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INTRODUCTION

Cerebral edema is a complication affecting over 70,000 patients in the United States with 
acute ischemic stroke each year, resulting in fatality rates approaching eighty percent.[26] 
Cerebral edema results in the setting of increased intracranial cellular permeability due to 
cellular damage caused by stroke, head trauma, infection, intracranial lesions, or medication 
side effects.[46] Physiologically, brain tissue volume increases as edema induces intracellular 
swelling which then lowers perfusion to the brain, causing further damage to both intracellular 

ABSTRACT
Background: Vasogenic edema in the setting of acute ischemic stroke can be attributed to the opening of transient 
receptor potential 4 channels, which are expressed in the setting of injury and regulated by sulfonylurea receptor 
1 (SUR1) proteins. Glibenclamide, also known as glyburide, RP-1127, Cirara, and BIIB093, is a second-generation 
sulfonylurea that binds SUR1 at potassium channels and may significantly reduce cerebral edema following stroke, 
as evidenced by recent clinical trials. is review provides a comprehensive analysis of clinical considerations of 
glibenclamide use and current patient outcomes when administered in the setting of acute ischemic stroke to 
reduce severe edema.

Methods: National databases (MEDLINE, EMBASE, Cochrane, and Google scholar databases) were searched 
to identify studies that reported on the clinical outcomes of glibenclamide administered immediately following 
acute ischemic stroke.

Results: e pharmacological mechanism of glibenclamide was reviewed in depth as well as the known 
indications and contraindications to receiving treatment. Eight studies were identified as having meaningful 
clinical outcome data, finding statistically significant differences in glibenclamide treatment groups ranging from 
matrix metalloproteinase-9 serum levels, midline shift, modified Rankin Scores, National Institute of Health 
Stroke Score, and mortality endpoints.

Conclusion: Studies analyzing the GAMES-Pilot and GAMES-PR trials suggest that glibenclamide has a 
moderate, however, measurable effect on intermediate biomarkers and clinical endpoints. Meaningful conclusions 
are limited by the small sample size of patients studied.
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and extracellular brain tissue.[39] Clinical presentation 
may be asymptomatic, yet if left untreated can lead to 
autonomic dysfunction, coma, and death from brainstem 
compression and herniation.[14] is intracranial edema can 
be attributed to the opening of transient receptor potential 
4 channels (TRPM4), which are expressed in the setting 
of injury and regulated by sulfonylurea receptor 1 (SUR1) 
proteins.[2] Cell depolarization and resulting sodium 
influx, intracellular edema, and cell death follows.[39] us, 
blocking the SUR1-TRPM4 channel is advantageous in 
preventing edema following acute ischemic stroke, as they 
are transcriptionally upregulated in all neurovascular cells, 
co-assembling with aquaporin-4 channels causing cellular 
swelling of astrocytes.[2,33,43]

Glibenclamide, also known as glyburide, RP-1127, Cirara, 
and BIIB093, is a second-generation sulfonylurea drug 
that binds the SUR1 protein at potassium adenosine 
triphosphate channels (KATP). Although traditionally used 
to treat diabetes mellitus type 2, recent clinical trials have 
demonstrated efficacy in preventing cerebral edema in the 
setting of stroke. Studies have shown efficacy in inhibiting 
the SUR1-TRPM4 complex to prevent sodium and water 
influx into the cell and resulting edema.[13] Furthermore, 
glibenclamide has shown benefits in preserving the 
integrity of the vascular endothelium during cell damage, 
reducing edema, and inhibiting neuronal cell death from 
elevated intracranial pressure.[2,14,43] is review provides a 
comprehensive analysis of individual patient considerations, 
the pharmacological mechanism of glibenclamide, and 
outcomes of patients from clinical trials.

Patient selection

When severe or malignant edema is a complication of 
ischemic stroke, symptoms related to cerebral swelling 
specifically may be difficult to distinguish from residual 
deficits of stroke if eloquent regions of the brain have 
been affected from ischemia. Nevertheless, severe edema 
would be characterized by rapid decline in clinical picture, 
uncharacteristic of the stroke presentation. Some of the 
predictors and early signs of malignant edema may present 
as signs of increased intracranial pressure such as depressed 
consciousness, gaze palsy, and vomiting.[15] Other signs 
that are more specific for stroke-induced cerebral edema 
may be higher National Institutes of Health Stroke Scale 
(NIHSS) scores or the necessity for ventilation, which may 
be indicative of increased midline shift accompanied by 
herniation and respiratory depression.[45] Glibenclamide 
may be indicated in this setting and although the side effect 
profile of glibenclamide is minimal, some considerations are 
worth noting.

In the clinical pilot studies first investigating the 
use of glibenclamide for cerebral edema, hypoglycemia 

was a significant concern given the primary use of this 
pharmacotherapy for diabetes. However, despite close 
monitoring of blood glucose throughout the course of study, 
hypoglycemia was not reported to contribute to poorer 
outcomes in the setting of acute ischemic stroke.[6,31,32,35] 
However, complications of hypoglycemia have been described 
as being more pronounced in geriatric populations.[8] 
Furthermore, given that glibenclamide is a sulfonylurea, it 
is critical to screen for patients who may have a history of 
allergic reactions to sulfa drugs. Furthermore, those who are 
genetically susceptible to hemolytic anemia when exposed 
to sulfa drugs, such as patients with glucose-6-phosphate 
deficiency, should be avoided.[23,38] Conflicting reports of 
risk factors in patients with preexisting cardiovascular 
disease exist and although mortality is reportedly higher in 
cohorts of patients treated with glibenclamide compared to 
metformin in diabetes patients, clear contraindications are 
not currently defined.[6,22,28,38]

At present, there are no clear contraindications for use in 
pregnancy. Glibenclamide has been shown to cross the 
placenta in pregnancy and exposure to the drug in utero has 
been reported, however, the drug is digested by placental 
microsomes and toxicity in utero has not been reported.[19] 
Furthermore, the safety and efficacy of glibenclamide have 
not been clinically established in children and adolescents, 
however, both diabetes mellitus type 2 and ischemic stroke 
are exceeding rare in this age group. At present, the age 
requirement of the drug is not limited and patients in clinical 
trials have been treated from age 18 to 80 years old.[18,31] In the 
setting of hepatic diseases or renal impairment, glibenclamide 
is not contraindicated; however, initial and maintenance 
therapies should be decreased to reduce likelihood of 
hypoglycemia.[8,38] Given glibenclamide is metabolized by 
hepatic enzyme cytochrome P2C9, interactions with other 
ongoing therapies that induce or inhibit hepatic enzymes 
such as salicylates, sulfonamides, drugs containing fibric 
acid, warfarin, carbamazepine, phenobarbital, rifampin, 
St. John’s Wort, and dexamethasone may cause unwanted 
interaction and alter desired drug levels.[6,8,38] Weight gain 
is also a notable concern for diabetic patients on long-term 
therapy, however, not necessarily concerning for use in acute 
stroke.[6,8]

Recent study of development of glibenclamide for 
the prevention of cerebral edema following acute 
ischemic stroke has been primarily through intravenous 
(IV) administration.[18,30,31,33] However, oral application of 
glibenclamide has also been recently described in setting of 
ischemic stroke patient cohorts.[11,16] A significant limitation 
of oral administration is the time for absorption, estimated 
to be nine hours, which requires higher dosing and may 
have delayed effect, notwithstanding the practical limitation 
of a stroke patient having to swallow a pill.[11] In pilot 
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studies on investigational use of glibenclamide for cerebral 
edema, the indication to start the IV drug administration, 
for study purposes was within 10 h of ischemic stroke.[37] 
us, IV administration may be desirable in acute setting 
due to immediate bioavailability, especially in cases when 
treatment is delayed several hours after stroke. Another 
important favorable aspect of glibenclamide is that many 
of the treatment modalities currently used to treat ischemic 
stroke do not conflict with administration of glibenclamide. 
e use of tissue plasminogen activator (tPA) has not been 
reported to significantly alter the indication of whether or 
not glibenclamide may be given, although some studies have 
suggested that matrix metalloproteinase-9 (MMP-9) serums 
levels may be elevated in the setting of tPA administration.[7,9] 
Furthermore, glibenclamide may be used in conjunction 
with aggressive osmotherapy, decompressive craniectomy, 
and other interventional therapies currently employed to 
reduce edema and herniation.[11,18,31-33]

Given that glibenclamide for the application of ischemic 
stroke is indicated on an emergent basis, it is important 
to screen for obvious contraindications before initiating 
treatment. However, as with any therapy, the benefits of life-
saving treatment must be weighed against contraindications 
that may result in undesirable sequalae but are more 
concerning with long-term use.

Pharmacology

SUR1-TRPM4 channels, previously referred to as SUR1-
regulated NCCa-ATP channels, have been shown to play a 
critical role in the formation of cytotoxic edema. Normally, 
such channels regulate against a pathological rise in 
intracellular calcium during brain injury; SUR1-TRPM4 
channels also are sensitive to the intracellular concentration 
of ATP.[44] In cerebral vascular accidents, extreme depletion 
of ATP can result in persistent activation of SUR1-TRPM4 
channels, allowing for unregulated sodium entry into the 
cell, resulting in depolarization, which can lead to necrotic 
cell death and cytotoxic edema.[35,37] e SUR1-TRPM4 
channel is not constitutively expressed and thus is not 
expressed in healthy tissues.[44] SUR1-TRPM4 channels 
become transcriptionally upregulated in neurovascular 
structures and central nervous system (CNS) following 
cerebral ischemia or trauma.[1] e SUR1 protein has been 
shown to be transcriptionally upregulated in neurons, 
astrocytes, oligodendrocytes, and microvascular endothelial 
cells after focal ischemia.[24,34,36] Upregulation of SUR1 is 
paralleled by upregulation of TRPM4[21] and is associated 
with expression of increased SUR1-TRPM4 channels.[34] 
However, transcriptional upregulation of the SUR1-TRPM4 
channels alone in CNS injury does not directly induce cell 
death.[35] Twelve glibenclamide acts as a potent inhibitor of 
SUR1-regulated channel activity. 

In ischemic or traumatic brain cells, binding of glibenclamide 
to SUR1-TRPM4 reduces depolarization which reduced 
blood-brain barrier (BBB) leakage and the formation of 
cerebral edema.[35] Glibenclamide inhibits these channels 
by specifically targeting the regulatory subunit SUR1.[27] 
SUR1 receptors contain binding sites for first and second 
generation sulfonylurea drugs like glibenclamide and related 
compounds such as meglitinides, commonly used to treat 
diabetes mellitus type 2 and other related diseases.[35] In 
addition to SUR1-TRPM4 channels, glibenclamide has been 
known to inhibit four molecularly distinct KATP channels, 
SUR1-KIR6.2, SUR2A-KIR6.2, SUR2B-KIR6.2, and SUR2B-
KIR6.1, which are expressed by various cell types.[21,27,40,41] 
Most commonly, SUR1-KIR6.2 potassium channels regulate 
insulin secretion in pancreatic β cells.[12] e affinity of 
binding and the efficacy of inhibition are highest for SUR1-
regulated channels than in SUR2-regulated channels.[27] SUR1 
in SUR1-TRPM4 channels and in the KATP SUR1–Kir6.2 
channels has the same pharmacological properties.[3] In 
addition, glibenclamide also inhibits the NOD-like receptor 
pyrin domain containing 3 (NLRP3) inflammasome, an 
effect that is independent of the potassium ATP channels or 
SUR which may further add to neuroinflammation.[47]

Physiologically, glibenclamide and other sulfonylureas do 
not accumulate in the brain, even though there are neurons 
that express KATP channels in the CNS.[42] Although 
the penetration of glibenclamide into the CNS is aided 
due to increased permeability after an ischemic insult, 
glibenclamide is a weak acid with high lipid solubility which 
increases its ability to penetrate the BBB at low pH.[25,34,35] 
is pharmacologic property allows for relatively low doses 
of glibenclamide, when administered intravenously, to obtain 
a therapeutic effect without major effects to the insulin 
section in the pancreas.[27,35]

MATERIALS AND METHODS

To identify investigational use of glibenclamide, a literature 
search of national databases was performed to identify studies 
that reported objective outcomes when used in the setting of 
stroke. Studies were also identified that could provide insight 
into the clinical use and specific indications of glibenclamide. 
Eight studies published over the past 6 years were identified 
as having meaningful data that looked at clinical outcomes of 
glibenclamide use in acute ischemic stroke [Figure 1]. Most 
studies identified were subgroup analyses of outcomes of 
patients enrolled in previous or ongoing clinical trials, listed 
in [Table  1].[32,31,17,33,18,43,10] A complete summary of studies 
included in this review may be seen in [Table  2]. Primary 
outcomes of interest in the literature surrounding cerebral 
edema, specifically in the setting of ischemic stroke, was 
(1) MMP-9 serum levels, (2) midline shift, (3) quality of life 
scores, and (4) mortality.
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Trials and outcomes

Previous clinical studies have demonstrated that IV 
glibenclamide has resulted in reduction in plasma MMP-
9 levels, which are typically elevated following stroke and 
indicate several stroke-related complications, particularly 
brain edema after stroke.[5,29,37] Exploratory analyses of the 
GAMES-Pilot study have suggested that IV glibenclamide 
reduces MMP-9 antigen levels, which can be measured in the 
serum and correlated with favorable clinical profile.[17] us, 

lower MMP-9 levels in the setting of stroke may be correlated 
with lower cerebral swelling and for this reason; MMP-9 was 
an important serum measure in the study of stroke patients 
treated with glibenclamide.[17,18,29,37] In a retrospective analysis 
of the GAMES-Pilot trial, Kimberly et al. compared levels of 
MMP-9 in patients treated with IV glibenclamide to a control 
cohort of similar large ischemic infarction. At 48 h post-stroke 
onset, the IV glibenclamide group had significantly reduced 
levels of MMP-9 in plasma samples using a quantitative 
sandwich ELISA (54 ± 17 ng/mL vs. 212 ± 151 ng/mL, 

Table 1: Clinical trials investigating use of glibenclamide in ischemic stroke.

Trial name Clinical trial Studies n Start date Completion 
date

Phase

Glyburide Advantage in Malignant Edema and 
Stroke Pilot (GAMES-PILOT)

NCT01268683 Sheth, 2014[32]

Sheth, 2014[31]

Kimberly, 2014[17]

10 May 2011 February 2013 I

Glyburide Advantage in Malignant Edema and 
Stroke - Remedy Pharmaceuticals (GAMES-RP)

NCT01794182 Sheth, 2018[33]

Kimberly, 2018[18]

Vorasayan, 2019[43]

Hinson, 2020[10]

83 May 2013 April 2016 II

Cirara in large Hemispheric infarction Analyzing 
modified Rankin and Mortality (CHARM)

NCT02864953 Pending 768 August 2018 Estimated
November
2022

III

Figure 1: PRISMA flowchart with the criteria for inclusion and exclusion for this review.
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P < 0.01). Kimberly et al. also noted that the levels of tissue 
inhibitor of metalloproteinase 1 (TIMP-1), a protein that 
circulates with MMP-9 to regulate it, were unchanged in 
the presence of IV glibenclamide.[17] is was suggestive of 
direct mechanism of lowering MMP-9 that did not depend 
on physiologic inhibitors. A similar analysis was completed 
by Kimberly et al. on the patient outcomes of the GAMES-PR 
trial.[18] e plasma MMP-9 was measured during the infusion 
period of 24–72 h and analyzed using a Wilcoxon rank sum 
test. Among those patients who experienced malignant 
edema (n = 36), IV glibenclamide was also associated with 
approximately 50% lower plasma level of MMP-9 (161 ng/mL 
vs. 335 ng/mL, P = 0.001) compared to matched controls. 
Another analysis of outcomes of the GAMES-PR patients 
by Sheth et al., specifically of subjects less than 70 years old 
at 12 months post-treatment, showed that treatment with 
IV glibenclamide resulted in lower concentrations of total 
serum MMP-9 compared to patients who were given placebo 
(189 ng/mL vs. 367 ng/mL, P = 0.001).[33] Interestingly, 
subgroup analysis of patient less than 70 years of age showed 
treatment with IV glibenclamide resulted in a 51% reduction 
in plasma MMP-9 levels.[33] is was noticeably larger than 
the 39% reduction observed in the overall cohort in the 
GAMES-RP trial which included patients from the age of 
18–80, suggesting possible higher efficacy of glibenclamide in 
younger patients, specifically with respect to MMP-9 levels. 

In further analyzing the changes in the brain with IV 
glibenclamide in the GAMES-RP cohort, Vorasayan et al. 
conducted a post-hoc exploratory analysis using a modified 
intention-to-treat sample.[43] is study was unique in that 
the primary outcomes of interest also included computed 
tomography (CT) radiodensity changes of gray and white 
matter to identify quantitative changes in radiodensity in 
addition to midline shift. e data considered in this analysis 
consisted of analyzing the CT scans of patients presenting 
with ischemic stroke over the first 7 days of hospital 
admission and considered radiodensity changes with a CT-
derived water-uptake ratio measured at multiple portions 
gray and white matter sections of the brain.[43] Treatment 
with IV glibenclamide was associated with reduced water 
uptake ratio (β = −2.80; 95% CI, −5.07 to −0.53, P = 0.016) 
and reduced midline shift (β=−1.50; 95% CI, −2.71 to −0.28, 
p=0.016). Furthermore, Vorasayan et al. demonstrated that in 
the treatment arm of the study, this was evident in both gray 
and white matter (β = 0.15; 95% CI, 0.11–0.20; P < 0.001), 
however, gray matter water uptake ratio was correlated with 
more significant midline shift and mass effect than white 
matter (β = 0.08; 95% CI, 0.03–0.13; P = 0.001).[43] us, 
the finding of this analysis confirmed the utility of reduced 
cerebral edema due to IV glibenclamide CT radiodensity 
change demonstrating reduced water uptake ration in 
addition to midline shift.

Table 2: Studies reporting glibenclamide use in cerebral edema.

Author, year n MOA Outcomes of interest Significant findings 

Kimberly et al., 2014[17] 8* IV MMP-9 levels, MRI analysis T2 fluid-attenuated inversion recovery signal 
intensity ratio on brain MRI, diminished lesional 
water diffusivity between day 1 and 2 MMP-9 
levels reduced

Sheth et al., 2014[31] 10* IV Pilot study No hypoglycemia, minimal adverse reactions, 
and events due to glibenclamide

Sheth et al., 2014[32] 10* IV mRS, rate of decompressive 
craniectomy, mortality

Higher DWI volume, patients trended toward 
lower mortality

Sheth et al., 2018[33] 65** IV 90-day and 12-month mortality, 
midline shift, MMP-9, mRS, Barthel 
Index, EQ-5D

Participants≤70 years of age treated with 
intravenous glyburide had lower mortality 
at all-time points for survival hazards ratio. 
MMP-9, midline shift, Barthel index, EQ-5D 
were reduced

Kimberly et al., 2018[18] 77** IV Malignant edema, MMP-9 levels, 
midline shift, NIHSS

Reduced mortality, less midline shift, and lower 
MMP-9 in malignant edema

Huang et al., 2019[11] 213 Oral 30‐day mortality, hypoglycemia, 
NIHSS, hemorrhagic transformation, 
midline shift.

30‐day mortality reduced in glibenclamide 
group

Vorasayan et al., 2019[43] 264** IV CT radiodensity, midline shift, MRI 
analysis of gray and white matter net 
water intake

Reduced gray and white matter uptake, reduced 
NWU, reduced midline shift with glibenclamide 
use

Hinson et al., 2020[10] 41** IV DWI lesion volume, midline shift, 
NIHSS

No clear differences based on glibenclamide use 
when stratified by osmotherapy

*Indicates GAMES-Pilot cohort; **Indicates GAMES-RP cohort. MOA: Method of administration, IV: Intravenous, EQ-5D: EuroQol group 5-dimension, 
NIHSS: National Institutes of Health Stroke Scale, mRS: Modified Rankin scale, DWI: Diffusion-weighted image
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Another important direct result of cerebral edema is reflected 
in the quantitative measure of midline shift, which describes 
displacement of cerebral structures laterally and has been 
correlated with diminished and often irreversible poor mental 
status, especially when measures such as decompressive 
craniectomy are not pursued.[4,20,39] Four studies were 
identified having been published on the degree of midline shift 
reduction in the setting of glibenclamide.[11,19,43] ree studies 
were published on patients included in the GAMES-RP trial 
and reviewed it using a post-hoc analysis. Kimberly et al. 
showed IV glibenclamide had approximately 50% reduction 
of midline shift compared with the placebo in all patients 
(4.6 mm vs. 12.4 mm, P = 0.001).[18] Another post-hoc analysis 
by Sheth et al. compared midline shift in the IV glibenclamide 
group with placebo groups, finding statistical reduction of 
midline shift in the treatment group at 72–96 h specifically 
in patient less than 70 years of age (4.7 mm vs. 9.0 mm, 
P = 0.001).[33] Finally, Vorasayan et al. considered the degree 
of midline shift in association with other factors such as CT-
derived water uptake ratio of both white and gray matter 
regions and progressive degree of change over initial time 
points leading up to 96 h. When analyzed over time, patients 
treated with IV glibenclamide demonstrated statistical 
reduction over six equally distributed time points over the 
four initial days following ischemic stroke (β = −1.50; 95% CI, 
−2.71 to −0.28, P = 0.016).[43]

Another study was identified investigating the use of 
glibenclamide similarly in acute ischemic stroke, however, 
administered orally, not IV.[11] Notably, this did not include 
patient from either the GAMES-Pilot or GAMES-RP 
clinical trials, rather a new exploratory analysis.[11] Although 
Huang et al. failed to find statistical difference in treatment 
arms in midline shift, the mean reported midline shift 
was lower in the Huang study (2.4 mm and 2.9 mm in the 
control and treatment, respectively) than reported values 
in the GAMES trial cohorts. e degree of seemingly 
different values of midline shift was not attributable to the 
methods of measurement, as both studies used deviation 
of the septum pellucidum to characterize shift. us, it is 
possible that the degree of cerebral swelling may have been 
less severe the Huang study compared with the GAMES 
trials. us, less severe cerebral edema in the Huang study 
may have contributed to lack of adequate detection of 
significant effect. us, while a comparison of oral and IV 
methods of administration would be helpful, differences and 
heterogeneity between the studies would not be meaningful. 
Some of the self-reported weaknesses of this study included 
the small number of subjects, time window of administration 
that glibenclamide was administered as the oral form has 
been reported to have roughly 9-h delay due to delay in 
gastrointestinal absorption of the oral form, and dosing 
that was adapted from IV preparations.[11] us, while their 
study failed to demonstrate statistical significance in terms 

of midline shift, the study was found to have significant 
contribution understanding the efficacy glibenclamide, in 
terms of oral preparation.[11] To our knowledge and review 
of literature, this is the only study to report outcomes of oral 
glibenclamide in the setting of acute ischemic stroke.

In the discussion of long-term outcomes and quality of 
life differences that may be apparent due to treatment with 
glibenclamide, four studies investigated the functional 
outcomes of patients who suffered ischemic stroke and 
were subsequently treated with glibenclamide compared 
with placebo controls. Outcomes of interest included a 
modified Rankin Scale (mRS), Barthel index, EuroQol group 
5-dimension (EQ-5D), NIHSS, and finally mortality. Sheth 
et al. described the outcomes of patients included in the 
GAMES-Pilot cohort of ten patients in terms of 90-day mRS 
compared with matched controls, finding that patient’s 
treatment with glibenclamide has a higher proportion of 
0–4 mRS (P = 0.049, Fisher’s exact test).[31,32] However, 
changes in NIHSS and other intervals of mRS were not 
found to be statistically significant. In analyzing GAMES-RP 
patients, functional outcome was more likely among patients 
who received IV glibenclamide compared to the placebo 
group at 90 days (COR, 2.49; 95% CI, 1.02–6, P = 0.05).[33] 
At the 12-month interval, there was minimal reduction of 
the effect size (COR, 2.24; 95% CI, 0.92–5.46; P = 0.08).[33] 
After adjusting for age, the mRS scores favored the use of 
IV glibenclamide at 90 days (adjusted COR, 2.31; 95% CI, 
0.93–5.72, P = 0.07) and 12 months (adjusted COR, 2.11; 
95% CI, 0.86–5.18, P = 0.10).[33] Furthermore, patients in the 
glibenclamide group had higher Barthel index scores (95% 
CI, 2.1–37; P = 0.03) and higher EQ-5D scores 5D (95% CI, 
0.001–0.249; P = 0.05) at 90-day, 6-month, and 12-month time 
points.[33] In a secondary analysis of the GAMES-RP cohort, 
Kimberly et al. considered NIHSS scores while correcting 
the potential confounders of decompressive craniectomy.[18] 
In the GAMES-RP cohort, there were more decompressive 
craniectomy cases than the placebo group. Despite correction 
of decompressive surgical intervention, fewer patients treated 
with IV glibenclamide still had an increase in NIHSS score 
≥4 before craniectomy or day 3 (n = 5 [12%] vs. n = 11 [31%] 
in placebo, P = 0.048).[18] Of patients who were defined as 
having malignant edema, the rates of clinical deterioration 
based on NIHSS were lower based in those treated with IV 
glibenclamide (P < 0.01).[18] Finally, in the analysis of the 213 
patients suffering acute stroke by Huang et al., mRS of 0–4 at 
6 months was shown to be statistically significant in both a 
total cohort and propensity matched analysis (P = 0.001 and 
P = 0.044, respectively).[11]

With regard to mortality, glibenclamide was not shown 
to reduce mortality in the GAMES-Pilot study; however, 
statistically significant difference in mortality was achieved 
in analysis of the GAMES-RP cohort.[18,31,32] Sheth et al. 
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showed that mortality at 12 months 5/35 (14%) in the IV 
glibenclamide treatment group and 12/30 (40%) in the 
placebo group.[33] In a different analysis, Kimberly et al. 
considered edema related deaths at 30 days finding that IV 
glibenclamide treatment had lower mortality compared with 
placebo (1 vs. 8 deaths, P = 0.010, fishers exact test).[18] When 
adjusting for patients receiving decompressive craniectomy, 
IV glibenclamide remained independently associated 
with lower mortality (odds ratio = 0.09, 95% CI 0.01–0.74, 
P = 0.026).[18] Furthermore, a Kaplan–Meier survival analysis 
showed that IV glibenclamide was effective in reducing 
likelihood of edema-related deaths compared to placebo 
groups within 30 days of suffering stroke (P = 0.009).[18] In 
the Huang study, 30-day mortality was shown to be reduced 
in the glibenclamide treatment group in the unmatched 
cohort (P = 0.011) but failed to show statistical significance 
in the propensity matched cohort.[11]

CONCLUSION

is review provides, to date, the largest and most 
comprehensive review of the use of glibenclamide for use in 
acute ischemic stroke with analysis of measurable outcomes 
of MMP-9, midline shift, mRS, NIHSS, and mortality. 
Literature not included in this analysis was minimal and 
reported on the investigational use of glibenclamide in the 
setting of traumatic brain injury, which was not reviewed in 
depth.[13,16] e collection of studies in this review promotes 
the notion of glibenclamide as an effective addition to 
current therapies that may be used to reduce cerebral edema. 
Although there are extensive subgroup analyses of the 
different aspects of glibenclamide use in ischemic stroke as 
evidenced by the studies included in this review, the limited 
number of patients certainly remains a limiting factor in 
drawing meaningful conclusion and demonstrating broad 
clinical efficacy. As future studies are published on the results 
of glibenclamide use in ongoing phase III trials (CHARM), 
current results from the GAMES-Pilot and GAMES-PR 
trials suggest that glibenclamide has a moderate, however, 
measurable effect on intermediate biomarker and clinical 
endpoints.
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