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Cancer stem cells play an essential role in therapy response and aggressiveness of

various cancers, including lung adenocarcinoma (LUAD). Interestingly it also shares many

features of embryonic stem cells (ESCs). Recently, long non-coding RNAs (lncRNAs)

have emerged as a critical regulator of cell physiology. Here, we used expression data

of ESCs, LUAD, and normal lung to identify 198 long non-coding hESC-associated

lncRNAs (hESC-lncRNAs). Intriguingly, K-means clustering of hESC-associated lncRNAs

identified a subgroup of LUAD patients [undifferentiated LUAD (uLUAD)] with high stem

cell–like characteristic, decreased differentiation genes expression, and poor survival.

We also observed that the uLUAD patients had overexpression of proteins associated

with cell proliferation. Interestingly, uLUAD patients were highly enriched with the

stemness-related gene sets, and had higher mutation load. A notable result observed

was high infiltration of T cells and a higher level of neopeptides in uLUAD patients,

making these patients an optimal candidate for immunotherapy. Further, feature selection

using greedy algorithm identified 17-hESC-lncRNAs signature, which showed significant

consistency with 198 hESC-lncRNAs–based classification, and identified a group of

patients with high stem cell–like characteristic in the 10 most common cancer types and

CCLE cell lines. These results suggest the conventional role of hESC-lncRNAs in stem

cell biology. In summary, we identified a novel subgroup of LUAD patients (uLUAD) using

a set of hESC-lncRNAs. The uLUAD patients had high stem cell–like characteristic and

reduced survival rate and may be referred for immunotherapy. Furthermore, our analysis

also showed the importance of lncRNAs in cancer and cancer stem cells.
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INTRODUCTION

Lung adenocarcinoma (LUAD) is a primary subtype of lung cancer with an abysmal survival
rate (1–3). The majority of LUAD patients are diagnosed at a later stage and are medicated with
radiation and chemotherapy irrespective of heterogeneous disease (4, 5).

Recently, advancement in immunotherapy has proved to be useful for the treatment of LUAD
patients (6–8). However, not all patients respond to immunotherapy efficiently (8). Thus, it is
imperative to identify the novel subgroups of LUAD patients for better treatment strategies.
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Experimental results and bioinformatics analysis of existing
high-throughput data have shown that cancer stem cells (CSCs)
play a crucial role in the determination of aggressiveness,
response to the drug, and resistance to various kinds of therapies
in many cancer types, including LUAD (9, 10). It has been
hypothesized that carcinogenesis and early development of
embryo share molecular similarities, and dedifferentiation leads
to the pluripotent nature of cancer cells (11). Additionally, many
factors associated with reprogramming in the embryonic state are
implicated in cancers (11, 12). These observations also suggest
that carcinogenesis and pluripotency share activation of common
signaling pathways (11, 12).

Recently, long non-coding RNAs (lncRNAs) have been
implicated in various aspects of cancer development (13, 14).
Previous findings have shown that lncRNAs play a significant
role in regulating pluripotency in ESCs (15–17). However, a
comprehensive analysis to identify the lncRNAs that regulate
pluripotency and carcinogenesis must be explored.

In the current study, we have utilized the ESC RNA
Sequencing (RNA-Seq) data and The Cancer Genome Atlas
(TCGA) cancer patients’ data to identify and catalog the lncRNAs
with a potential role in cancer development and progression.
Further, we applied a greedy algorithm to propose a signature
for the identification of a subclass of LUAD patients with high
stem cell–like characteristics and poor survival. We also validated
the utility of this signature in other solid tumor types. Lastly,
we concluded that cancer cell lines with high stem cell–like
characteristics, as identified by the lncRNA signature, showed
high resistance to various kinds of chemotherapy, suggesting that
patients with high stem cell–like characteristics may require an
alternative approach for more effective therapy.

MATERIALS AND METHODS

Patients, RNA-Sequencing Data, and
Expression Analysis
Level 3 count and FPKM RNA-Seq data for normal and tumors
were obtained from TCGA–Genomic Data Commons (GDC)
website. Lung cancer Michigan RNA-Seq data from previous
publication were used as a validation set for expression data
analysis and test set for survival analysis (18). RNA Sequencing
data corresponding to embryonic stem cells (ESCs) H7, HUES1,
HUES8, and HUES9 were obtained from GEO series accession
number GSE102311 (19). Another set of RNA-Seq data for
H9 and SC12-03 was downloaded from GEO series accession
number GSE107552 (20). Clinical data for all the survival
analysis were obtained from TCGA-GDC. The TCGA-LUAD
patients also included 13 patients with large cell neuroendocrine
carcinoma (LCNEC).

The stemness data for the TCGA patients were downloaded
from the National Cancer Institute GDC website and the
neoantigen data from the previous publications (21, 22). The
reverse-phase protein expression data were downloaded from
the Cancer Proteome Atlas (https://bioinformatics.mdanderson.
org/public-software/tcpa/). For the normal human bronchial
epithelial cells, the raw data (fastq files) were downloaded from

NCBI SRA (SRA: SRP157114) using the SRA toolkit. fastp with
the default values was used for quality control and adapter
trimming (23). The reference genome and annotation files for
GRCh37 were downloaded from Ensembl. STAR (2.7.3) was used
for alignment and to obtain the count values. Coordinate sorted
bam files obtained from STAR were used with StringTie (2.1.1) to
obtain the FPKM values.

Expression Analysis
Raw counts were used for all the differential expression analysis.
All the genes with an expression of more than five average counts
across the sample group were considered as “expressed,” and
genes with fewer than five average counts across the sample
groups were considered “not expressed.” To identify the hESC-
lncRNAs, lncRNAs expressed in LUAD and not expressed in
normal were pulled out, and differential expression analysis was
performed using a t-test. Long non-coding RNAs with > 5-fold
higher expression in LUAD compared to normal with 5% FDR
and more than five average counts in ESCs were considered
as positive stemness-associated lncRNAs. Similarly, lncRNAs
with < 0.2-fold differential expression in LUAD compared to
normal with 5% FDR were considered as negative stemness-
associated lncRNAs.

Pathway Analysis, Network Analysis, and
Gene Set Enrichment Analysis
To get a broad understanding of the function of the protein-
coding genes (PcGs), pathway and network analyses were done
using the Metascape tool (http://metascape.org) (24). Metascape
performs the comparative analysis of datasets across multiple
experiments. Gene Ontology (GO) analysis was also performed
using Metascape. Gene set enrichment analysis (GSEA) software
from Broad Institute (25) was used for both preranked and
default GSEA.

Survival Analysis
Clinical data for TCGA patients were downloaded from the
TCGA-GDC server and merged with expression data. For
Michigan dataset (test set), patients’ data were obtained from
previous publications (18, 26). All Kaplan–Meier (KM) analysis
was done using the log–rank test in GraphPad software version
8.2.1 (San Diego, CA, USA). For Cox regression analysis, the
survival package was used in the R environment. Hazard ratio
(HR) with a p < 0.05 was considered significant. For stemness
prognostic score (SPS) calculation, the following equation was
used: SPS=

∑
(βi × expressioni)

where β is Cox regression coefficient, and i is gene.

Statistical Analysis
The comparison of two groups was made using a two-sided t-
test, and the resulting lncRNAs with p < 0.05 were considered
significant. Similarly, three or more groups’ comparison was
made using two-sided analysis of variance, and the resulting
lncRNAs whose p < 0.05 was considered significant.
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Greedy Analysis and Random Forest Model
Building
To remove the redundancy, greedy signature algorithmwas used.
For verification of the 17-lncRNA model, the random forest
method was used.

The details of the greedy analysis and random forest model
building are given in the Supplementary Methods.

RESULTS

Expression Pattern of lncRNAs and PcGs
in the Normal Lung, LUAD, and ESCs
Recent efforts on cataloging the transcripts expressed in human
cells have shown that lncRNAs show a restricted expression
pattern; that is, expression of lncRNAs shows higher tissue
and lineage specificity than the PcGs (14). To understand the
expression pattern of genes in normal human lung epithelial
cells (NHLEs), normal lung (NL), LUAD, lung cancer cell lines
(LCCs), and ESC expression data were analyzed as elaborated
in the Materials and Methods section. Our analysis showed
that significantly more genes are expressed in LCCs and ESCs
compared to NHLEs (Figure 1A). Similarly, significantly more
genes were expressed in LUAD compared to NL (Figure 1B).
These observations suggest a comprehensive transcriptional
dissimilarity amongNHLEs, ESCs, and LCCs and between LUAD
and NL.

Identification of hESC-lncRNAs Associated
lncRNAs in LUAD
To identify the lncRNAs associated with high stem cell–like
characteristics in LUAD, first, we performed a differential
expression analysis to identify the lncRNAs differentially
expressed in LUAD compared to NL (Materials and Methods).
The list of differentially expressed lncRNAs was then checked
for their expression status in ESCs and lncRNA overexpressed in
LUAD, and at least five average count in ESCs and downregulated
in LUAD and fewer than five average count in hESCs were
selected. This analysis identified a total of 198 lncRNAs associated
with hESC and dysregulated in LUAD compared to NL, which we
named as hESC-lncRNAs (Figure 1C, Supplementary Table 1).
Among these lncRNAs, 169 lncRNAs were overexpressed, and
29 lncRNAs were underexpressed in LUAD to NL samples
(Figures 1C,D). We checked the expression of 169 lncRNAs
in normal human bronchial epithelium cells and found that
average expressions of these lncRNAs were lower in NHEB
than in ESCs (Supplementary Figure 1A). We also validated the
expression of hESC-lncRNAs in another set of ESC (GSE107552)
and LUAD samples (Michigan dataset) and found that 198
lncRNAs had similar expression patterns in another dataset as
well (Supplementary Figures 1B,C). Further, to understand the
functioning of hESC-lncRNAs, we performed pathway analysis
using the PcGs, which had a high correlation (Pearson ρ > 0.3, p
< 0.05) with the selected 198 lncRNAs. The analysis identified
that the PcGs with high correlation with hESC-lncRNAs were
involved in the regulation of cell cycle, cell proliferation, DNA
replication, DNA repair, and so on (Figure 1E). We also found

that these pathways form a strong network in the cellular
signaling (Figure 1E), suggesting a common role of hESC-
lncRNAs in cellular proliferation and stem cell maintenance.
These results also suggest that lncRNAs associated with high
stem cell–like characteristics regulate various pathways involved
in cell proliferation and growth.We also performed the canonical
pathway analysis to identify the specific pathways regulating
the cell cycle and proliferation. This analysis identified PLK1,
Aurora, ATR, FOXM1, ATM, telomerase, ILK, P53, RB1, and
MYC pathway associated with the genes correlating with 198
lncRNAs (Supplementary Figure 1D). Further, to understand
the specific pathways regulated by individual lncRNA, we
identified RP11-89K21.1 as one of the most LUAD-specific
and prognostic lncRNAs among all the 198 hESC-lncRNAs
(Supplementary Figures 2A,B). We then identified the PcGs
with the most similar expression correlation to RP11-89K21.1
and performed Metascape analysis. Interestingly, we found that
genes correlating with RP11-89K21.1 are associated with stem
cell proliferation and Wnt signaling pathway regulation hESC-
lncRNAs (Supplementary Figure 2C).

High Stem Cell–Like
Characteristic–Related lncRNAs Are
Associated With the Prognostic Subtype of
LUAD
To further understand the interrelation of high stem cell–
like characteristics–associated lncRNAs and LUAD subtype,
we performed K-means clustering, which identified three
clusters of patients, namely, clusters I, II, and III (Figure 2A,
Supplementary Table 2). To delineate the clinical difference
in these three clusters, we performed KM analysis. The KM
analysis showed that patients belonging to cluster III had a
significant poor survival compared to the other two clusters,
clusters I and II (p = 0.026) (Supplementary Figure 3A). Thus,
we combined clusters I and II patients for further analysis.
As evident, we found that cluster III patients exhibited poor
survival compared to cluster I + II patients (p = 0.015, HR
= 1.55) (Supplementary Figure 3B). More importantly, in most
clinically relevant stage I patients, cluster III patients showed
significantly much poor survival compared to cluster I + II
patients (p = 0.009, HR =2.07) (Figure 2B). Interestingly, we
found that genes DNAI1, NKX2-1, and SCGB1A1, associated
with the differentiation of different types of lung cells, were
downregulated in cluster III patients compared to cluster I +
II patients (Figure 2C). Similarly, ALDH1A1, CD133, CD24,
and SOX2 markers of LUAD stem cells were upregulated
in cluster III patients compared to cluster I + II patients,
suggesting poor differentiation of cluster III patients (Figure 2C).
Further, a preranked GSEA using genes upregulated during
the early and late stage of differentiation of J1 ESC showed
that these genes are significantly negatively enriched in cluster
III compared to cluster I + II (Supplementary Figure 3C).
These results suggest that cluster III patients’ tumors are less
differentiated and more aggressive compared to cluster I + II
patients’ tumors. Thus, we renamed the clusters as differentiated
LUAD (dLUAD, cluster I + II) and undifferentiated LUAD
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FIGURE 1 | Identification of stemness-associated lncRNA. (A) The total numbers of expressed genes (>5 average count) in NHBL, lung cancer cell lines, and ESC

were counted and plotted. An analysis of variance was done to find the significance. (B) The total number of expressed genes (>5 average counts) in normal lung and

(Continued)
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FIGURE 1 | LUAD were counted and plotted. A t-test was performed to find the significance. (C) Differential expression analysis was performed, and lncRNAs with

5% FDR and more than 2-fold log2 difference were considered as differentially expressed lncRNAs. Volcano plot shows the overexpressed genes in yellow and

underexpressed genes in green. (D) Heatmap showing the expression of differentially expressed 198 lncRNAs in ESCs, LUAD, and normal. Yellow shows high

expression, and green shows low expression. (E) Gene Ontology analysis was performed using PcGs correlating with stemness lncRNAs (198), and enriched GO

terms were plotted. The color of the bar indicates a higher significance. Metascape analysis was done using PcGs correlating with stemness lncRNAs (198) to identify

the interactome network. Each dot represents one GO term, and the color key is given in the bar diagram.

(uLUAD, Cluster III) for further characterization (Figure 2A).
To identify the stemness base- prognostic signature for the
LUAD patients, Cox regression analysis was performed on the
TCGA LUAD patients using 198 lncRNAs (Figure 2D). The
analysis identified two stemness-associated lncRNAs (SATB2-
AS1 and ABCA9-AS1) whose expression correlated with the
survival of LUAD patients. Further, we calculated an SPS
for each patient by combining the regression coefficient and
expression of both the lncRNAs (Supplementary Table 3). In a
univariate Cox regression analysis, SPS significantly correlated
with survival (HR = 2.23, p = 6.99 × 10−5). Interestingly, in a
multivariate analysis with tumor stage, SPS was an independent
predictor of prognosis in TCGA-LUAD patients (p = 5.54 ×

10−5) (Supplementary Figure 3D). Furthermore, to validate the
prognostic utility of SPS, we utilized another set of 67 LUAD
patients as the testing set (Figure 2D, Supplementary Table 4).
Interestingly, SPS was found to be an independent prognosticator
of survival in the testing set as well (p = 7.45 × 10−3)
(Supplementary Figure 3E). More importantly, KM analysis
showed a significant difference in survival of the patients with
high and low SPS in both TCGA-LUAD (HR = 1.53, p =

5.00 × 10−3) and testing patient set (HR = 2.23, p = 1.50 ×

10−2) (Figures 2E,F). Gene sets associated with stemness were
significantly enriched in patients with high SPS and poor survival
(Figure 2G). Stemness score, as identified by Malta et al. (27),
was also significantly high for the high-SPS patients (p < 0.0001)
(Figure 2H).

Characterization of Novel High Stem
Cell–Like Characteristic–Associated
lncRNA–Based Subtype of LUAD
The RPPA data from TCGA were downloaded and analyzed to
identify the direct changes in the proteins in dLUAD and uLUAD.
This analysis identified 23 overexpressed and 18 underexpressed
proteins (Supplementary Figure 4A, Supplementary Table 5).
Reactome analysis was performed using the default setting for
background correction to identify the function of these proteins.
Interestingly, proteins overactive in uLUAD patients were
associated with the cell cycle (Figure 3A). The analysis revealed
that the majority of the proteins associated with uLUAD patients
(c-ABL, CCNE1/2, FOXM1, TS, PCNA, NRF2, CCNB1, CDK1,
FOXM1, and STMN1) were regulating cell cycle positively at
all the cell cycle stages (Figure 3B, Supplementary Figure 4B).
In contrast, the negative regulator of the cell cycle (CDK2,
pRB, E2F) were downregulated (Figure 3B). Also, proteins
differentially expressed in uLUAD compared to dLUAD
appeared to have a close interaction in string analysis
(Supplementary Figure 4C). Further global cancer analysis

showed that most of the proteins overexpressed in uLUAD were
highly active in various cancer types (Supplementary Figure 5A)
compared to proteins underexpressed in uLUAD patients
(Supplementary Figure 5B). These results suggest a high
proliferative activity in uLUAD tumors.

To further illustrate the molecular differences between these
novel subtypes of LUAD patients, we performed GSEA using
the hallmark gene sets (Supplementary Table 6). Interestingly,
we found that patients belonging to uLUAD showed enrichment
of gene sets associated with oncogenic signaling (Figure 3C).
More importantly, one of the significantly enriched gene sets
was MYC targets. As MYC-mediated transcriptional changes
are associated with pluripotency (29), we performed GSEA
using stem cell marker gene sets and found that uLUAD
samples were significantly enriched with genes related to the
stem cells (Figure 3D). Furthermore, using the stemness score
identified by Malta et al. (27), we showed that uLUAD patients
have significantly higher average stemness score compared
to dLUAD patients (Figure 3E) (27). Additionally, Metascape
analysis using overexpressed genes in uLUAD compared to
dLUAD identified the enrichment of pathways associated
with cell cycle, DNA replication, and DNA damage response
(Supplementary Figure 5C). In contrast, genes overexpressed
in dLUAD were associated with cell adhesion and immune-
related pathways (Supplementary Figure 5D). Recently, Chen
et al. (28) have identified the nine molecular subtypes of NSCLC
patients using a cluster of cluster analysis. We checked the
enrichment of these molecular subtypes in dLUAD and uLUAD
patients. Interestingly, dLUAD patients showed significantly
higher enrichment of AD.4, AD.5b, and AD.2, whereas uLUAD
patients showed the highest enrichment of AD.1 subtype,
which shows poor differentiation of uLUAD tumors (Figure 3F).
Notably, there was no significant difference in the enrichment of
dLUAD and uLUAD patients in AJCC T, N, and M subtypes and
LUAD stages (Supplementary Figures 6A–D). We also showed
that there was no significant difference in the enrichment of
dLUAD and uLUAD samples in histopathological subtypes of
LUAD (Supplementary Figure 6E).

Recently, Tomasetti et al. (30) have suggested that tissues
with high replication rates generate more random mutations,
and these mutations are the most common cause of cancer.
To validate this hypothesis, we compared the total somatic
mutations in dLUAD and uLUAD. As expected, the mutation
burden and copy number aberration are significantly higher
in uLUAD samples (Figure 3G). Further analysis of specific
mutations showed that Tp53 and RB1 were significantly more
mutated in uLUAD compared to dLUAD (Fisher exact test p =

0.049 and 0.0004 for TP53 and RB1, respectively) (Figure 3H).
More importantly, uLUAD patients showed a significantly higher
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FIGURE 2 | Clustering analysis identifies a novel cluster of uLUAD patients with the poor prognosis. (A) Heatmap of 198 lncRNAs in the clusters as identified by the

K-means clustering algorithm. Yellow shows high expression, and green shows low expression. (B) A Kaplan–Meier plot showing the difference in survival between

(Continued)
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FIGURE 2 | stage I patients of cluster I + II and cluster III as identified by K-means clustering. The p-value and hazard ratio were obtained by log–rank analysis. (C)

Boxplots showing the expression difference in differentiation and stem cell markers. A non-parametric t-test was done to obtain the p-values. Bars show the standard

deviation. (D) Table showing the patients’ characteristics used in Cox regression analysis to identify the stemness-associated prognostic signature. A non-parametric

test was done to show that patients from TCGA and test set did not have a significant difference in age. A Fisher exact test was done to show that the proportion of

male and female and pathological stage distribution was similar in TCGA and test set. (E) Kaplan–Meier plot to show the significant difference in high- and low-SPS

samples in TCGA patients set. Patients were divided into high and low SPS at the median. A log–rank test was performed to obtain the p-value and hazard ratio. (F)

Kaplan–Meier plot to show the significant difference in high- and low-SPS patients in test set patients. Patients were divided into high and low SPS at the median. A

log–rank test was performed to obtain the p-value and hazard ratio. (G) Gene set enrichment analysis showing enrichment of stemness gene sets in high- vs.

low-SPS groups. (H) A boxplot showing the stemness scores of low-SPS and high-SPS patients, as described by Malta et al. (27). Bars show the standard deviation.

number of neoepitopes compared to dLUAD patients, making
these patients a better candidate for immunotherapy (Figure 3I).
The immune response of cancer cells depends on the presence
of neoepitopes and enrichment of CD8+ T cells, CD4+ T
cells, and antigen-presenting cells (APCs) such as dendritic cells
(31). CIBERSORT analysis was performed for both dLUAD and
uLUAD samples to compare the enrichment of various immune
cells in tumor milieu (Supplementary Table 7). Interestingly,
uLUAD samples showed significantly higher enrichment of
CD8+ and CD4+ T cells in uLUAD samples compared to dLUAD
samples (Figure 3J) (31, 32). However, many other types of
cells, including antigen-presenting dendritic cells, mast cells,
M2 macrophages, and monocytes, were significantly enriched
in dLUAD samples (Supplementary Figure 6F). The absence of
APCs may be the reason for the weak immune activity of uLUAD
samples despite the high neoepitopes load and presence of T cells.

Identification of lncRNAs for High Stem
Cell–Like Characteristics Signature in
LUAD Patients Using the Greedy Algorithm
In earlier results, we have identified a novel subgroup of LUAD
patients (uLUAD) with highly aggressive disease, most likely due
to the presence of a higher fraction of LUAD stem cells. This
subgroup of patients was identified using 198 hESC-lncRNAs
with high expression in ESCs and LUAD. We hypothesized that
not all 198 lncRNAs might be required for the high stem cell–
like characteristics determination of the patients, and there may
be redundancy. Hence, to identify a strong and non-redundant
lncRNA-based signature, we performed feature selection analysis.
Exhaustive search using all the possible combinations of the
features is not a feasible solution as it is computationally complex.
Therefore, we used a greedy forward feature selection approach
where the model is built successively by adding one feature in
each iteration, and the chosen feature will be the optimal feature
in the current iteration (Figure 4A).

This analysis identified 17 discriminant hESC-lncRNAs
as the optimum number of features to classify the uLUAD
and dLUAD patients (Supplementary Method). Further,
to check the discriminative ability of the selected hESC-
lncRNAs classification, a model was built using a random
forest algorithm and smote sampling (Figure 4A). To avoid
overfitting, 10-fold cross-validation was repeated 10 times,
and optimal hyperparameters were chosen by grid search.
The precision–recall area under the curve of this model
showed that 17 hESC-lncRNAs could classify the dLUAD
and uLUAD patients without any significant degradation in

performance as compared to 198 hESC-lncRNAs (Figure 4B).
To further verify the significance of these 17 hESC-lncRNAs
in high stem cell–like characteristics classification, we carried
out K-means consensus clustering in the 10 most common
tumor types using the optimum number of clusters as two.
The clustering analysis showed that the 17-lncRNAs could
classify various cancer types into high and low stem cell–
like characteristics categories with a significant difference in
stemness score as identified by Malta et al. (27) (Figure 4C).
Moreover, a GSEA using Mueller PluriNet gene set (includes
common characteristics of pluripotent cells from the different
origin) found significant enrichment in six cancer types and
enrichment approaching significance in the other four cancer
types (Figure 4D, Supplementary Figure 7A). Differential
expression analysis of matched normal vs. tumor showed a
high expression of all the 17 signature lncRNAs in cancer
(Supplementary Figure 7B). Receiver operating characteristic
(ROC) analysis also showed that expression of all the 17-lncRNA
could discriminate between matched normal and tumor with
high specificity and sensitivity. Furthermore, ROC analysis of
tumor vs. normal in general showed that these 17-lncRNAs
could discriminate between tumor and normal with high
specificity and sensitivity (Supplementary Figures 7B,C). Next,
we performed K-means consensus clustering analysis using the
selected 17 lncRNAs in CCLE cells to classify the cell lines based
on their stemness. This analysis classified the cell lines into two
clusters, namely, high stemness cell lines and low stemness cells
lines (Figure 4E, Supplementary Figure 7B) The expressions
of 17 classifying hESC-lncRNAs were significantly higher in
high stem cell–like cell lines compared to low stem cell–like cell
lines (Supplementary Figure 7D, Supplementary Table 8). As
expected, gene sets associated with stemness were significantly
enriched in cell lines classified as high stem cell–like compared
to low stem cell–like cell lines (Figure 4F).

DISCUSSION

Recent experimental and clinical observations have shown
that aggressiveness and drug resistance of cancers, including
lung cancer, are sustained by CSCs (11, 33). Cancer stem
cells share many characteristics with ESCs, which give rise
to various properties including anchorage-independent
growth, proliferation, metabolic requirements, inhibition of
differentiation, and so on (11, 34, 35). Also, multiple studies
have shown that the dedifferentiation of normal cells is one of
the initial steps in carcinogenesis, and cancer cells have a similar
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FIGURE 3 | Undifferentiated LUAD patient subgroup is enriched in stemness and mutations. (A) A reactome analysis was done using the proteins differentially

expressed between uLUAD and dLUAD patients. The bar plot was plotted using the significant reactome pathways. Pathways enriched in dLUAD are shown in green,

(Continued)
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FIGURE 3 | and pathways enriched in uLUAD are shown in yellow. The color intensity indicates the p-value. (B) A model of the cell cycle was plotted, and proteins

differentially expressed in uLUAD, and dLUAD were overlaid at the cell cycle stage where they function. The proteins indicated in red are overexpressed in uLUAD. The

proteins shown in blue are significantly overexpressed at the RNA level, and proteins in green are significantly more mutated in uLUAD samples. (C) A GSEA was done

using the hallmark gene set in dLUAD and uLUAD samples. The gene sets with <5% FDR were considered enriched. The significantly enriched gene sets are shown

in yellow, and insignificant gene sets are shown in green. The size of the yellow bubble shows the enrichment score. (D) Gene set enrichment analysis was done using

various gene sets obtained from stem cell markers. Normalized enrichment score and FDR are shown with GSEA plots. (E) A boxplot showing the stemness scores of

dLUAD and uLUAD patients, as described by Malta et al. (27). Bars show the standard deviation. (F) Bar plot showing the enrichment of molecular subtypes of LUAD

as identified by Chen et al. (28). (G) Boxplots showing the total mutation (left) and copy number aberrations (right) in dLUAD and uLUAD samples. The p-value was

obtained using a t-test. Bars show the standard deviation. (H) Bar diagram showing the mutation pattern of commonly mutated genes in uLUAD and dLUAD patients.

(I) A bar diagram showing the total neopeptide (neoantigen) in uLUAD and dLUAD samples. The green line shows the average neopeptides in dLUAD, and the yellow

line shows the average neopeptide in uLUAD samples. The p-value was obtained from a t-test. Bars show the standard deviation. (J) A CIBERSORT analysis was

done in dLUAD and uLUAD samples using absolute quantification settings. The p-value was obtained from a t-test. Bars show the standard deviation.

molecular regulatory network as ESCs (35, 36). Similarly, lung
cancer cells also show a higher expression of ESC-associated
genes (12, 37–39). Validating this observation, we proved that
LUADs share a much higher transcriptomic (including lncRNAs
expression) overlap with ESCs compared to NL cells (Figure 1A).
We also identified a group of 198 lncRNAs (hESC-associated
lncRNA, hESC-lncRNAs) with high differential expression
in ESCs and LUAD compared to NL. The PcGs with similar
expression patterns to 198 lncRNAs indicated the involvement
of high stem cell–like characteristics–associated lncRNAs in cell
proliferation and other cancer-associated roles. We identified
various pathways that are associated with PcGs with similar
expression pattern to 198 lncRNAs (Supplementary Figure 1D).
PLK1 pathway is essential for the initiation and completion of
mitosis and thus required for cell proliferation (40). Similarly,
the Aurora kinase pathway is one of the crucial pathways for
successful cell division and proliferation of the cells (41). Also,
Aurora-A is required for themaintenance of the ESC self-renewal
and undifferentiated state (42). Aurora kinase B is also needed
for the maintenance of telomerase activity and stem cells (43).
FOXM1 pathway is required for cell proliferation, self-renewal,
and tumorigenesis (44). Similarly, RB1-E2F is necessary for
cancer cell growth, migration, self-renewal differentiation, and
so on (45). These results suggest the role of hESC-associated
lncRNAs in cell proliferation and differentiation.

Unsupervised clustering has been used to identify the novel
subgroups of many cancer types (46–48). Here, we utilized
the K-means clustering algorithm with high stem cell–like
characteristics–associated lncRNAs to identify a unique subset
of LUAD patients. These patients showed poor survival and
lower expression differentiation markers such as DNAI1, NKX2-
1, and SCGB1A1, and higher expression of stem cell markers
such as ALDH1A1 and CD133 (37, 49, 50). The expressions
of DNAI1, NKX2-1, and SCGB1A1 genes are required for the
differentiation of many cell types, including secretory (club)
cells (49, 51, 52). This observation suggests that the novel
LUAD subgroup named as uLUAD cells is less differentiated
and has high ESC-like properties. The poor differentiation is
associated with various cancer hallmarks such as proliferation,
replicative immortality, angiogenesis, higher metastasis, and so
on (53). These properties make poorly differentiated cancers
more aggressive with poor outcomes, as found in uLUAD
patients. A Cox regression analysis identified two stemness-
associated lncRNAs with a high correlation with survival. We

developed a stemness lncRNA prognostic score (SPS) and proved
the prognostic ability of SPS in two independent cohorts of
samples (Figures 2F,G, Supplementary Figures 2C,D).

Many transcription factors, including MYC, play a vital
role in stem cell biology (54, 55). MYC has been shown to
induce ESC-like characters in normal and cancer cells (56, 57).
We showed that the novel uLUAD patients had higher MYC
activity. SOX4, another stem cell pluripotency factor, is also
significantly more active in uLUAD samples compared to dLUAD
samples. Furthermore, the direct ESC-related genes were also
significantly enriched in uLUAD compared to dLUAD. These
observations validated the high stem cell–like characteristics of
uLUAD patients identified by stemness-associated lncRNAs. The
high stem cell–like characteristics are linked with high cellular
proliferation, which in turn causes more genetic instability and
high mutation rate and copy number aberrations. We also
found the activation of proteins involved in cellular proliferation
(Figures 3A,B). This observation was further supported by
the high mutational load of uLUAD patients (Figure 3F). The
uLUAD patients also showed high neoantigens compared to
dLUAD patients. Recently, Chen et al. (28) have classified NSCLC
in nine genomic subtypes, that is, SQ.1, SQ.2a, SQ.2b, AD.1,
AD.2, AD.3, AD.4 AD.5a, and AD.5b. We found that all the
LUAD patients used in this analysis were enriched in five of
nine subtypes, SQ.1, SQ.2b, AD.1, AD.2, AD.3, AD.4, and AD.5b.
Undifferentiated LUAD patients’ proportion was significantly
higher in the AD.1 subtype. AD.1 subtype is associated with
poor differentiation, association with LCNEC, and expression
of CT antigens, confirming our findings. In comparison,
dLUAD patients were considerably higher in AD.4, AD.5b, and
AD.2 subtypes. AD.4 subtype is associated with high immune
infiltration, lower neoantigen, and lower mutation rate. AD.5b
subtype is associated with lower mutation rate and high mTOR
pathway activation, whereas the AD.2 subtype is associated with
the high immune cell and checkpoint pathway activation. All
three subtypes (AD.4, AD.5b, and AD.2) are also associated
with excellent survival. These results positively confirm our
finding that dLUAD patients have lower neoantigen and show
good survival compared to uLUAD patients. Other subtypes
are associated with high SOX2 and CT antigen expression
(SQ.1), high SOX2, CT antigen expression, better OS (SQ.2A),
distinct methylation patterns compared to SQ.2a (SQ.2B), high
immune cell infiltration, and CT antigen expression (AD.3).
Recent reports have suggested that the presence of neoantigens
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FIGURE 4 | Stemness-associated lncRNA signature identifies high stemness patients and cell lines from various cell types. (A) A greedy algorithm was used to

identify the stemness-associated lncRNA signature. This flowchart depicts the various steps involved in the analysis. (B) A precision–recall curve to show the

(Continued)
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FIGURE 4 | consistent performance of 17 lncRNAs in classifying the stemness in LUAD patients compared to 198 lncRNA model. (C) Boxplots showing the

difference in stemness in the top 10 cancers. The clusters were identified using K-means clustering of given cancers using 17 lncRNAs. The p-value was obtained

using a t-test. Bars show the standard deviation. (D) A GSEA was done using the Muller PluriNet gene set in high and low stemness cluster of given cancer types. A

ridge plot showing the running enrichment score and p-value in top tumor types. Red indicates a higher significance, and blue indicates lower significance. (E) The

K-means clustering identified two clusters of cell lines based on the 17-lncRNA expression. (F) A GSEA was done in using stemness-associated gene set in high and

low stem cell lines. The significantly enriched gene sets are shown in yellow, and insignificant gene sets are shown in black. The size of the bubble shows the p-value.

is essential for the checkpoint inhibitor–mediated immune
response of T cells (58). Interestingly, we also found that uLUAD
patients have a higher level of CD8+ and CD4+ T cells in the
tumor milieu. These observations suggest that uLUAD patients
could be a significant group of patients for immunotherapy.
Interestingly, checkpoint inhibitors such as CD274 are also
overexpressed in uLUAD patients, making these tumors more
immunoactive. However, we believe that the absence of APCs
such as dendritic cells from uLUAD cells may be a responsible
weak T-cell activity (Supplementary Figure 2E). Also, we did
not find any association of stage and hESC-like characteristic,
suggesting the expression of hESC-like lncRNAs is probably an
early event in LUAD development.

To build a classification model that efficiently distinguishes
uLUAD from dLUAD samples, there was a need to eliminate the
redundant features and retain only the discriminant lncRNAs
as building a model with redundant features not only increases
the computational complexity but also may lead to overfitting.
Using a greedy algorithm, we identified a list of 17 lncRNAs.
As these lncRNAs had a very high expression in ESCs, we
hypothesized that unsupervised clustering of other tumor types
using these hESC-associated lncRNAs should identify subgroups
of cancer with high stemness. Interestingly, the 17-hESC-
associated-lncRNA signature identified the subgroups in the
top 10 tumors with a significant difference in stemness. This
observation suggested that these hESC-associated lncRNAs were
involved in stemness determination in general. Further, the
hESC-associated lncRNA signature also identified a group of cell
lines with high stemness characters. These cell lines could prove
to be a useful tool for stem cell research and drug discovery.

Here, we performed various in silico analyses to show
the importance of lncRNA in stemness determination and
prognosis. However, experimental validation of stemness-
associated lncRNAs is essential to show the direct effect on
stemness determination, and it is an important shortcoming
of this study. Taken together, we have utilized a large set of
tumor patients to identify the stemness-associated lncRNAs.
We have also identified a subgroup of LUAD patients who

showed a significant difference in survival and stem cell–like
characteristics. We propose that the aggressiveness of these
patients is due to the presence of CSCs.We also showed that these
patients could be an important target for immunotherapy.
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