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Abstract
Plasma cells (PCs) play an important role in the adaptive immune system through a continuous production of antibodies. We
have demonstrated that PC differentiation can be modeled in vitro using complex multistep culture systems reproducing
sequential differentiation process occurring in vivo. Here we present a comprehensive, temporal program of gene expression
data encompassing human PC differentiation (PCD) using RNA sequencing (RNA-seq). Our results reveal 6374
differentially expressed genes classified into four temporal gene expression patterns. A stringent pathway enrichment
analysis of these gene clusters highlights known pathways but also pathways largely unknown in PCD, including the heme
biosynthesis and the glutathione conjugation pathways. Additionally, our analysis revealed numerous novel transcriptional
networks with significant stage-specific overexpression and potential importance in PCD, including BATF2, BHLHA15/
MIST1, EZH2, WHSC1/MMSET, and BLM. We have experimentally validated a potent role for BLM in regulating cell
survival and proliferation during human PCD. Taken together, this RNA-seq analysis of PCD temporal stages helped
identify coexpressed gene modules with associated up/downregulated transcription regulator genes that could represent
major regulatory nodes for human PC maturation. These data constitute a unique resource of human PCD gene expression
programs in support of future studies for understanding the underlying mechanisms that control PCD.

Introduction

Representing the end stage of B-cell differentiation, plasma
cells (PCs) play an important role in humoral immunity by
synthesizing and secreting antibodies, thus protecting the
host against infections [1]. We previously developed a

multistep culture system with various combinations of
cytokines and activation molecules that reproduce the
sequential PC differentiation (PCD) occurring in the dif-
ferent organs/tissues in vivo [2–5]. PCD is initiated by
activation of B cells, leading to their differentiation into
transitional preplasmablasts (prePBs), a highly proliferating
cell population [3]. These prePBs further differentiate into
plasmablasts (PBs), which can develop into quiescent long-
lived PCs after migrating to survival niches which are tra-
ditionally in the bone marrow [3, 6]. Specific pro-survival
niches could also comprise mucosa and sites of inflamma-
tion [7]. B cells and PCs are key players of humoral
immunity. Understanding the biological processes that
control the production and the survival of normal PCs is
critical both to prevent tumorigenesis and identify targets
for pathogenic PCs and ensure efficient immune response
without autoimmunity or immune deficiency.

On the transcriptional level, the differentiation of B cells
into PCs is associated with substantial and coordinated
changes in gene expression profiles [6]. These changes are
tightly guided by two sets of stage-specific transcription
factors (TFs) that repress each other including: (1) B-cell
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TFs (PAX5, BCL6, and BACH2) maintaining the B-cell
fate and (2) PC TFs (IRF4, BLIMP1 and XBP1) that are
required to extinguish B-cell genes and activate the
antibody-secreting cell (ASC) program [6, 8].

Over the past decades, much progress has been made in
understanding the physiological and transcriptional pro-
cesses occurring during PCD [3, 4, 6, 9–12]. Knowledge of
global gene expression patterns during PCD has been lar-
gely based on data obtained in mouse systems. Recent
studies using RNA sequencing (RNA-seq) provide a more
comprehensive view of transcriptional changes during
murine PCD [13].

Most human PCD transcriptome studies have been car-
ried out using microarray techniques [3, 4, 9, 10]. Given the
limitation of microarray technology, high-throughput
sequencing technology is needed to fully characterize the
temporal gene expression program operating during human
PCD. In vitro differentiation of human memory B cells
(MBCs) into PCs has been demonstrated to be a powerful
model of human PCD [3, 4, 11].

In this study, we used next-generation sequencing tech-
nology to generate a comprehensive transcriptome database
encompassing human in vitro PCD. Analyses of differen-
tially expressed genes during PCD revealed 6374 genes that
we organized into clusters of coexpressed genes based on
temporal expression patterns. The major temporal programs
we identified were associated with key pathways consistent
with PC biology, as well as novel pathways with potential
importance in PCD. Additionally, our analysis revealed 449
transcriptional regulators correlated with these temporal
programs of gene expression. Novel transcription regulators
with consistent and marked overexpression during PCD
include BATF2, BHLHA15/MIST1, EZH2, WHSC1/
MMSET, and BLM. Furthermore, our analysis identified
many epigenetic actors upregulated at prePB stage, a critical
step where cell proliferation is high and where immu-
noglobulin (Ig) secretion starts. Finally, we have experi-
mentally validated a role of BLM in regulating cell survival
and proliferation in PCD. Taken together, this analysis thus
identifies a discrete set of genes that function together to
regulate PCD. These data and results provide a unique
resource to decipher major gene networks involved in
human PC development and ultimately will help provide
fundamental insight into the mechanisms that control PCD.

Materials and methods

Cell populations and mRNA extraction

prePBs, PBs, and PCs were generated using a three-step
in vitro model starting from peripheral blood MBCs as
reported [3, 4]. Peripheral blood cells from healthy

volunteers were purchased from the French Blood Center
(Toulouse, France) and CD19+ CD27+ MBCs purified
(>95% purity) as described [3]. Standard culture conditions
comprised 21% O2, 5% CO2, and 37 °C. PCs were gener-
ated as reported [2, 3]. Cultures were performed in Iscove’s
modified Dulbecco medium (Invitrogen) and 10% FCS.
Purified peripheral blood MBCs (1.5 × 105/ml) were acti-
vated for 4 days by CpG oligodeoxynucleotide and CD40
ligand (sCD40L)—10 µg/ml of phosphorothioate CpG oli-
godeoxynucleotide 2006 (Sigma), 50 ng/ml histidine tagged
sCD40L, and anti-poly-histidine mAb (5 µg/ml), (R&D
Systems)—with IL-2 (20 U/ml), IL-10 (50 ng/ml), and IL-
15 (10 ng/ml) in six-well culture plates. PBs were generated
by removing CpG oligonucleotides and sCD40L and
changing the cytokine cocktail (IL-2, 20 U/ml, IL-6, 50 ng/
ml, IL-10, 50 ng/ml, and IL-15, 10 ng/ml). PBs were dif-
ferentiated into PCs adding IL-6 (50 ng/ml), IL-15 (10 ng/
ml), and IFN-α (500 U/ml) for 3 days. PrePBs were purified
at day 4, PBs at day 7, and PCs at day 10 using Facs Aria
cell sorter (Becton Dickinson) (Supplementary Fig. S1). We
performed three independent experiments starting from
purified MBCs of three different healthy donors. RNA was
isolated from cells with Qiagen RNeasy Micro or Mini Kits
(Qiagen, Hilden, Germany) according to the manufacturer’s
instructions.

RNA sequencing and data analysis

The RNA-seq library preparation was done with 150 ng of
input RNA using the Illumina TruSeq Stranded mRNA
Library Prep Kit. Paired-end RNA-seq were performed with
illumina NextSeq sequencing instrument (Helixio, Cler-
mont-Ferrand, France). RNA-seq read pairs were mapped to
the reference human GRCh37 genome using the STAR
aligner [14]. All statistical analyses were performed with the
statistics software R (version 3.2.3; available from:
https://www.r-project.org) and R packages developed by
BioConductor project (available from: https://www.
bioconductor.org) [15]. The expression level of each gene
was summarized and normalized using the DESeq2 R/Bio-
conductor package [16]. A summary of read mapping and
quantification results can be found in Supplementary
Fig. S2. The RNA-seq data are available in Gene Expression
Omnibus under the accession number GSE148924. The raw
gene-wise read counts are provided in Supplementary File 1.
Differential expression analyses were performed using
DESeq2 pipeline. p values were adjusted to control the
global FDR across all comparisons with the default option of
the DESeq2 package. Genes were filtered from downstream
analysis if they did not have a log2 mean normalized count
value of at least 6 in at least one group. Genes were con-
sidered differentially expressed if they had an adjusted
p value < 0.05 and a fold change > 2. Heat maps of gene
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expression were generated using the ComplexHeatmap R/
Bioconductor package. Pathway enrichment analyses were
performed using the R package ReactomePA [17].

Human myeloma cell lines (HMCLs)

XG HMCLs were obtained as previously described [18].
JJN3 was kindly provided by Dr. Van Riet (Brussels, Bel-
gium), JIM3 by Dr. MacLennan (Birmingham, UK), and
MM1S by Dr. S. Rosen (Chicago, USA). AMO-1, LP1,
L363, U266, OPM2, and SKMM2 were purchased from
DSMZ (Braunsweig, Germany) and RPMI8226 from
ATTC (Rockville, MD, USA). All HMCLs derived in our
laboratory were cultured in the presence of recombinant IL-
6. HMCLs were authenticated according to their short tan-
dem repeat profiling and their gene expression profiling
using Affymetrix U133 plus 2.0 microarrays deposited in
the ArrayExpress public database under accession numbers
E-TABM-937 and E-TABM-1088 [18].

Clinical samples and gene expression data

Affymetrix data of purified MMC from a cohort of 282
patients with MM included in the DutchBelgian/German
HOVON65/GMMG-HAD trial were used (GSE19784)
(HOVON65/GMMGHD4 cohort) [19]. The clinical char-
acteristics of this cohort have been previously described [19].

Myeloma cell growth assay

HMCLs were cultured for 4 days, in 96-well flat-bottom
microtiter plates, in RPMI 1640 medium, 10% FCS, and
2 ng/ml IL-6 (control medium) in the presence of ML216
(Sigma-Aldrich, St Louis, MO). The number of metabolic-
active cells was also determined using intracellular ATP
quantitation. Cell growth was evaluated by quantifying
intracellular ATP amount with a Cell Titer Glo Luminescent
Assay (Promega, Madison, WI, USA) using a Centro LB
960 luminometer (Berthold Technologies, Bad Wildbad,
Germany).

Validating the implication of BLM in PCD

ML216 (Sigma-Aldrich, St Louis, MO), the inhibitor of
BLM helicase activity (1 µM), was added at the beginning
of each PCD transition step and its effect on cell count,
viability and cycle, was analyzed at the end of the step.
DMSO treated cells were used as control. Cell count and
viability were assessed with the trypan blue dye exclusion
test. Cell cycle were assessed using DAPI staining (Sigma-
Aldrich) and cells in the S phase using incubation with
bromodeoxyuridine (BrdU) for 1 h and labeling with an
anti-BrdU antibody (APC BrdU flow kit, BD Biosciences,

San Jose, CA, USA) according to the manufacturer’s
instructions [20]. Apoptosis was assayed with PE-
conjugated Annexin V labeling (Becton Dickinson, San
Jose, CA, USA) and fluorescence was analyzed on a LSR
Fortessa X20 flow cytometer (Becton Dickinson).

Results

RNA-seq profiling of in vitro human PC
differentiation

To obtain a global transcriptomic map of human PCD, we
performed RNA-seq analysis of four in vitro human PCD
subpopulations: MBCs, prePBs, PBs, and PCs [3, 4].
Approximately 50 million read pairs were generated for
each RNA sample. The number of mapped reads per sample
is provided in Supplementary Fig. S2.

First, we determined the proportion of mapped reads per
transcript classification in each cell subpopulation (Fig. 1A),
based on Ensembl gene biotype annotation model. As
expected, PCD is accompanied by a gradual increase of Ig
gene expression. This increase starts from prePB stage and
becomes more pronounced at PB and PC stages.

We wondered if the strong expression of Ig genes by PBs
and PCs could restrict the expression profile of other genes.
To evaluate this hypothesis, we estimated the total number
of genes actively expressed in each cell subpopulation. We
identified a normalized read count cutoff of 64 to define
transcripts with active expression (Fig. 1B). Any gene with
a mean DESeq2-normalized expression above 64, in at least
one cell subpopulation, is defined as transcriptionally active.
Using this criterion, 13,429 genes were classified as actively
expressed in at least one B to PCD stage. Among them,
84–86% are expressed in each cell subpopulation, including
PCs. This observation is consistent with previous reports by
Shi et al. [13] in mouse model, indicating that, despite their
strong functional specialization, ASC maintain a highly
diverse gene expression repertoire similar to B cells.
Among the 13,429 genes, 9627 genes (~71.7%) produced
mRNAs detected in all cell subpopulations (Fig. 1C),
whereas 3802 genes (28.3%) are expressed only during
specific stages of PCD. Of these 3802 genes, 1071 genes are
specifically detected in MBC, 316 genes in prePB, 35 in
PB, 220 in PC, and 2160 in more than two specific stages
(Fig. 1C). In an unsupervised principal component analysis
of the 13,429 gene expression levels, B cell to plasma stages
was segregated according to their developmental stage
(Fig. 2A). Additionally, investigation of the expression
profile for known genes involved in B cell to PCD,
including PAX5, BCL6, SPIB, BACH2, PRDM1, IRF4,
CD38, and SDC1 confirmed the accuracy of our RNA-seq
data (Fig. 2B).
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We next focused our analysis on the dynamic expression
changes during PCD by performing pairwise comparisons
between two consecutive cell populations using the DESeq2
R package (adjusted p value ≤ 0.05, fold change ≥ 2)
(Fig. 2C and Supplementary Table S1). Each gene was also
required to have an average expression of ≥64 normalized
count, in at least one of the two considered cell populations.
Large numbers of genes are differentially expressed at dif-
ferent stages of human PCD. A list of 7832 genes was
differentially expressed during MBC to prePB transition
(up: 4072 genes, down: 3760 genes); 2938 genes during
prePB to PB transition (up: 1385 genes, down: 1553 genes);
458 genes during PB to PC transition (up: 112 genes, down:
346 genes) (Supplementary Table S1). The differentiation
stage showing the most pronounced transcriptome changes
in comparison to the preceding one is prePBs (Fig. 2C). A
total of 8890 unique genes are differentially expressed in

one or more steps (Supplementary Fig. S3) during PCD,
suggesting a complex dynamic transcriptome changes dur-
ing the generation of PCs.

To better understand the gene expression changes
occurring at each transition stage, we used the ReactomePA
R/Bioconductor package to determine enriched molecular
pathways (Supplementary Table S2). The top 20 sig-
nificantly enriched pathways are shown for each PCD
transition (Supplementary Fig. S4A, B). Consistent with
known biology, the transition from MBC to prePB is mainly
characterized by the activation of cell cycle pathways. The
transition from prePB to PB is marked by a strong down-
regulation of cell cycle genes (Supplementary Fig. S4B).
Overexpressed genes during prePBs to PBs transition are
enriched in genes involved in protein production with
increased metabolic activity (translation, modification,
transport, unfolded protein response, and chaperones)

Fig. 1 Transcriptome sequencing of human plasma cell differ-
entiation. A The plot shows, for each cell subpopulation, the per-
centage of mapped reads per Ensembl transcript biotypes (protein-
coding genes, pseudogene, long noncoding RNA, and short noncoding
RNA). B Frequency distribution of the genes based on the average
mRNA levels. Distribution of the average normalized gene read counts

for each cell subpopulation is shown. The distribution is bimodal for
all cell subpopulations, defining actively expressed genes with average
normalized read counts ≥ 64. C Venn diagram of the numbers of
expressed genes in MBC (memory B cell), prePB (preplasmablast), PB
(plasmablast), and PC (plasma cell).
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(Supplementary Fig. S4A), underlying the increasing Ig-
secreting capacity. The strongest change during PB to PC
transition is mainly the downregulation of cell cycle genes
(Supplementary Fig. S4B).

Identification of temporal gene expression patterns
during human PC differentiation

Differentiation processes require expression changes and
can therefore be accompanied by at least four general
temporal gene expression patterns [21] that we refer to as
one-step-up or one-step-down (mRNA level transitions

from low to high or high to low, respectively, in two con-
secutive differentiation stages) and two-step-up-down or
two-step-down-up (i.e., impulse-down) (mRNA level tran-
sitions from low to high and back down or from high to low
and back up, respectively, in a series of differentiation
stages) (Fig. 3A).

We built a R package named stepprofiler (https://github.
com/kassambara/stepprofiler) to extract the temporal gene
expression patterns of human PCD. This analysis identified
8419 genes (Supplementary Table S3) with one or two
transition points in expression during PCD (Fig. 3 and
Supplementary Fig. S5). About 58% of the identified genes

Fig. 2 Differentially expressed gene signatures during human
plasma cell differentiation. A Principal component analysis of genes
expressed during PCD. B Expression profile of transcription factors
and cell surface markers known in PCD. C MA plots of differentially
expressed genes. Differentially expressed genes were identified using
the DESeq2 R package (adjusted p value ≤ 0.05 and fold change ≥ 1.5).

p values were adjusted using the BH algorithm multiple-testing cor-
rection. AMA (log ratio (M) versus mean average (A) expression) plot
showing differentially expressed genes between two consecutive cell
subpopulations. Significantly differentially upregulated genes are
represented by red dots, while significantly differentially down-
regulated genes are represented by blue dots.
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(including 68% of TF genes) showed a single transition
point; of these, 30% exhibited the one-step-up pattern, and
28% showed the one-step-down pattern. By contrast, 42%
of genes exhibited two transition points (two-step-up-down
and two-step-down-up genes) (Fig. 3B).

We further classified the genes based on the differ-
entiation stage associated with the major expression tran-
sition (Fig. 4A, B and Supplementary Fig. S5). For
example, “up-at-prePB” genes showed lower expression at
MBC step and higher expression during prePB—PC, and
“up-at-PB” genes showed lower expression at MBC—
prePB and higher expression during PB—PC (Supplemen-
tary Fig. S5). With genes showing a single transition point

(i.e., one-step-up and one-step-down genes), the transition
in expression level occurred more frequently at prePB step
indicating that a major transcriptional reprogramming
occurs during the prePB stage (Supplementary Fig. S5C).

A stringent Reactome pathway enrichment analysis of
these unique expression patterns identified key pathways
showing significant enrichment at two differentiation stages
(Fig. 4C). Among the pathways significantly upregulated at
prePB, protein modifications and metabolisms, unfolded
protein response, citric acid (TCA) cycle and respiratory
electron transport, mitochondrial translation, heme bio-
synthesis and metabolism of porphyrins and glutathione
conjugation were identified (Fig. 4C and Supplementary

Fig. 3 Stepprofiler package to extract temporal gene regulation
during human plasma cell differentiation. A Basic temporal gene
expression patterns. B Numbers of mRNAs and the coexpressed
transcription factors (TFs) showing transitions from low to high (one-

step-up) or high to low (one-step-down) in two consecutive differ-
entiation stages and two-step-up-down (up-down) or two-step-down-
up (down-up) in our series of differentiation stages.

Fig. 4 Temporal gene expression profiling during human plasma
cell differentiation. A Identification of the one-step-up transition in
mRNA levels for all genes and the coexpressed TFs. Three expression
patterns were identified to represent genes up-regulated at prePB stage,
at PB stage or at PC stage. Gene expression profiles of individual

genes are depicted. The total number of all genes (left) and the
coexpressed transcription factor genes (right) are indicated in par-
entheses for each expression pattern. B Heatmap showing the
expression profile of one-step-up genes. C Pathways enriched in one-
step-up genes.
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Table S4). Pathways upregulated at PB include interferon
alpha/beta signaling, IRE1alpha activates chaperones,
XBP1(S) activates chaperone genes, synthesis of substrates
in N-glycan biosynthesis, glycosaminoglycan metabolism,
and endoplasmic reticulum (ER) phagosome pathway.
These data indicate that gene expression programs in PCD
are dramatically reorganized at prePBs in preparation for the
onset storage protein and protein production (Fig. 4C).
Various important biological processes—most notably cell
cycle, RHO GTPases activate formins, and DNA repair—
operate by expression in short impulse manner at prePB
stage (Supplementary Fig. S6).

Identification of transcription factor/epigenetic
enzyme (EE) repertoires of human PC differentiation

To better understand the nature of the regulatory processes
involved in human PCD, we focused on TF and EE genes.
We crossed our data with the 1391 census human sequence-
specific DNA binding TFs [22] (Supplementary Table S5).
Given the importance of EE genes in gene expression reg-
ulation, we also used a comprehensive list previously

reported [23] (Supplementary Table S6). Collectively, we
identified 445 TF/EE temporally regulated genes during
PCD (Fig. 3B and Supplementary Table S7). One hundred
and twenty-three TF/EE genes fall into the one-step-up
groups (Figs. 3B and 5A). Among them, most are up-at-
prePB (81%) groups (Fig. 3B and Supplementary
Table S7). Two hundred thirty-seven TF/EE genes are
included in one-step-down groups, 49 in the two-step-up-
down groups, and 36 in the two-step-down-up groups
(Fig. 3B and Supplementary Table S7). These results sug-
gest that the specific patterns of gene expression detected
during PCD are associated with specific TF/EE gene tran-
scriptional changes.

We next focused on TFs/EEs exhibiting a one-step-up or
two-step-up-down pattern (Fig. 5). We selected these
groups because they are highly expressed in one or more
PCD stages. Furthermore, genes associated with specific
differentiation stages would be expected to be activated at
specific time points during the differentiation progression.
Among the one-step-up TFs/EEs are those encoding well-
known PC TFs such as IRF4, BLIMP1/PRDM1, and XBP1
(Fig. 5A). Interestingly, we found many other new TFs with

Fig. 5 Transcription factors and/or epigenetic enzymes expressed
during plasma cell differentiation. The heat maps show the relative
expression profile (z-scores) of A one-step-up and B two-step-up-down

TFs/EEs. Genes are sorted according to the maximum of fold change
expression at each transition.
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less characterized function in PCD and a potential impor-
tance. New TFs with the most consistent and marked
overexpression during B to PCD are BATF2, BHLHA15,
IRF2, ZSCAN20, MIXL1, MAF, ZKSCAN3, and STAT1
(Fig. 5A). Furthermore, our analysis identified EE genes
consistently upregulated during PCD (Fig. 5A and Sup-
plementary Table S7) including histone methyltransferases
(PRDM1, PRDM15, PRMT7, SETDB2, SMYD2, and
SMYD4), de-novo DNA methylation enzyme (DNMT3B),
DNA methylation readers (MBD1 and ZBTB38), DNA
methylation editors/erasers (IDH1, IDH2, TET1, ALKBH1,
ALKBH3, and MGMT), and histone phosphorylation editor
(EYA2 and EYA3). Additionally, our results reveal several
interesting TFs/EEs genes among the genes included in the
two-step-up-down group, including AICDA, MYB,
BATF3, FOXM1, ARNTL2, SUV39H2, WHSC1, MYBL2,
TP53, EZH2, and SUV39H1 that are specifically upregu-
lated in the PrePB stage (Fig. 5B). This analysis thus
identifies a discrete set of genes that may function together
to program B-cell terminal differentiation. Many of these
genes have not yet been described in PC biology. Together,
the temporal RNA-seq analysis of PCD helped identify new
TF/EE genes coexpressed with functional pathways that
could represent major regulatory nodes involved in the
control of PCD.

Evaluating the role of BLM in PC differentiation

prePBs are highly proliferative, express cytoplasmic Igs but
not B cells or PC markers, and secrete Igs at a lower level
than PBs or PCs. Accordingly, in this preplasmablastic
stage, DNA replication and transcription need to be tightly
coordinated to preserve the integrity of the genome of
PrePBs. The RecQ family of DNA helicases is a family of
conserved enzymes that display specialized and vital roles
in the maintenance of genome stability [24, 25]. BLM,
WRN, and RECQL4 are associated with genetic disorders
characterized by chromosomal instability, premature aging,
and increased susceptibility to cancer [24]. Patients with
Bloom syndrome also suffer from recurrent infection that
has suggested deficient immune function, even though these
defects are less severe than in primary immunodeficiencies
[26]. As previously reported for RECQ1 helicase [25], we
also identified that high expression of BLM is associated
with a poor outcome in newly diagnosed MM patients
treated by high-dose therapy (HDT) and autologous stem
cell transplantation (ASCT) (p= 0.003) (Supplementary
Fig. S7A). Furthermore, high BLM expression is sig-
nificantly associated with resistance to lenalidomide and
SAHA HDACi in a large panel of human MM cell lines (p
< 0.01 and p < 0.02, respectively) (Supplementary Fig. S7B,
C). BLM inhibition using ML216 induced a significant
toxicity in a panel of six different HMCLs with three

sensitive cell lines and one more resistant (Supplementary
Fig. S7D, E). Interestingly, BLM was identified as
belonging to the two-step-up-down genes in association
with cell cycle deregulation in prePBs (Fig. 6A). To
investigate the role of BLM in PCD, we used a selective
inhibitor (ML216) [27] of BLM’s helicase activity. We
analyzed the effect of BLM inhibition on each differentia-
tion step by adding 1 μM of ML216 at days 0, 4, and 7
(Fig. 6B). Inhibition of BLM activity resulted in a sig-
nificant decrease of global cell count at days 4, 7, and 10
(Fig. 7A). Consistent with this result, we observed a sig-
nificant decrease of cell viability at days 4 and 10 (Fig. 7B).
The analysis of Annexin V-positive cells reveals a sig-
nificant increase in apoptosis at day 7 (Fig. 7C). A close
analysis showed that the BLM inhibition affects mainly the
preplasmablastic stage characterized by BLM over-
expression (Fig. 7D). Furthermore, ML216 treatment
induced a cell cycle arrest of prePBs at days 4 and 7, with a
significant inhibition of BrdU incorporation and an accu-
mulation in the G0/G1 phase (p < 0.05) (Fig. 7E). Taken
together, these data show that the inhibition of BLM affects
the generation of prePBs leading to a significant defect in
PCD.

Discussion

Human normal PCs and their precursors are very difficult to
obtain, as they are rare cells located in specific niches within
the bone marrow and mucosa, hindering the understanding
of their physiology and pathophysiology [28]. Conse-
quently, insights into the molecular determinants of human
PCD are generally inferred from nonhuman model system.
We have developed and phenotypically characterized an
in vitro model of PCD recapitulating the molecular char-
acteristics of human PCD [2–4, 29].

Here, we investigated the dynamic transcriptional pro-
cesses underlying human PCD using RNA-seq. We identi-
fied 6374 significantly differentially expressed genes
classified into four temporal patterns (Figs. 3 and 4 and
Supplementary Fig. S5). The temporal patterns fall into four
major groups that we refer to one-step-up or one-step-down
(mRNA level transitions from low to high or high to low,
respectively, in two consecutive differentiation stages) and
two-step-up-down (i.e., two-step-up-down) or two-step-
down-up (i.e., impulse-down) (mRNA level transitions
from low to high and back down or from high to low and
back up, respectively, in a series of differentiation stages).
The majority of the differentially expressed genes (72%)
show a one-step-up or one-step-down pattern (Fig. 2B).
Furthermore, most of the one-step-up and one-step-down
genes exhibit an expression transition at the prePB stage
(Fig. 2D and Supplementary Fig. S5B), suggesting that a
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dramatic reprogramming of the PCD transcriptome occurs
at prePBs stage.

We found that genes upregulated during PCD were
mainly involved in protein posttranslational modification,
folding, trafficking, and metabolism (Fig. 2E). This is
consistent with the known biology underlying the huge
production of antibodies by PCs. Additionally, a stringent
pathway enrichment analysis of these expression pattern
highlights pathways largely unknown in PCD, including the
heme biosynthesis and the glutathione conjugation path-
ways (Fig. 2E). The heme has been shown to directly bind
and inhibit BACH2 function, resulting in the enhancement
of the transcription of BLIMP1, the master regulator of PCs
[30, 31]. Another interesting finding was the strong asso-
ciation between human PCD and the high expression of
genes coding for proteins involved in mitochondrial func-
tions and glutathione conjugation. During their differentia-
tion to antibody-secreting PCs, B lymphocytes undergo
dramatic changes in metabolism, structure, and function
[32]. This transition entails extensive intracellular and
extracellular redox changes, such as increased production of

reactive oxygen species, followed by a strong antioxidant
response [32]. Further studies elucidating the entire picture
of heme pathway functions in PCD will provide valuable
information for our understanding of the normal PC
biology.

Furthermore, our data largely confirmed the specific
expression patterns of known drivers of PC cell fate (IRF4,
BLIMP1/PRDM1, and XBP1), but they also identified a
number of other novel transcriptional regulators with
potential importance in PCD including BATF2 and MIST1/
BHLHA15.

BATF2 belongs to the AP-1/ATF superfamily of TFs.
Recent studies have uncovered positive transcriptional
activities of BATF family members in B cells, T cells, and
dendritic cell [33]. BATF family members have been also
described to interact with IRF4, a key PC TF [34–36],
suggesting that BATF2 might be a key component of
human PCD.

The TF MIST1/BHLHA15 has been recently described
as a marker of murine and human PCs [37]. However, its
role in PCD remains to be investigated. MIST1 has been

Fig. 7 BLM inhibition affects human plasma cell differentiation.
A, B Global cell counts and cell viability after treatment using trypan
blue assay. Results are the mean absolute counts or viability ± SD of
three independent experiments. C Analysis of apoptosis induction
using Annexin V-PE staining by flow cytometry. The shown data are
the mean values of three independent experiments. D Proportion of

each cell subpopulation at the different time points of the plasma cell
differentiation was determined by flow cytometry. E Analysis of cell
cycle with flow cytometry using DAPI, BrdU incorporation, and
labeling with an anti-BrdU antibody. The data are the mean values ±
SD of three separate experiments.

Fig. 6 BLM is upregulated in
preplasmablasts during
plasma cell differentiation. A
BLM gene expression profile in
PCD cell subpopulations using
RNA-seq. B Inhibition of BLM
using the ML216 inhibitor
(1 μM). The effect of BLM
inhibition on each differentiation
step was analyzed by adding the
drug at the beginning of the
differentiation step and
analyzing its effect at the end.
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recently identified as a “scaling factor” necessary to induce
and maintain secretory cell architecture [38]. In gastric
zymogenic cells, MIST1 expression is activated by XBP1,
which also induces the expansion of the rough ER neces-
sary to generate the massive loads of protein cargo to be
packaged into the large, MIST1-mediated granules [39, 40].
The TF XBP1 plays a central role in regulating the UPR
gene expression program [41], and as a consequence, is
essential for the secretion of Igs by PCs [41, 42]. Recent
studies revealed that MIST1 functions as a feedback reg-
ulator of the XBP1 gene [43]. These results suggest that
MIST1/BHLHA15 might be critical in PCs and might co-
operate with XBP1 to regulate a complex network of genes
involved in antibody secretory function, as well as, in ER
stress control.

Importantly, our results revealed several potential inter-
esting TFs and epigenetic modifiers with a short impulse
expression profile only at preplasmablastic stage (Fig. 3B).
The prePBs are characterized by active proliferation and the
beginning of Ig secretion. At this stage, proliferation, DNA
replication, and transcription need to be tightly regulated.
Consistently, among the genes upregulated at the prePB
stage, we have identified many epigenetic actors, including
histone methyltransferases (WHSC1/MMSET, EZH2),
protein arginine methyltransferases (PRMT1 and PRMT3),
DNA methylation enzyme (DNMT1), and DNA methyla-
tion reader (MBD2) (Fig. 3B). Among them, EZH2 was
reported recently to play a key role during B to PCD sup-
porting the maintenance of transitory immature proliferative
state to support prePB amplification before differentiation
[2]. Accordingly, EZH2 inhibition results in B to PC tran-
scriptional changes together with induction of PC matura-
tion and higher Ig secretion [2]. Many additional important
genes were also upregulated, including genes involved in
cell cycle, DNA replication, DNA repair, as well as, in
DNA unwinding, such as members of RECQ family heli-
cases (BLM and RECQ1) (Supplementary Fig. S6). Inter-
estingly, we have recently shown that RECQ1 promotes
resistance to replication stress and genotoxic agents in
malignant PCs [25].

Here, we show that the inhibition of BLM affects the
generation of prePBs leading to a decrease in PCD. BLM
overexpression at the preplasmablastic stage may be
important to support the replicative stress characterizing this
differentiation step. However, the mechanism by which
BLM executes this function in prePBs is currently unclear.
A large body of evidence indicates that BLM plays a central
role in the repair of stalled replication forks [44, 45]. BLM
has also been implicated in the resolution of G-quadruplexes
and of cotranscriptional R-loops, which form at highly
expressed genes and represent a major source of replication
impediments [46–48]. Moreover, recent evidence indicates
that BLM connects DNA damage to the innate immune

response and plays an important function in restraining
unscheduled ISG induction under replication stress condi-
tions [49]. It is therefore tempting to speculate that BLM
could be important to restrain the deleterious consequences
of replication–transcription conflicts in highly proliferative
prePB cells upon activation of novel transcription programs.
In the absence of BLM, these cells could accumulate stalled
forks and chromosome breaks due to their inability to
remove R-loops and G4 structures and to repair arrested
forks. They would also trigger a type I interferon response,
which would interfere with their normal differentiation
process and together with the persistence of chromosome
breaks, could contribute to cancer development.

It was demonstrated that, upon proteasome inhibitor
treatment, clonal malignant prePBs can be detected in
patients with Multiple Myeloma [50]. The prePBs lack full
secretory status and produce less Igs, and thus are less
sensitive to the ER stress induced by proteasome inhibitors
[50, 51]. In this context, BLM inhibition could represent a
therapeutic interest to target malignant prePBs involved in
resistance to proteasome inhibitors in MM [50]. Further-
more, we identified that high BLM expression is associated
with a poor outcome in newly diagnosed multiple myeloma
patients treated by HDT and ASCT and with resistance to
lenalidomide and HDACi. BLM inhibition could also
represent a therapeutic strategy to target high-risk MM
patients characterized by high BLM expression.

Altogether, the RNA-seq analysis of temporal stages of
PCD helped to identify coexpressed gene sets with asso-
ciated up/downregulated TF/EE genes that could represent
important regulatory nodes of PCD. The nature of the
relationships between the various genes and their regulatory
factors remains to be determined. These data thus provide
critical insights into new transcriptional events that sustain
PC cell fate and differentiation.
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