissue samples and 32 paired noncancerous tissue
samples (Li et al., 2015). GSE54129’s dataset consisted of 111 GC tissues and 21 normal
tissue samples. GSE79973’s gene expression profile consisted of 10 GC samples and 10
normal adjacent samples (He et al., 2016).

Identifying DEGs
We utilized an online tool called GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)
to calculate the DEGs between GC tissues and normal samples (Barrett et al., 2013).
If one gene had more than one probe set or if one probe set did not have the
corresponding gene symbols, we averaged or removed them, respectively. We set the
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cut-off criteria as: |log2FC|>1.5 and adj. p-value <0.05 (fold change (FC) = GC tissue
sample expression/adjacent noncancerous sample expression).

Functional DEG annotation using KEGG and GO analyses
GO enrichment analysis and KEGG pathway enrichment analyses were conducted using
the Database for Annotation, Visualization, and Integrated Discovery (DAVID, version
6.8), which provides functional annotations for DEGs (Huang et al., 2007; Kanehisa, 2002).
We identified promising signaling pathways and functional annotations related to the
DEGs. P < 0.05 was considered statistically significant.

PPI network construction and module analysis
We used the Search Tool for the Retrieval of Interacting Genes (STRING) database to
construct the PPI network, and applied Cytoscape to visualize the network (Szklarczyk et al.,
2015). We set the cut-off criterion as confidence score >0.4. Next, we utilized theMolecular
Complex Detection (MCODE) tool to identify the significant PPI network module with
a node score cutoff = 0.2, a degree cutoff = 10, a maximum depth = 100, and a k-core
= 2 (Bader & Hogue, 2003). We then used DAVID to perform the functional and pathway
enrichment analyses for the significant module. We chose hub genes and constructed a
co-expression network of significant genes using cBioPortal (http://www.cbioportal.org)
(Cerami et al., 2012).

Hub gene validation and analysis
We used the online database Oncomine (http://www.oncomine.org), which integrates
numerous published microarray data, to validate the expression levels of the top nine GC
DEGs. We then reverified the expression of the nine selected genes using Gene Expression
Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn), a new interactive
online tool. Additionally, we continued to explore the differences in gene expression across
pathological stages. Overall survival analysis of the nine hub genes was performed using
the Kaplan–Meier plotter (http://kmplot.com/analysis/) (Cerami et al., 2012).

Prediction and enrichment analysis of microRNAs related to hub genes
We used Targetscan (http://www.targetscan.org), an online database that reveals potential
relationships between genes and microRNAs, to predict the microRNAs associated with
hub genes. Then, we performed enrichment analysis of the predicted microRNAs using
DNA Intelligent Analysis (DIANA-miRPath v3.0).

RESULTS
Screening differentially expressed genes in GC
Our analyses of GSE65801, GSE54129, and GSE79973 identified 1248, 1665, and 791 DEGs,
respectively. By intersecting the threeGEOdatasets, we also obtained 159 overlapping genes:
105 up-regulated genes and 54 down-regulated genes (Table 1). The DEGs are shown in
volcano plots and a Venn diagram in Fig. 1.
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Table 1 Screening of differentially expressed genes in gastric cancer.

DEGs List of gene symbols

Up-regulated DEGs COL8A1, INHBA, GREM1, COL1A1, SFRP4, SPP1,
THBS2, SULF1, BGN, CTHRC1, WISP1 PRRX1, FAP,
HOXC6, CRISPLD1, EDNRA, FN1, SPOCK1, ASPN,
COL10A1, CST1, THY1, RARRES1, COL12A1, FNDC1,
COL1A2, MFAP2, COL6A3, PDE3A, CDH11, COL4A1,
OLFML2B, ADAMTS2, VCAN, TNFAIP6, IGF2BP3,
TIMP1, NOX4, COL5A2, HOXC10, ADAM12, SNX10,
NID2, CPXM1, CLDN1, PMEPA1, SERPINH1, COL5A1,
CHN1, LOX, COL3A1, HOXA10, COMP, ANGPT2

Down-regulated DEGs ENPP6, ALDOB, TRIM36, KCNK10, EPN3, CAPN13,
LOC400043, ALDH1A1, NEDD4L, TMEM171, DGKD,
PXMP2, EPB41L4B, KIAA1324, SPINK2, B3GNT6,
SCNN1G, FMO5, ESRRG, ALDH6A1, LDHD, GCNT2,
FBXL13, SPTSSB, MYZAP, AKR7A3, HAPLN1, THSD4,
CPA2, PPP1R36, TMPRSS2, ZBTB7C, VSTM2A, LTF,
CNTN3, ATP13A4, SULT1B1, STX19, HEPACAM2,
RAB27B, SCNN1B, SLC26A7, CYP2C19, B4GALNT3,
AKR1C1, KCNJ15, GATA5, KAZALD1, LOC643201,
RDH12, XK, PIK3C2G, FER1L4, ALDH3A1, FBP2,
TMED6, ITPKA, UGT2B15, AMPD1, SLC26A9, CXCL17,
CA9, LIPF, PROM2, KCNE2, LYPD6B, FA2H, HHIP,
GC, PSAPL1, AXDND1, RFX6, PGC, CA2, ADH7, MAL,
FCGBP, PKIB, AADAC, VSIG2, ATP4A, KCNJ16, BCAS1,
SULT1C2, HPGD, CYP2C18, CWH43, CAPN8, ADH1C,
MUC5AC, SSTR1, ATP4B, SCIN, AKR1B10, CAPN9,
VSIG1, SOSTDC1, ACER2, SLC28A2, GIF, DPCR1,
HRASLS2, KRT20, GKN2, GKN1

Functionally annotating DEGs with GO and KEGG analyses
We utilized the DAVID database to identify the 159 genes’ potential biological functions
through GO and KEGG pathway enrichment analyses. In regards to biological processes
(BP), our results showed significantly enriched variations in cell adhesion, extracellular
matrix organization, oxidation–reduction processes, skeletal system development, collagen
catabolic processes, proteolysis, collagen fibril organization, xenobioticmetabolic processes,
digestion, and ion transmembrane transport. In terms of molecular functions (MF),
our results showed close correlations with calcium ion binding, extracellular matrix
structural constituents, oxidoreductase activity, heparin binding, integrin binding,
protease binding, collagen binding, platelet-derived growth factor binding, serine-type
endopeptidase inhibitor activity, and aldo-keto reductase (NADP) activity. Regarding
cellular components (CC), the genes mainly interacted with extracellular components,
such as the extracellular exosome, extracellular region, extracellular space, extracellular
matrix, and proteinaceous extracellularmatrix. KEGGpathway enrichment analysis showed
the pathways and functions closely associated with metabolism-associated signaling, such
as the PI3K-Akt signaling pathway, protein digestion and absorption, gastric acid secretion,
and focal adhesion (Fig. 2).
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Figure 1 Volcano plots and Venn diagram.DEGs were selected using |log2FC| > 1.5 and adj. p-value <

0.05 for the mRNA expression profiling sets GSE65801 (A) GSE54129 (C), and GSE79973 (C). The three
datasets showed an overlap of 159 genes (D).

Full-size DOI: 10.7717/peerj.9123/fig-1

PPI analysis and significant module identification
We conducted PPI analysis of the DEGs using the STRING database to identify the hub
genes and to show their interactions in GC development. The PPI network included 89
nodes and 252 edges. We further identified the candidate hub genes by calculating the PPI
network degree and set the cut-off criteria at degree ≥13. The top 10 candidate hub nodes
were COL1A1, COL1A2, COL3A1, COL5A2, COL4A1, FN1, MMP9, COL5A1, COL4A2,
and COL6A3. Additionally, we performed module analysis to identify the most significant
module with the highest score. The identified module contained nine candidate hub genes
except MMP9, indicating that it may perform critical PPI network biological functions.
We suggest that the nine candidate genes are hub genes of the PPI network (Fig. 3).

We performed GO analysis on the significant module in the PPI network, and
the results showed that the top module was highly involved in the collagen catabolic
process, extracellular matrix organization, extracellular matrix structure, collagen fibril
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Figure 2 Gene ontology and DEG pathway enrichment analysis in GC. (A) Biological process. (B)
Molecular function. (C) Cellular component. (D) KEGG.

Full-size DOI: 10.7717/peerj.9123/fig-2

organization, platelet-derived growth factor binding, SMAD binding, endoplasmic
reticulum lumen, extracellular matrix, and collagen trimer. KEGG pathway analysis
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Figure 3 PPI network of DEGs. (A) The PPI network of DEGs constructed using Cytoscape. The PPI
network included 89 nodes and 252 edges. (B) The top ten candidate hub nodes in the PPI network and
their DEGs. (C) The top ten candidate hub nodes acquired in the PPI network. Red represents the highest
significance, followed by tan. Yellow is the least significant. (D) The most significant module was obtained
from the PPI network of DEGs using MCODE.

Full-size DOI: 10.7717/peerj.9123/fig-3

showed that the genes in the hub module were closely connected with protein digestion
and absorption, ECM-receptor interaction, and amoebiasis (Table 2). Subsequently, we
utilized the cBioPortal online platform to construct the co-expression network of the nine
hub genes (Fig. 4) and analyze their biological characteristics (Fig. 5).

Hub gene validation and analysis
The Oncomine database collects great quantities of tumor gene expression data, while
GEPIA utilizes cancer sample sequencing expression data from the Cancer Genome Atlas
(TCGA) and Genotype-Tissue Expression (GTEx) projects. We selected datasets related
to GC to verify their hub gene expression. Based on the Oncomine and GEPIA analysis
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Table 2 GO and KEGG pathway enrichment analysis of DEGs in the most significant module.

Category Term Count in
gene set

P-value

GOTERM_BP collagen catabolic process 11 0.000
GOTERM_BP extracellular matrix organization 11 0.000
GOTERM_BP collagen fibril organization 7 0.000
GOTERM_MF extracellular matrix structural constituent 7 0.000
GOTERM_MF platelet-derived growth factor binding 5 0.000
GOTERM_MF SMAD binding 3 0.000
GOTERM_CC endoplasmic reticulum lumen 12 0.000
GOTERM_CC extracellular matrix 11 0.000
GOTERM_CC collagen trimer 9 0.000
KEGG_PATHWAY Protein digestion and absorption 10 0.000
KEGG_PATHWAY ECM-receptor interaction 9 0.000
KEGG_PATHWAY Amoebiasis 8 0.000

Figure 4 Interaction network hub gene analysis.Hub genes and their co-expression genes were analyzed
using cBioPortal. Nodes with bold black outlines represent hub genes. Nodes with thin black outlines rep-
resent co-expression genes.

Full-size DOI: 10.7717/peerj.9123/fig-4

results between cancer and normal tissue, we further verified that the hub gene expression
rose significantly across the different GC datasets (Figs. 6 and 7). We also analyzed the
expression levels of selected genes in different GC stages. COL1A1, COL1A2, COL3A1,
COL5A1, COL5A2, and COL6A3 showed notable differences across different GC stages.
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Figure 5 The interaction network’s biological process analysis. The node color refers to the corrected P-value of ontologies. P-value < 0.05. Or-
ange represents the smallest p-value, followed by yellow, and white represents the largest p-value. The node size refers to the numbers of genes in-
volved in the ontologies. The larger the node diameter, the more genes involved in the node.

Full-size DOI: 10.7717/peerj.9123/fig-5
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Table 3 The potential microRNAs associated with the hub genes.

Gene Predicted microRNAs Gene Predicted microRNAs

1 COL1A1 hsa-miR-29c-3p 6 FN1 hsa-miR-613
hsa-miR-29b-3p hsa-miR-1271-5p
hsa-miR-29a-3p hsa-miR-96-5p
hsa-miR-4500 hsa-miR-1-3p
hsa-let-7g-5p hsa-miR-206

2 COL1A2 hsa-miR-29b-3p 7 MMP9 hsa-miR-942-3p
hsa-miR-29a-3p hsa-miR-6734-3p
hsa-miR-29c-3p hsa-miR-3713
hsa-miR-4458 hsa-miR-4450
hsa-let-7d-5p hsa-miR-6792-3p

3 COL3A1 hsa-miR-29c-3p 8 COL5A1 hsa-miR-29a-3p
hsa-miR-29b-3p hsa-miR-29c-3p
hsa-miR-29a-3p hsa-miR-29b-3p
hsa-miR-4458 hsa-miR-493-3p
hsa-let-7d-5p hsa-miR-135a-5p

4 COL5A2 hsa-miR-29a-3p 9 COL4A2 hsa-miR-4458
hsa-miR-29c-3p hsa-miR-29b-3p
hsa-miR-29b-3p hsa-miR-29c-3p
hsa-miR-4458 hsa-miR-29a-3p
hsa-let-7d-5p hsa-miR-98-5p

5 COL4A1 hsa-miR-29b-3p 10 COL6A3 hsa-miR-133a-3p.1
hsa-miR-29c-3p hsa-miR-29a-3p
hsa-miR-29a-3p hsa-miR-29c-3p
hsa-miR-124-3p.1 hsa-miR-29b-3p
hsa-miR-140-3p.1 hsa-miR-148a-3p

COL4A1, FN1, and COL4A2 showed no clear differences across various stages (Fig. 8). We
performed overall survival analysis of the nine hub genes using the Kaplan–Meier plotter
and the results showed a close correlation with survival time. Figure 9 shows the remarkable
difference in overall survival between the low- and high-expression groups. GC patients
with high COL1A1, COL1A2, COL3A1, COL5A2, COL4A1, FN1, COL5A1, COL4A2, and
COL6A3 expression levels showed worse overall survival (Fig. 9).

Prediction and enrichment analysis of hub gene-related miRNAs
We predicted the miRNAs associated with the hub genes’ mechanisms and regulatory
network (Table 3) and conducted enrichment analysis (Fig. 10). GO analysis showed that
the miRNAs were significantly enriched in the toll-like receptor TLR1:TLR2 signaling
pathway, neurotrophin TRK receptor signaling pathway, and Fc-epsilon receptor signaling
pathway. KEGG pathway enrichment analysis showed that they were mostly enriched in
the prolactin signaling pathway, Ras signaling pathway, Hippo signaling pathway, and
MAPK signaling pathway.
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Figure 6 Heat map of differential expression between clinical GC samples and normal samples in the
Oncomine dataset. The overexpression (red) or underexpression (blue) of target genes in eight validation
datasets. In each dataset, all genes were sequenced from high to low according to their expression differ-
ences between tumor and normal tissues, and then the target gene sequencing percentiles were analyzed.
Cell color was determined by the gene rank percentile for the dataset analyses (the more overexpressed the
gene, the redder the dataset color, and the more underexpressed genes were blue). 1. Diffuse gastric ade-
nocarcinoma vs. normal (Chen et al.,, 2003). 2. Gastric intestinal type adenocarcinoma vs. normal (Chen
et al.,, 2003). 3. Gastric mixed adenocarcinoma vs normal (Chen et al.,, 2003). 4. Diffuse gastric adenocar-
cinoma vs. normal (Cho et al.,, 2011). 5. Gastric intestinal type adenocarcinoma vs. normal (Cho et al.,,
2011). 6. GC vs. normal (Cui et al.,, 2011). 7. Gastric intestinal type adenocarcinoma vs. normal (DÉrrico
et al.,, 2009). 8. GC vs. normal (Wang et al.,, 2012).

Full-size DOI: 10.7717/peerj.9123/fig-6
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Figure 7 (A-J) Boxplots showing the hub gene expression differences between GC and normal tissues.
Full-size DOI: 10.7717/peerj.9123/fig-7

DISCUSSION
The study of a cancer’s molecular mechanism guides its classification, treatment, and
the progress of its targeted immunotherapy. Large-scale research and clinical trials
have provided individualized GC treatment possibilities. Despite substantial progress
in understanding the underlying molecular mechanism and implementing new therapeutic
strategies, the five-year survival rate remains low. The tumorigenesis mechanism remains
poorly understood. Therefore, it is crucial to identify novel biomarkers and therapeutic
targets involved in GC tumor progression.

Recent studies achieved preliminary results by screening biomarkers of different
pathological GC types (Durães et al., 2014; Gravalos & Jimeno, 2008; Rong et al., 2018).
In our study, we screened multiple datasets to find more GC biomarker candidates and
prove their prognostic value. From three microarray datasets, we identified nine major
hub genes: COL1A1, COL1A2, COL3A1, COL5A2, COL4A1, FN1, COL5A1, COL4A2, and
COL6A3.
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Figure 8 Stage plots of GC hub genes. (A) COL1A1, (B) COL1A2, (C) COL3A1, (F) COL5A1, (G) COL5A2, and (H) COL6A3 showed significant
differences in different GC stages. (D) COL4A1, (I) FN1, and (E) COL4A2 were not significantly different across various stages.

Full-size DOI: 10.7717/peerj.9123/fig-8

We found that eight of the nine hub genes came from the collagen gene family, which
participates in the formation of collagen in extracellular matrix proteins. The collagen
family consists of 28 members numbered with Roman numerals (Ricard-Blum, 2011).
Previous studies have found that abnormal collagen gene expression is usually related to
connective tissue disease or osteoporosis (Wu, Yu & Zhou, 2017; Yamaji, 2017). Type I
collagen is the most abundant protein in connective tissue and its increased expression is
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Figure 9 Overall survival analysis of the nine hub genes ((A) COL1A1, (B) COL1A2, (C) COL3A1, (D) COL5A2, (E) COL4A1, (F) CFN1, (G)
COL5A1, (H) COL4A2, and (I) COL6A3) were plotted using the Kaplan–Meier online platform. P < 0.05 was considered statistically significant.

Full-size DOI: 10.7717/peerj.9123/fig-9
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Figure 10 (A) miRNAGO and (B) pathway enrichment analyses closely associated with hub genes. The
bubble diameter represents the number of genes involved in the enrichment term, and the bubble color
represents -log10 (p-value).

Full-size DOI: 10.7717/peerj.9123/fig-10

closely related to fibrotic lesions (Yamaji, 2017). Recent evidence has shown that COL1A1
and COL1A2’s mRNA and protein levels are commonly overexpressed in GC patients
(Li, Ding & Li, 2016). Moreover, high COL1A1 and COL1A2 expression may predict poor
clinical outcomes for GC patients (Rong et al., 2018). COL3A1 overexpression has been
confirmed in multiple cancers, such as bladder cancer, while the impact of COL3A1
expression level in GC is not completely understood (Gao et al., 2016; Liu et al., 2018; Yuan
et al., 2017). Lower COL5A2 expression indicates better overall survival in bladder cancer
patients, suggesting that it is a prognostic biomarker (Li et al., 2017; Zeng et al., 2018).
Although bioinformatics analysis has suggested that COL5A2 is a candidate GC biomarker,
its precise regulatory mechanism is still unclear (Wang, 2017). Previous studies suggested
that COL4A1 was upregulated in multiple malignancies including GC, and that elevated
COL4A1 expression might confer trastuzumab resistance in GC patients (Huang et al.,
2018; Miyake et al., 2017). COL4A1’s expression level and mechanism requires further
study. There have also been few reports on FN1, COL5A1, COL4A2, and COL6A3 genes.
Previous studies on COL1A1, COL1A2, COL4A1, and COL5A2 have confirmed the
expression dysregulation of these biomarkers (Huang et al., 2018; Li, Ding & Li, 2016; Zeng
et al., 2018). In our study, we identified potential new biomarkers COL3A1, COL5A1,
COL4A2, and COL6A3. Prior research on collagen genes mainly focused on connective
tissue disease, muscle and ligament-related diseases, or the association between hub genes
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and tumors (Huang et al., 2018; Li, Ding & Li, 2016; Yuan et al., 2017; Zeng et al., 2018).
More attention should be given to the collagen gene family’s prognostic and therapeutic
value in tumorigenesis, particularly in GC.

The collagen gene family may play a role in the proliferation, invasion, and metastasis
of GC cells. Enrichment analysis and miRNA prediction results provide the potential
mechanisms for the collagen gene family’s involvement in GC development (Figs. 2
and 10, Table 3). Previous studies have confirmed these mechanisms (Ao et al., 2018).
Silencing COL1A2 and COL6A3 can inhibit the proliferation, migration, and invasion of
GC cells, and can promote cell apoptosis through the PI3k-Akt signaling pathway (Ao et
al., 2018). MiR-129-5p and let-7i miRNA are reported to participate in GC development
via COL1A1 expression (Shi et al., 2019;Wang & Yu, 2018). The key genes’ involvement in
GC is currently poorly understood, but our enrichment analysis results provided potential
pathways that can be validated by further experiments.

It is worth noting that intratumor stroma proportions have been proposed as significant
indicators of GC prognosis (Lee et al., 2017). Previous studies have suggested that a high
matrix proportion in GC patients means a poor prognosis (Ham, Lee & Hur, 2019; Kemi,
Eskuri & Kauppila, 2019; Lee et al., 2017). Collagen genes play a crucial role in cell matrix
formation, and their abnormal expression may lead to changes in matrix proportions. Our
study found that a high key collagen gene expression indicated a poor GC prognosis. This
partly confirms the above view from a bioinformatics perspective. However, the regulatory
mechanism of key collagen genes in GC remains unclear. The identified enrichment
pathway and microRNAs may help clarify the mechanism, and can be further applied in
clinical prognosis evaluation and treatment.

The current study is only a preliminary report. We cannot ignore the possibility of
heterogeneous results in integrated bioinformatics analysis due to sample source and
quantity limitations. Although the nine hub genes showed remarkable clinical potential in
our survival analysis, further basic and clinical trial studies are needed.

CONCLUSION
In summary, we identified DEGs that may be involved in GC initiation or progression. We
identified a total of 159 DEGs and nine hub genes as potential prognostic GC biomarkers,
and validated them using preliminary survival analysis. Our study provides new therapeutic
targets for GC treatment and suggests data mining and integration as promising tools in
malignant tumor biomarker detection. Since tumor biomarkers need to be validated by
clinical data, further experiments should be conducted to confirm our conclusions.
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